Memantine and Riluzole Exacerbate, Rather Than Ameliorate Behavioral Deficits Induced by 8-OH-DPAT Sensitization in a Spatial Task
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NU20-04-00147
Czech Health Research Council
PubMed
34356631
PubMed Central
PMC8301967
DOI
10.3390/biom11071007
PII: biom11071007
Knihovny.cz E-zdroje
- Klíčová slova
- 8-OH-DPAT, memantine, memory, obsessive-compulsive disorder, riluzole, spatial learning,
- MeSH
- 8-hydroxy-2-(di-N-propylamino)tetralin škodlivé účinky farmakologie MeSH
- chování zvířat účinky léků MeSH
- krysa rodu Rattus MeSH
- memantin farmakologie MeSH
- modely nemocí na zvířatech MeSH
- obsedantně kompulzivní porucha * chemicky indukované farmakoterapie patofyziologie MeSH
- paměť účinky léků MeSH
- potkani Long-Evans MeSH
- prostorové učení účinky léků MeSH
- riluzol farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 8-hydroxy-2-(di-N-propylamino)tetralin MeSH
- memantin MeSH
- riluzol MeSH
Chronic sensitization to serotonin 1A and 7 receptors agonist 8-OH-DPAT induces compulsive checking and perseverative behavior. As such, it has been used to model obsessive-compulsive disorder (OCD)-like behavior in mice and rats. In this study, we tested spatial learning in the 8-OH-DPAT model of OCD and the effect of co-administration of memantine and riluzole-glutamate-modulating agents that have been shown to be effective in several clinical trials. Rats were tested in the active place avoidance task in the Carousel maze, where they learned to avoid the visually imperceptible shock sector. All rats were subcutaneously injected with 8-OH-DPAT (0.25 mg/kg) or saline (control group) during habituation. During acquisition, they were pretreated with riluzole (1 mg/kg), memantine (1 mg/kg), or saline solution 30 min before each session and injected with 8-OH-DPAT ("OH" groups) or saline ("saline" groups) right before the experiment. We found that repeated application of 8-OH-DPAT during both habituation and acquisition significantly increased locomotion, but it impaired the ability to avoid the shock sector. However, the application of 8-OH-DPAT in habituation had no impact on the learning process if discontinued in acquisition. Similarly, memantine and riluzole did not affect the measured parameters in the "saline" groups, but in the "OH" groups, they significantly increased locomotion. In addition, riluzole increased the number of entrances and decreased the maximum time avoided of the shock sector. We conclude that monotherapy with glutamate-modulating agents does not reduce but exacerbates cognitive symptoms in the animal model of OCD.
1st Faculty of Medicine Charles University Katerinska 1660 12 121 08 Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Videnska 1083 142 20 Prague Czech Republic
National Institute of Mental Health Topolova 748 250 67 Klecany Czech Republic
Zobrazit více v PubMed
Stein D.J., Denys D., Gloster A.T., Hollander E., Leckman J.F., Rauch S.L., Phillips K.A. Obsessive-compulsive Disorder: Diagnostic and Treatment Issues. Psychiatr. Clin. N. Am. 2009;32:665–685. doi: 10.1016/j.psc.2009.05.007. PubMed DOI
Jenike M.A. Obsessive—Compulsive Disorder. N. Engl. J. Med. 2004;203:259–265. doi: 10.1056/NEJMcp031002. PubMed DOI
Shin N.Y., Lee T.Y., Kim E., Kwon J.S. Cognitive functioning in obsessive compulsive disorder: A meta-analysis. Psychol. Med. 2004;44:1121–1130. doi: 10.1017/S0033291713001803. PubMed DOI
Snyder H.R., Kaiser R.H., Warren S.L., Heller W. Obsessive-compulsive disorder is associated with broad impairments in executive function: A metaanalysis. Clin. Psychol. Sci. J. Assoc. Psychol. Sci. 2015;3:301–330. doi: 10.1177/2167702614534210. PubMed DOI PMC
Han K., Young Kim I., Kim J.-J. Assessment of cognitive flexibility in real life using virtual reality: A comparison of healthy individuals and schizophrenia patients. Comput. Biol. Med. 2015;42:841–847. doi: 10.1016/j.compbiomed.2012.06.007. PubMed DOI
La Paglia F., la cascia C., Rizzo R., Riva G., La Barbera D. Assessment of Executive Functions in Patients with Obsessive Compulsive Disorder by NeuroVR. Stud. Health Technol. Inform. 2015;181:98–102. doi: 10.3233/978-1-61499-121-2-98. PubMed DOI
Delahaye M., Lemoine P., Cartwright S., Deuring G., Beck J., Pflueger M., Graf M., Hachtel H. Learning aptitude, spatial orientation and cognitive flexibility tested in a virtual labyrinth after virtual stress induction. BMC Psychol. 2015;3:22. doi: 10.1186/s40359-015-0080-5. PubMed DOI PMC
Goodman W.K., Grice D.E., Lapidus K.A.B., Coffey B.J. Obsessive-compulsive disorder. Psychiatr. Clin. N. Am. 2014;37:257–267. doi: 10.1016/j.psc.2014.06.004. PubMed DOI
Derksen M., Feenstra M., Willuhn I., Denys D. The serotonergic system in obsessive-compulsive disorder. Handb. Behav. Neurosci. 2020;31:865–891. doi: 10.1016/B978-0-444-64125-0.00044-X. DOI
Marazziti D., Hollander E., Lensi P., Ravagli S., Cassano G.B. Peripheral markers of serotonin and dopamine function in obsessive-compulsive disorder. Psychiatry Res. 1992;42:41–51. doi: 10.1016/0165-1781(92)90037-4. PubMed DOI
Erzegovesi S., Ronchi P., Smeraldi E. 5HT-2 receptor and fluvoxamine effect in obsessive-compulsive disorder. Hum. Psychopharmacol. Clin. Exp. 1992;7:287–289. doi: 10.1002/hup.470070409. DOI
Moreno F.A., Wiegand C.B., Taitano E.K., Delgado P.L. Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J. Clin. Psychiatry. 2006;67:1735–1740. doi: 10.4088/JCP.v67n1110. PubMed DOI
Kotapati V.P., Khan A.M., Dar S., Begum G., Bachu R., Adnan M., Zubair A., Ahmed R.A. The Effectiveness of Selective Serotonin Reuptake Inhibitors for Treatment of Obsessive-Compulsive Disorder in Adolescents and Children: A Systematic Review and Meta-Analysis. Front. Psychiatry. 2019;10 doi: 10.3389/fpsyt.2019.00523. PubMed DOI PMC
Rotge J.Y., Aouizerate B., Tignol J., Bioulac B., Burbaud P., Guehl D. The glutamate-based genetic immune hypothesis in obsessive-compulsive disorder. An integrative approach from genes to symptoms. Neuroscience. 2010;165:408–417. doi: 10.1016/j.neuroscience.2009.10.043. PubMed DOI
Chakrabarty K., Bhattacharyya S., Christopher R., Khanna S. Glutamatergic dysfunction in OCD. Neuropsychopharmacology. 2005;30:1735–1740. doi: 10.1038/sj.npp.1300733. PubMed DOI
Whiteside S.P., Port J.D., Deacon B.J., Abramowitz J.S. A magnetic resonance spectroscopy investigation of obsessive-compulsive disorder and anxiety. Psychiatry Res. Neuroimaging. 2006;146:137–147. doi: 10.1016/j.pscychresns.2005.12.006. PubMed DOI
Rosenberg D.R., Macmaster F.P., Keshavan M.S., Fitzgerald K.D., Stewart C.M., Moore G.J. Decrease in caudate glutamatergic concentrations in pediatric obsessive-compulsive disorder patients taking paroxetine. J. Am. Acad. Child Adolesc. Psychiatry. 2000;39:1096–1103. doi: 10.1097/00004583-200009000-00008. PubMed DOI
Kushner M.G., Kim S.W., Donahue C., Thuras P., Adson D., Kotlyar M., McCabe J., Peterson J., Foa E.B. D-Cycloserine Augmented Exposure Therapy for Obsessive-Compulsive Disorder. Biol. Psychiatry. 2007;62:835–838. doi: 10.1016/j.biopsych.2006.12.020. PubMed DOI
Norberg M.M., Krystal J.H., Tolin D.F. A Meta-Analysis of D-Cycloserine and the Facilitation of Fear Extinction and Exposure Therapy. Biol. Psychiatry. 2008;63:1118–1126. doi: 10.1016/j.biopsych.2008.01.012. PubMed DOI
Rodriguez C.I., Kegeles L.S., Levinson A., Feng T., Marcus S.M., Vermes D., Flood P., Simpson H.B. Randomized Controlled Crossover Trial of Ketamine in Obsessive-Compulsive Disorder: Proof-of-Concept. Neuropsychopharmacology. 2013;38:2475–2483. doi: 10.1038/npp.2013.150. PubMed DOI PMC
Grant P., Song J.Y., Swedo S.E. Review of the use of the glutamate antagonist riluzole in psychiatric disorders and a description of recent use in childhood obsessive-compulsive disorder. J. Child. Adolesc. Psychopharmacol. 2010;20:309–315. doi: 10.1089/cap.2010.0009. PubMed DOI PMC
Emamzadehfard S., Kamaloo A., Paydary K., Ahmadipour A., Zeinoddini A., Ghaleiha A., Mohammadinejad P., Zeinoddini A., Akhondzadeh S. Riluzole in augmentation of fluvoxamine for moderate to severe obsessive-compulsive disorder: Randomized, double-blind, placebo-controlled study. Psychiatry Clin. Neurosci. 2010;70:332–341. doi: 10.1111/pcn.12394. PubMed DOI
Pasquini M., Biondi M. Memantine augmentation for refractory obsessive-compulsive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2006;30:1173–1175. doi: 10.1016/j.pnpbp.2006.04.013. PubMed DOI
Poyurovsky M., Weizman R., Weizman A., Koran L. Memantine for treatment-resistant OCD. Am. J. Psychiatry. 2005;162:2191–2192. doi: 10.1176/appi.ajp.162.11.2191-a. PubMed DOI
Kishi T., Matsuda Y., Iwata N. Combination Therapy of Serotonin Reuptake Inhibitors and Memantine for Obsessive-Compulsive Disorder: A Meta-Analysis of Double-Blind, Randomized, Placebo-Controlled Trials. J. Alzheimer’s Dis. 2018;64:43–48. doi: 10.3233/JAD-180237. PubMed DOI
Modarresi A., Sayyah M., Razooghi S., Eslami K., Javadi M., Kouti L. Memantine Augmentation Improves Symptoms in Serotonin Reuptake Inhibitor-Refractory Obsessive-Compulsive Disorder: A Randomized Controlled Trial. Pharmacopsychiatry. 2018;51:263–269. doi: 10.1055/s-0043-120268. PubMed DOI
Alkhatib A.H., Dvorkin-Gheva A., Szechtman H. Quinpirole and 8-OH-DPAT induce compulsive checking behavior in male rats by acting on different functional parts of an OCD neurocircuit. Behav. Pharmacol. 2013;24:65–73. doi: 10.1097/FBP.0b013e32835d5b7a. PubMed DOI
Monteiro P., Feng G. Learning from animal models of obsessive-compulsive disorder. In Biol. Psychiatry. 2016;79:7–16. doi: 10.1016/j.biopsych.2015.04.020. PubMed DOI PMC
Odland A.U., Jessen L., Fitzpatrick C.M., Andreasen J.T. 8-OH-DPAT Induces Compulsive-like Deficit in Spontaneous Alternation Behavior: Reversal by MDMA but Not Citalopram. ACS Chem. Neurosci. 2019;10:3094–3100. doi: 10.1021/acschemneuro.8b00593. PubMed DOI
Yadin E., Friedman E., Bridger W.H. Spontaneous alternation behavior: An animal model for obsessive-compulsive disorder? Pharmacol. Biochem. Behav. 1991;40:311–315. doi: 10.1016/0091-3057(91)90559-K. PubMed DOI
Bures J., Fenton A.A., Kaminsky Y., Zinyuk L. Place cells and place navigation. Proc. Natl. Acad. Sci. USA. 1997;94:343–350. doi: 10.1073/pnas.94.1.343. PubMed DOI PMC
Bures J., Fenton A.A., Kaminsky Y., Wesierska M., Zahalka A. Rodent navigation after dissociation of the allocentric and idiothetic representations of space. Neuropharmacology. 1998;37:689–699. doi: 10.1016/S0028-3908(98)00031-8. PubMed DOI
Stuchlík A., Petrásek T., Prokopová I., Holubová K., Hatalová H., Valeš K., Kubík Š., Dockery C., Wesierska M. Place Avoidance Tasks as Tools in the Behavioral Neuroscience of Learning and Memory Origin of place avoidance tasks. Physiol. Res. 2013;62:1–19. doi: 10.33549/physiolres.932635. PubMed DOI
Janikova M., Brozka H., Radostova D., Svoboda J., Stuchlik A. No effect of riluzole and memantine on learning deficit following quinpirole sensitization—An animal model of obsessive-compulsive disorder. Physiol. Behav. 2019;204:241–247. doi: 10.1016/j.physbeh.2019.01.013. PubMed DOI
Sugiyama A., Saitoh A., Iwai T., Takahashi K., Yamada M., Sasaki-Hamada S., Oka J., Inagaki M., Yamada M. Riluzole produces distinct anxiolytic-like effects in rats without the adverse effects associated with benzodiazepines. Neuropharmacology. 2012;62:2489–2498. doi: 10.1016/j.neuropharm.2012.02.012. PubMed DOI
Beconi M.G., Howland D., Park L., Lyons K., Giuliano J., Dominguez C., Munoz-Sanjuan I., Pacifici R. Pharmacokinetics of memantine in rats and mice. PLoS Curr. Huntingt. Dis. 2012;1:1–15. doi: 10.1371/currents.RRN1291. PubMed DOI PMC
Willis E.F., Bartlett P.F., Vukovic J. Protocol for Short- and Longer-term Spatial Learning and Memory in Mice. Front. Behav. Neurosci. 2017;11:197. doi: 10.3389/fnbeh.2017.00197. PubMed DOI PMC
Bahnik S. Carousel Maze Manager. Version 0.4.0. [(accessed on 21 September 2020)];2014 Available online: https://github.com/bahniks/CM_Manager_0_4_0.
Johnson E.F., Szechtman H. A dose-response study of separate and combined effects of the serotonin agonist 8-OH-DPAT and the dopamine agonist quinpirole on locomotor sensitization, /cross-sensitization, and conditioned activity. Behav. Pharmacol. 2016;27:439–450. doi: 10.1097/FBP.0000000000000219. PubMed DOI
Réus G.Z., Valvassori S.S., Machado R.A., Martins M.R., Gavioli E.C., Quevedo J. Acute treatment with low doses of memantine does not impair aversive, non-associative and recognition memory in rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2008;376:295–300. doi: 10.1007/s00210-007-0235-x. PubMed DOI
Sukhanov I.M., Zakharova E.S., Danysz W., Bespalov A.Y. Effects of NMDA receptor channel blockers, MK-801 and memantine, on locomotor activity and tolerance to delay of reward in Wistar-Kyoto and spontaneously hypertensive rats. Behav. Pharmacol. 2004;15:263–271. doi: 10.1097/01.fbp.0000137212.03247.f1. PubMed DOI
Kretschmer B.D., Kratzer U., Schmidt W.J. Riluzole, a glutamate release inhibitor, and motor behavior. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1998;358:181–190. doi: 10.1007/PL00005241. PubMed DOI
Wald R., Dodman N., Shuster L. The Combined Effects of Memantine and Fluoxetine on an Animal Model of Obsessive Compulsive Disorder. Exp. Clin. Psychopharmacol. 2009;17:191–197. doi: 10.1037/a0016402. PubMed DOI
Egashira N., Okuno R., Harada S., Matsushita M., Mishima K., Iwasaki K., Fujiwara M. Effects of glutamate-related drugs on marble-burying behavior in mice: Implications for obsessive-compulsive disorder. Eur. J. Pharmacol. 2008;586:164–170. doi: 10.1016/j.ejphar.2008.01.035. PubMed DOI
Costa L., Trovato C., Musumeci S.A., Catania M.V., Ciranna L. 5-HT1A and 5-HT7 receptors differently modulate AMPA receptor-mediated hippocampal synaptic transmission. Hippocampus. 2012;22:790–801. doi: 10.1002/hipo.20940. PubMed DOI
Schmitz D., Gloveli T., Empson R.M., Draguhn A., Heinemann U. Serotonin reduces synaptic excitation in the superficial medial entorhinal cortex of the rat via a presynaptic mechanism. J. Physiol. 1998;508:119–129. doi: 10.1111/j.1469-7793.1998.119br.x. PubMed DOI PMC
Ciranna L. Serotonin as a Modulator of Glutamate- and GABA-Mediated Neurotransmission: Implications in Physiological Functions and in Pathology. Curr. Neuropharmacol. 2006;4:101–114. doi: 10.2174/157015906776359540. PubMed DOI PMC
Aboujaoude E., Barry J.J., Gamel N. Memantine augmentation in treatment-resistant obsessive-compulsive disorder: An open-label trial. J. Clin. Psychopharmacol. 2009;29:51–55. doi: 10.1097/JCP.0b013e318192e9a4. PubMed DOI
Pittenger C., Kelmendi B., Wasylink S., Bloch M.H., Coric V. Riluzole augmentation in treatment-refractory obsessive-compulsive disorder: A series of 13 cases, with long-term follow-up. J. Clin. Psychopharmacol. 2008;28:363–367. doi: 10.1097/JCP.0b013e3181727548. PubMed DOI