Memantine and Riluzole Exacerbate, Rather Than Ameliorate Behavioral Deficits Induced by 8-OH-DPAT Sensitization in a Spatial Task

. 2021 Jul 09 ; 11 (7) : . [epub] 20210709

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34356631

Grantová podpora
NU20-04-00147 Czech Health Research Council

Chronic sensitization to serotonin 1A and 7 receptors agonist 8-OH-DPAT induces compulsive checking and perseverative behavior. As such, it has been used to model obsessive-compulsive disorder (OCD)-like behavior in mice and rats. In this study, we tested spatial learning in the 8-OH-DPAT model of OCD and the effect of co-administration of memantine and riluzole-glutamate-modulating agents that have been shown to be effective in several clinical trials. Rats were tested in the active place avoidance task in the Carousel maze, where they learned to avoid the visually imperceptible shock sector. All rats were subcutaneously injected with 8-OH-DPAT (0.25 mg/kg) or saline (control group) during habituation. During acquisition, they were pretreated with riluzole (1 mg/kg), memantine (1 mg/kg), or saline solution 30 min before each session and injected with 8-OH-DPAT ("OH" groups) or saline ("saline" groups) right before the experiment. We found that repeated application of 8-OH-DPAT during both habituation and acquisition significantly increased locomotion, but it impaired the ability to avoid the shock sector. However, the application of 8-OH-DPAT in habituation had no impact on the learning process if discontinued in acquisition. Similarly, memantine and riluzole did not affect the measured parameters in the "saline" groups, but in the "OH" groups, they significantly increased locomotion. In addition, riluzole increased the number of entrances and decreased the maximum time avoided of the shock sector. We conclude that monotherapy with glutamate-modulating agents does not reduce but exacerbates cognitive symptoms in the animal model of OCD.

Zobrazit více v PubMed

Stein D.J., Denys D., Gloster A.T., Hollander E., Leckman J.F., Rauch S.L., Phillips K.A. Obsessive-compulsive Disorder: Diagnostic and Treatment Issues. Psychiatr. Clin. N. Am. 2009;32:665–685. doi: 10.1016/j.psc.2009.05.007. PubMed DOI

Jenike M.A. Obsessive—Compulsive Disorder. N. Engl. J. Med. 2004;203:259–265. doi: 10.1056/NEJMcp031002. PubMed DOI

Shin N.Y., Lee T.Y., Kim E., Kwon J.S. Cognitive functioning in obsessive compulsive disorder: A meta-analysis. Psychol. Med. 2004;44:1121–1130. doi: 10.1017/S0033291713001803. PubMed DOI

Snyder H.R., Kaiser R.H., Warren S.L., Heller W. Obsessive-compulsive disorder is associated with broad impairments in executive function: A metaanalysis. Clin. Psychol. Sci. J. Assoc. Psychol. Sci. 2015;3:301–330. doi: 10.1177/2167702614534210. PubMed DOI PMC

Han K., Young Kim I., Kim J.-J. Assessment of cognitive flexibility in real life using virtual reality: A comparison of healthy individuals and schizophrenia patients. Comput. Biol. Med. 2015;42:841–847. doi: 10.1016/j.compbiomed.2012.06.007. PubMed DOI

La Paglia F., la cascia C., Rizzo R., Riva G., La Barbera D. Assessment of Executive Functions in Patients with Obsessive Compulsive Disorder by NeuroVR. Stud. Health Technol. Inform. 2015;181:98–102. doi: 10.3233/978-1-61499-121-2-98. PubMed DOI

Delahaye M., Lemoine P., Cartwright S., Deuring G., Beck J., Pflueger M., Graf M., Hachtel H. Learning aptitude, spatial orientation and cognitive flexibility tested in a virtual labyrinth after virtual stress induction. BMC Psychol. 2015;3:22. doi: 10.1186/s40359-015-0080-5. PubMed DOI PMC

Goodman W.K., Grice D.E., Lapidus K.A.B., Coffey B.J. Obsessive-compulsive disorder. Psychiatr. Clin. N. Am. 2014;37:257–267. doi: 10.1016/j.psc.2014.06.004. PubMed DOI

Derksen M., Feenstra M., Willuhn I., Denys D. The serotonergic system in obsessive-compulsive disorder. Handb. Behav. Neurosci. 2020;31:865–891. doi: 10.1016/B978-0-444-64125-0.00044-X. DOI

Marazziti D., Hollander E., Lensi P., Ravagli S., Cassano G.B. Peripheral markers of serotonin and dopamine function in obsessive-compulsive disorder. Psychiatry Res. 1992;42:41–51. doi: 10.1016/0165-1781(92)90037-4. PubMed DOI

Erzegovesi S., Ronchi P., Smeraldi E. 5HT-2 receptor and fluvoxamine effect in obsessive-compulsive disorder. Hum. Psychopharmacol. Clin. Exp. 1992;7:287–289. doi: 10.1002/hup.470070409. DOI

Moreno F.A., Wiegand C.B., Taitano E.K., Delgado P.L. Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J. Clin. Psychiatry. 2006;67:1735–1740. doi: 10.4088/JCP.v67n1110. PubMed DOI

Kotapati V.P., Khan A.M., Dar S., Begum G., Bachu R., Adnan M., Zubair A., Ahmed R.A. The Effectiveness of Selective Serotonin Reuptake Inhibitors for Treatment of Obsessive-Compulsive Disorder in Adolescents and Children: A Systematic Review and Meta-Analysis. Front. Psychiatry. 2019;10 doi: 10.3389/fpsyt.2019.00523. PubMed DOI PMC

Rotge J.Y., Aouizerate B., Tignol J., Bioulac B., Burbaud P., Guehl D. The glutamate-based genetic immune hypothesis in obsessive-compulsive disorder. An integrative approach from genes to symptoms. Neuroscience. 2010;165:408–417. doi: 10.1016/j.neuroscience.2009.10.043. PubMed DOI

Chakrabarty K., Bhattacharyya S., Christopher R., Khanna S. Glutamatergic dysfunction in OCD. Neuropsychopharmacology. 2005;30:1735–1740. doi: 10.1038/sj.npp.1300733. PubMed DOI

Whiteside S.P., Port J.D., Deacon B.J., Abramowitz J.S. A magnetic resonance spectroscopy investigation of obsessive-compulsive disorder and anxiety. Psychiatry Res. Neuroimaging. 2006;146:137–147. doi: 10.1016/j.pscychresns.2005.12.006. PubMed DOI

Rosenberg D.R., Macmaster F.P., Keshavan M.S., Fitzgerald K.D., Stewart C.M., Moore G.J. Decrease in caudate glutamatergic concentrations in pediatric obsessive-compulsive disorder patients taking paroxetine. J. Am. Acad. Child Adolesc. Psychiatry. 2000;39:1096–1103. doi: 10.1097/00004583-200009000-00008. PubMed DOI

Kushner M.G., Kim S.W., Donahue C., Thuras P., Adson D., Kotlyar M., McCabe J., Peterson J., Foa E.B. D-Cycloserine Augmented Exposure Therapy for Obsessive-Compulsive Disorder. Biol. Psychiatry. 2007;62:835–838. doi: 10.1016/j.biopsych.2006.12.020. PubMed DOI

Norberg M.M., Krystal J.H., Tolin D.F. A Meta-Analysis of D-Cycloserine and the Facilitation of Fear Extinction and Exposure Therapy. Biol. Psychiatry. 2008;63:1118–1126. doi: 10.1016/j.biopsych.2008.01.012. PubMed DOI

Rodriguez C.I., Kegeles L.S., Levinson A., Feng T., Marcus S.M., Vermes D., Flood P., Simpson H.B. Randomized Controlled Crossover Trial of Ketamine in Obsessive-Compulsive Disorder: Proof-of-Concept. Neuropsychopharmacology. 2013;38:2475–2483. doi: 10.1038/npp.2013.150. PubMed DOI PMC

Grant P., Song J.Y., Swedo S.E. Review of the use of the glutamate antagonist riluzole in psychiatric disorders and a description of recent use in childhood obsessive-compulsive disorder. J. Child. Adolesc. Psychopharmacol. 2010;20:309–315. doi: 10.1089/cap.2010.0009. PubMed DOI PMC

Emamzadehfard S., Kamaloo A., Paydary K., Ahmadipour A., Zeinoddini A., Ghaleiha A., Mohammadinejad P., Zeinoddini A., Akhondzadeh S. Riluzole in augmentation of fluvoxamine for moderate to severe obsessive-compulsive disorder: Randomized, double-blind, placebo-controlled study. Psychiatry Clin. Neurosci. 2010;70:332–341. doi: 10.1111/pcn.12394. PubMed DOI

Pasquini M., Biondi M. Memantine augmentation for refractory obsessive-compulsive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2006;30:1173–1175. doi: 10.1016/j.pnpbp.2006.04.013. PubMed DOI

Poyurovsky M., Weizman R., Weizman A., Koran L. Memantine for treatment-resistant OCD. Am. J. Psychiatry. 2005;162:2191–2192. doi: 10.1176/appi.ajp.162.11.2191-a. PubMed DOI

Kishi T., Matsuda Y., Iwata N. Combination Therapy of Serotonin Reuptake Inhibitors and Memantine for Obsessive-Compulsive Disorder: A Meta-Analysis of Double-Blind, Randomized, Placebo-Controlled Trials. J. Alzheimer’s Dis. 2018;64:43–48. doi: 10.3233/JAD-180237. PubMed DOI

Modarresi A., Sayyah M., Razooghi S., Eslami K., Javadi M., Kouti L. Memantine Augmentation Improves Symptoms in Serotonin Reuptake Inhibitor-Refractory Obsessive-Compulsive Disorder: A Randomized Controlled Trial. Pharmacopsychiatry. 2018;51:263–269. doi: 10.1055/s-0043-120268. PubMed DOI

Alkhatib A.H., Dvorkin-Gheva A., Szechtman H. Quinpirole and 8-OH-DPAT induce compulsive checking behavior in male rats by acting on different functional parts of an OCD neurocircuit. Behav. Pharmacol. 2013;24:65–73. doi: 10.1097/FBP.0b013e32835d5b7a. PubMed DOI

Monteiro P., Feng G. Learning from animal models of obsessive-compulsive disorder. In Biol. Psychiatry. 2016;79:7–16. doi: 10.1016/j.biopsych.2015.04.020. PubMed DOI PMC

Odland A.U., Jessen L., Fitzpatrick C.M., Andreasen J.T. 8-OH-DPAT Induces Compulsive-like Deficit in Spontaneous Alternation Behavior: Reversal by MDMA but Not Citalopram. ACS Chem. Neurosci. 2019;10:3094–3100. doi: 10.1021/acschemneuro.8b00593. PubMed DOI

Yadin E., Friedman E., Bridger W.H. Spontaneous alternation behavior: An animal model for obsessive-compulsive disorder? Pharmacol. Biochem. Behav. 1991;40:311–315. doi: 10.1016/0091-3057(91)90559-K. PubMed DOI

Bures J., Fenton A.A., Kaminsky Y., Zinyuk L. Place cells and place navigation. Proc. Natl. Acad. Sci. USA. 1997;94:343–350. doi: 10.1073/pnas.94.1.343. PubMed DOI PMC

Bures J., Fenton A.A., Kaminsky Y., Wesierska M., Zahalka A. Rodent navigation after dissociation of the allocentric and idiothetic representations of space. Neuropharmacology. 1998;37:689–699. doi: 10.1016/S0028-3908(98)00031-8. PubMed DOI

Stuchlík A., Petrásek T., Prokopová I., Holubová K., Hatalová H., Valeš K., Kubík Š., Dockery C., Wesierska M. Place Avoidance Tasks as Tools in the Behavioral Neuroscience of Learning and Memory Origin of place avoidance tasks. Physiol. Res. 2013;62:1–19. doi: 10.33549/physiolres.932635. PubMed DOI

Janikova M., Brozka H., Radostova D., Svoboda J., Stuchlik A. No effect of riluzole and memantine on learning deficit following quinpirole sensitization—An animal model of obsessive-compulsive disorder. Physiol. Behav. 2019;204:241–247. doi: 10.1016/j.physbeh.2019.01.013. PubMed DOI

Sugiyama A., Saitoh A., Iwai T., Takahashi K., Yamada M., Sasaki-Hamada S., Oka J., Inagaki M., Yamada M. Riluzole produces distinct anxiolytic-like effects in rats without the adverse effects associated with benzodiazepines. Neuropharmacology. 2012;62:2489–2498. doi: 10.1016/j.neuropharm.2012.02.012. PubMed DOI

Beconi M.G., Howland D., Park L., Lyons K., Giuliano J., Dominguez C., Munoz-Sanjuan I., Pacifici R. Pharmacokinetics of memantine in rats and mice. PLoS Curr. Huntingt. Dis. 2012;1:1–15. doi: 10.1371/currents.RRN1291. PubMed DOI PMC

Willis E.F., Bartlett P.F., Vukovic J. Protocol for Short- and Longer-term Spatial Learning and Memory in Mice. Front. Behav. Neurosci. 2017;11:197. doi: 10.3389/fnbeh.2017.00197. PubMed DOI PMC

Bahnik S. Carousel Maze Manager. Version 0.4.0. [(accessed on 21 September 2020)];2014 Available online: https://github.com/bahniks/CM_Manager_0_4_0.

Johnson E.F., Szechtman H. A dose-response study of separate and combined effects of the serotonin agonist 8-OH-DPAT and the dopamine agonist quinpirole on locomotor sensitization, /cross-sensitization, and conditioned activity. Behav. Pharmacol. 2016;27:439–450. doi: 10.1097/FBP.0000000000000219. PubMed DOI

Réus G.Z., Valvassori S.S., Machado R.A., Martins M.R., Gavioli E.C., Quevedo J. Acute treatment with low doses of memantine does not impair aversive, non-associative and recognition memory in rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2008;376:295–300. doi: 10.1007/s00210-007-0235-x. PubMed DOI

Sukhanov I.M., Zakharova E.S., Danysz W., Bespalov A.Y. Effects of NMDA receptor channel blockers, MK-801 and memantine, on locomotor activity and tolerance to delay of reward in Wistar-Kyoto and spontaneously hypertensive rats. Behav. Pharmacol. 2004;15:263–271. doi: 10.1097/01.fbp.0000137212.03247.f1. PubMed DOI

Kretschmer B.D., Kratzer U., Schmidt W.J. Riluzole, a glutamate release inhibitor, and motor behavior. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1998;358:181–190. doi: 10.1007/PL00005241. PubMed DOI

Wald R., Dodman N., Shuster L. The Combined Effects of Memantine and Fluoxetine on an Animal Model of Obsessive Compulsive Disorder. Exp. Clin. Psychopharmacol. 2009;17:191–197. doi: 10.1037/a0016402. PubMed DOI

Egashira N., Okuno R., Harada S., Matsushita M., Mishima K., Iwasaki K., Fujiwara M. Effects of glutamate-related drugs on marble-burying behavior in mice: Implications for obsessive-compulsive disorder. Eur. J. Pharmacol. 2008;586:164–170. doi: 10.1016/j.ejphar.2008.01.035. PubMed DOI

Costa L., Trovato C., Musumeci S.A., Catania M.V., Ciranna L. 5-HT1A and 5-HT7 receptors differently modulate AMPA receptor-mediated hippocampal synaptic transmission. Hippocampus. 2012;22:790–801. doi: 10.1002/hipo.20940. PubMed DOI

Schmitz D., Gloveli T., Empson R.M., Draguhn A., Heinemann U. Serotonin reduces synaptic excitation in the superficial medial entorhinal cortex of the rat via a presynaptic mechanism. J. Physiol. 1998;508:119–129. doi: 10.1111/j.1469-7793.1998.119br.x. PubMed DOI PMC

Ciranna L. Serotonin as a Modulator of Glutamate- and GABA-Mediated Neurotransmission: Implications in Physiological Functions and in Pathology. Curr. Neuropharmacol. 2006;4:101–114. doi: 10.2174/157015906776359540. PubMed DOI PMC

Aboujaoude E., Barry J.J., Gamel N. Memantine augmentation in treatment-resistant obsessive-compulsive disorder: An open-label trial. J. Clin. Psychopharmacol. 2009;29:51–55. doi: 10.1097/JCP.0b013e318192e9a4. PubMed DOI

Pittenger C., Kelmendi B., Wasylink S., Bloch M.H., Coric V. Riluzole augmentation in treatment-refractory obsessive-compulsive disorder: A series of 13 cases, with long-term follow-up. J. Clin. Psychopharmacol. 2008;28:363–367. doi: 10.1097/JCP.0b013e3181727548. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...