Spatial reversal learning in chronically sensitized rats and in undrugged sensitized rats with dopamine d2-like receptor agonist quinpirole
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24782730
PubMed Central
PMC3990106
DOI
10.3389/fnbeh.2014.00122
Knihovny.cz E-zdroje
- Klíčová slova
- behavior, cognitive coordination, flexibility, obsessive–compulsive disorder, quinpirole, rat, reversal,
- Publikační typ
- časopisecké články MeSH
Dopamine plays a role in generating flexible adaptive responses in changing environments. Chronic administration of D2-like agonist quinpirole (QNP) induces behavioral sensitization and stereotypical behaviors reminiscent of obsessive-compulsive disorder (OCD). Some of these symptoms persist even after QNP discontinuation. In QNP-sensitization, perseverative behavior has often been implicated. To test the effect of QNP-sensitization on reversal learning and its association with perseveration we selected an aversively motivated hippocampus-dependent task, active place avoidance on a Carousel. Performance was measured as the number of entrances into a to-be-avoided sector (errors). We tested separately QNP-sensitized rats in QNP-drugged and QNP-undrugged state in acquisition and reversal tasks on the Carousel. In acquisition learning there were no significant differences between groups and their respective controls. In reversal, QNP-sensitized drugged rats showed a robust but transient increase in number of errors compared to controls. QNP-sensitized rats in an undrugged state were not overtly different from the control animals but displayed an altered learning manifested by more errors at the beginning compensated by quicker learning in the second session compared to control animals. Importantly, performance was not associated with perseveration in neither QNP-sensitized drugged nor QNP-sensitized undrugged animals. The present results show that chronic QNP treatment induces robust reversal learning deficit only when the substance is continuously administered, and suggest that QNP animal model of OCD is also feasible model of cognitive alterations in this disorder.
Zobrazit více v PubMed
Abdel Baki S. G., Schwab B., Haber M., Fenton A. A., Bergold P. J. (2010). Minocycline synergizes with N-acetylcysteine and improves cognition and memory following traumatic brain injury in rats. PLoS ONE 5:e12490.10.1371/journal.pone.0012490 PubMed DOI PMC
Bahník Š. (2013). Carousel Maze Manager (Version 0.3.5). Available at: https://github.com/bahniks/CM_Manager_0_3_5
Boulougouris V., Castañé A., Robbins T. W. (2009). Dopamine D2/D3 receptor agonist quinpirole impairs spatial reversal learning in rats: investigation of D3 receptor involvement in persistent behavior. Psychopharmacology (Berl.) 202, 611–62010.1007/s00213-008-1341-2 PubMed DOI
Bures J., Fenton A. A., Kaminsky Y., Zinyuk L. (1997). Place cells and place navigation. Proc. Natl. Acad. Sci. U.S.A. 94, 343–35010.1073/pnas.94.1.343 PubMed DOI PMC
Carlsson A., Waters N., Carlsson M. L. (1999). Neurotransmitter interactions in schizophrenia – therapeutic implications. Biol. Psychiatry 46, 1388–139510.1016/S0006-3223(99)00117-1 PubMed DOI
Chamberlain S. (2007). Impaired cognitive flexibility and motor inhibition in unaffected first-degree relatives of patients with obsessive-compulsive disorder. Am. J. Psychiatry 164, 335–33810.1176/appi.ajp.164.2.335 PubMed DOI PMC
Chamberlain S. R., Blackwell A. D., Fineberg N. A., Robbins T. W., Sahakian B. J. (2005). The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci. Biobehav. Rev. 29, 399–41910.1016/j.neubiorev.2004.11.006 PubMed DOI
Clarke H. F., Hill G. J., Robbins T. W., Roberts A. C. (2011). Dopamine, but not serotonin, regulates reversal learning in the marmoset caudate nucleus. J. Neurosci. 31, 4290–429710.1523/JNEUROSCI.5066-10.2011 PubMed DOI PMC
De Carolis L., Schepisi C., Milella M. S., Nencini P. (2011). Clomipramine, but not haloperidol or aripiprazole, inhibits quinpirole-induced water contrafreeloading, a putative rat model of compulsive behavior. Psychopharmacology (Berl.) 218, 749–75910.1007/s00213-011-2372-7 PubMed DOI
De Carolis L., Stasi M. A., Serlupi-Crescenzi O., Borsini F., Nencini P. (2010). The effects of clozapine on quinpirole-induced non-regulatory drinking and prepulse inhibition disruption in rats. Psychopharmacology (Berl.) 212, 105–11510.1007/s00213-010-1937-1 PubMed DOI
Deckersbach T., Savage C. R., Reilly-Harrington N., Clark L., Sachs G., Rauch S. L. (2004). Episodic memory impairment in bipolar disorder and obsessive-compulsive disorder: the role of memory strategies. Bipolar Disord. 6, 233–24410.1111/j.1399-5618.2004.00118.x PubMed DOI
Einat H., Szechtman H. (1993). Longlasting consequences of chronic treatment with the dopamine agonist quinpirole for the undrugged behavior of rats. Behav. Brain Res. 54, 35–4110.1016/0166-4328(93)90046-S PubMed DOI
Einat H., Szechtman H. (1995). Perseveration without hyperlocomotion in a spontaneous alternation task in rats sensitized to the dopamine agonist quinpirole. Physiol. Behav. 57, 55–5910.1016/0031-9384(94)00209-N PubMed DOI
Ersche K. D., Roiser J. P., Abbott S., Craig K. J., Müller U., Suckling J., et al. (2011). Response perseveration in stimulant dependence is associated with striatal dysfunction and can be ameliorated by a D2/3 receptor agonist. Biol. Psychiatry 70, 754–76210.1016/j.biopsych.2011.06.033 PubMed DOI
Ersche K. D., Roiser J. P., Robbins T. W., Sahakian B. J. (2008). Chronic cocaine but not chronic amphetamine use is associated with perseverative responding in humans. Psychopharmacology (Berl.) 197, 421–43110.1007/s00213-007-1051-1 PubMed DOI PMC
Floresco S. B., Grace A. A. (2003). Gating of hippocampal-evoked activity in prefrontal cortical neurons by inputs from the mediodorsal thalamus and ventral tegmental area. J. Neurosci. 23, 3930–3943 PubMed PMC
Goldman M. B., Luchins D. J., Robertson G. L. (1988). Mechanisms of altered water metabolism in psychotic patients with polydipsia and hyponatremia. N. Engl. J. Med. 318, 397–40310.1056/NEJM198802183180702 PubMed DOI
Groman S. M., Lee B., London E. D., Mandelkern M. A., James A. S., Feiler K., et al. (2011). Dorsal striatal D2-like receptor availability co-varies with sensitivity to positive reinforcement during discrimination learning. J. Neurosci. 31, 7291–729910.1523/JNEUROSCI.0363-11.2011 PubMed DOI PMC
Haluk D. M., Floresco S. B. (2009). Ventral striatal dopamine modulation of different forms of behavioral flexibility. Neuropsychopharmacology 34, 2041–205210.1038/npp.2009.21 PubMed DOI
Han K., Young Kim I., Kim J.-J. (2012). Assessment of cognitive flexibility in real life using virtual reality: a comparison of healthy individuals and schizophrenia patients. Comput. Biol. Med. 42, 841–84710.1016/j.compbiomed.2012.06.007 PubMed DOI
Homberg J. R. (2013). Measuring behaviour in rodents: towards translational neuropsychiatric research. Behav. Brain Res. 236, 295–30610.1016/j.bbr.2012.09.005 PubMed DOI
Jentsch J. D., Olausson P., De La Garza R., Taylor J. R. (2002). Impairments of reversal learning and response perseveration after repeated, intermittent cocaine administrations to monkeys. Neuropsychopharmacology 26, 183–19010.1016/S0893-133X(01)00355-4 PubMed DOI
Joel D., Avisar A., Doljansky J. (2001). Enhancement of excessive lever-pressing after post-training signal attenuation in rats by repeated administration of the D1 antagonist SCH 23390 or the D2 agonist quinpirole, but not the D1 agonist SKF 38393 or the D2 antagonist haloperidol. Behav. Neurosci. 115, 1291–130010.1037/0735-7044.115.6.1291 PubMed DOI
Klanker M., Feenstra M., Denys D. (2013). Dopaminergic control of cognitive flexibility in humans and rats. Front. Neurosci. 7:201.10.3389/fnins.2013.00201 PubMed DOI PMC
Kontis D., Boulougouris V., Papakosta V. M., Kalogerakou S., Papadopoulos S., Poulopoulou C., et al. (2008). Dopaminergic and serotonergic modulation of persistent behaviour in the reinforced spatial alternation model of obsessive-compulsive disorder. Psychopharmacology (Berl.) 200, 597–61010.1007/s00213-008-1241-5 PubMed DOI
Lee B., Groman S., London E. D., Jentsch J. D. (2007). Dopamine D2/D3 receptors play a specific role in the reversal of a learned visual discrimination in monkeys. Neuropsychopharmacology 32, 2125–213410.1038/sj.npp.1301337 PubMed DOI
Lobellova V., Entlerova M., Svojanovska B., Hatalova H., Prokopova I., Petrasek T., et al. (2013). Two learning tasks provide evidence for disrupted behavioural flexibility in an rat model of schizophrenia-like behaviour induced by acute MK-801: a dose-response study. Behav. Brain Res. 246, 55–6210.1016/j.bbr.2013.03.006 PubMed DOI
Magnusson J. E., Fisher K. (2000). The involvement of dopamine in nociception: the role of D1 and D2 receptors in the dorsolateral striatum. Brain Res. 855, 260–26610.1016/S0006-8993(99)02396-3 PubMed DOI
Mattingly B. A., Rowlett J. K., Lovell G. (1993). Effects of daily SKF 38393, quinpirole, and SCH 23390 treatments on locomotor activity and subsequent sensitivity to apomorphine. Psychopharmacology (Berl.) 110, 320–32610.1007/BF02251287 PubMed DOI
Mehta M. A., Swainson R., Ogilvie A. D., Sahakian J., Robbins T. W. (2001). Improved short-term spatial memory but impaired reversal learning following the dopamine D(2) agonist bromocriptine in human volunteers. Psychopharmacology (Berl.) 159, 10–2010.1007/s002130100851 PubMed DOI
Milella M., Passarelli F., Carolis L., Schepisi C., Nativio P., Scaccianoce S., et al. (2010). Opposite roles of dopamine and orexin in quinpirole-induced excessive drinking: a rat model of psychotic polydipsia. Psychopharmacology (Berl.) 211, 355–36610.1007/s00213-010-1909-5 PubMed DOI
Morris R. (2013). “Neurobiology of learning and memory,” in Neuroscience in the 21st Century SE - 81, ed. Pfaff D. (New York: Springer; ), 2173–2211
Munro G. (2007). Dopamine D1 and D2 receptor agonism enhances antinociception mediated by the serotonin and noradrenaline reuptake inhibitor duloxetine in the rat formalin test. Eur. J. Pharmacol. 575, 66–7410.1016/j.ejphar.2007.07.062 PubMed DOI
Pantelis C., Barber F. Z., Barnes T. R., Nelson H. E., Owen A. M., Robbins T. W. (1999). Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr. Res. 37, 251–27010.1016/S0920-9964(98)00156-X PubMed DOI
Paulson P. E., Camp D. M., Robinson T. E. (1991). transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology (Berl.) 103, 480–49210.1007/BF02244248 PubMed DOI PMC
Perera T. D., Thirumangalakudi L., Glennon E., Park S., Insanally M., Persky M., et al. (2013). Role of hippocampal neurogenesis in mnemonic segregation: implications for human mood disorders. World J. Biol. Psychiatry 4, 1–910.3109/15622975.2013.768356 PubMed DOI
Petrasek T., Prokopova I., Bahnik S., Schonig K., Berger S., Vales K., et al. (2013). Nogo-A downregulation impairs place avoidance in the Carousel maze but not spatial memory in the Morris water maze. Neurobiol. Learn. Mem. 107, 42–4910.1016/j.nlm.2013.10.015 PubMed DOI
Phillips W. A., Silverstein S. M. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 26, 65–8210.1017/S0140525X03000025 PubMed DOI
Piccinelli M., Pini S., Bellantuono C., Wilokinson G. (1995). Efficacy of drug treatment in obsessive-compulsive disorder: a meta-analytic review. Br. J. Psychiatry 166, 424–44310.1192/bjp.166.4.424 PubMed DOI
Price M. T. C., Fibiger H. C. (1975). Discriminated escape learning and response to electric shock after 6-hydroxydopamine lesions of the nigro-neostriatal dopaminergic projection. Pharmacol. Biochem. Behav. 3, 285–29010.1016/0091-3057(75)90159-8 PubMed DOI
Remijnse P. L., Nielen M. M. A., van Balkom A. J. L. M., Cath D. C., van Oppen P., Uylings H. B. M., et al. (2006). Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch. Gen. Psychiatry 63, 1225–123610.1001/archpsyc.63.11.1225 PubMed DOI
Remijnse P. L., Nielen M. M. A., van Balkom A. J. L. M., Hendriks G. J., Hoogendijk W. J., Uylings H. B. M., et al. (2009). Differential frontal-striatal and paralimbic activity during reversal learning in major depressive disorder and obsessive–compulsive disorder. Psychol. Med. 39, 1503–151810.1017/S0033291708005072 PubMed DOI
Roane D. S., Paul D. (1992). Evidence of hyperglycemic hyperalgesia by quinpirole. Pharmacol. Biochem. Behav. 41, 65–6710.1016/0091-3057(92)90060-S PubMed DOI
Savage C. R., Deckersbach T., Wilhelm S., Rauch S. L., Baer L., Reid T., et al. (2000). Strategic processing and episodic memory impairment in obsessive compulsive disorder. Neuropsychology 14, 141–15110.1037/0894-4105.14.1.141 PubMed DOI
Stanwood G. D., Lucki I., McGonigle P. (2000). Differential regulation of dopamine D2 and D3 receptors by chronic drug treatments. J. Pharmacol. Exp. Ther. 295, 1232–1240 PubMed
Stuchlík A., Petrásek T., Prokopová I., Holubová K., Hatalová H., Valeš K., et al. (2013). Place avoidance tasks as tools in the behavioral neuroscience of learning and memory. Physiol. Res. 62, S1–S19 PubMed
Stuchlik A., Rezacova L., Vales K., Bubenikova V., Kubik S. (2004). Application of a novel active allothetic place avoidance task (AAPA) in testing a pharmacological model of psychosis in rats: comparison with the Morris water maze. Neurosci. Lett. 366, 162–16610.1016/j.neulet.2004.05.037 PubMed DOI
Sullivan R. M., Talangbayan H., Einat H., Szechtman H. (1998). Effects of quinpirole on central dopamine systems in sensitized and non-sensitized rats. Neuroscience 83, 781–78910.1016/S0306-4522(97)00412-0 PubMed DOI
Szechtman H., Sulis W., Eilam D. (1998). Quinpirole induces compulsive checking behavior in rats: a potential rat model of obsessive-compulsive disorder (OCD). Behav. Neurosci. 112, 1475–148510.1037/0735-7044.112.6.1475 PubMed DOI
Tanimura Y., Yang M. C., Lewis M. H. (2008). Procedural learning and cognitive flexibility in a mouse model of restricted, repetitive behaviour. Behav. Brain Res. 189, 250–25610.1016/j.bbr.2008.01.001 PubMed DOI
Valerius G., Lumpp A., Kuelz A.-K., Freyer T., Voderholzer U. (2008). Reversal learning as a neuropsychological indicator for the neuropathology of obsessive compulsive disorder? A behavioral study. J. Neuropsychiatry Clin. Neurosci. 20, 210–21810.1176/appi.neuropsych.20.2.210 PubMed DOI
Vales K., Bubenikova-Valesova V., Klement D., Stuchlik A. (2006). Analysis of sensitivity to MK-801 treatment in a novel active allothetic place avoidance task and in the working memory version of the Morris water maze reveals differences between Long-Evans and Wistar rats. Neurosci. Res. 55, 383–38810.1016/j.neures.2006.04.007 PubMed DOI
Walker S. C., Robbins T. W., Roberts A. C. (2009). Differential contributions of dopamine and serotonin to orbitofrontal cortex function in the marmoset. Cereb. Cortex 19, 889–89810.1093/cercor/bhn136 PubMed DOI PMC
Wesierska M., Dockery C., Fenton A. A. (2005). Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat. J. Neurosci. 25, 2413–241910.1523/JNEUROSCI.3962-04.2005 PubMed DOI PMC
Wolgin D. L. (2012). Amphetamine stereotypy, the basal ganglia, and the “selection problem”. Behav. Brain Res. 231, 297–30810.1016/j.bbr.2011.11.003 PubMed DOI
Yerys B. E., Wallace G. L., Kenworthy L. E. (2009). Set-shifting in children with autism spectrum disorders: reversal shifting deficits on the intradimensional/extradimensional shift test correlate with repetitive behaviors. Autism 13, 523–53810.1177/1362361309335716 PubMed DOI PMC
Drugs Interfering with Muscarinic Acetylcholine Receptors and Their Effects on Place Navigation