Validity of Quinpirole Sensitization Rat Model of OCD: Linking Evidence from Animal and Clinical Studies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu přehledy, časopisecké články
PubMed
27833539
PubMed Central
PMC5080285
DOI
10.3389/fnbeh.2016.00209
Knihovny.cz E-zdroje
- Klíčová slova
- OCD, animal model, brain circuits, human, quinpirole, rat,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder with 1-3% prevalence. OCD is characterized by recurrent thoughts (obsessions) and repetitive behaviors (compulsions). The pathophysiology of OCD remains unclear, stressing the importance of pre-clinical studies. The aim of this article is to critically review a proposed animal model of OCD that is characterized by the induction of compulsive checking and behavioral sensitization to the D2/D3 dopamine agonist quinpirole. Changes in this model have been reported at the level of brain structures, neurotransmitter systems and other neurophysiological aspects. In this review, we consider these alterations in relation to the clinical manifestations in OCD, with the aim to discuss and evaluate axes of validity of this model. Our analysis shows that some axes of validity of quinpirole sensitization model (QSM) are strongly supported by clinical findings, such as behavioral phenomenology or roles of brain structures. Evidence on predictive validity is contradictory and ambiguous. It is concluded that this model is useful in the context of searching for the underlying pathophysiological basis of the disorder because of the relatively strong biological similarities with OCD.
Zobrazit více v PubMed
Ahmari S. E., Spellman T., Douglass N. L., Kheirbek M. A., Simpson H. B., Deisseroth K., et al. . (2013). Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340, 1234–1239. 10.1126/science.1234733 PubMed DOI PMC
Albelda N., Joel D. (2012). Current animal models of obsessive compulsive disorder: an update. Neuroscience 211, 83–106. 10.1016/j.neuroscience.2011.08.070 PubMed DOI
Alexander G. E., Crutcher M. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–271. 10.1016/0166-2236(90)90107-l PubMed DOI
Alexander G. E., DeLong M. R., Strick P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381. 10.1146/annurev.neuro.9.1.357 PubMed DOI
Alonso P., López-Solà C., Real E., Segalàs C., Menchón J. M. (2015). Animal models of obsessive-compulsive disorder: utility and limitations. Neuropsychiatr. Dis. Treat. 11, 1939–1955. 10.2147/NDT.s62785 PubMed DOI PMC
Amato D., Milella M. S., Badiani A., Nencini P. (2007). Compulsive-like effects of quinpirole on drinking behavior in rats are inhibited by substituting ethanol for water. Behav. Brain Res. 177, 340–346. 10.1016/j.bbr.2006.11.016 PubMed DOI
Amato D., Stasi M. A., Borsini F., Nencini P. (2008). Haloperidol both prevents and reverses quinpirole-induced nonregulatory water intake, a putative animal model of psychogenic polydipsia. Psychopharmacology (Berl) 200, 157–165. 10.1007/s00213-008-1229-1 PubMed DOI
Ballester González J., Dvorkin-Gheva A., Silva C., Foster J., Szechtman H. (2015). Nucleus accumbens core and pathogenesis of compulsive checking. Behav. Pharmacol. 26, 200–216. 10.1097/FBP.0000000000000112 PubMed DOI PMC
Belzung C., Lemoine M. (2011). Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol. Mood Anxiety Disord. 1, 9–23. 10.1186/2045-5380-1-9 PubMed DOI PMC
Boulougouris V., Chamberlain S. R., Robbins T. W. (2009). Cross-species models of OCD spectrum disorders. Psych. Res. 170, 15–21. 10.1016/j.psychres.2008.07.016 PubMed DOI
Bourne S. K., Eckhardt C. A., Sheth S. A., Eskandar E. N. (2012). Mechanisms of deep brain stimulation for obsessive compulsive disorder: effects upon cells and circuits. Front. Integr. Neurosci. 6:29. 10.3389/fnint.2012.00029 PubMed DOI PMC
Carpenter T. L., Pazdernik T. L., Levant B. (2003). Differences in quinpirole-induced local cerebral glucose utilization between naive and sensitized rats. Brain Res. 964, 295–301. 10.1016/s0006-8993(02)04115-x PubMed DOI
Cartwright C., Hollander E. (1998). SSRI is in the treatment of obsessive-compulsive disorder. Depress. Anxiety 8, 105–113. 10.1002/(SICI)1520-6394(1998)8:1+<105::AID-DA16>3.0.CO;2-T PubMed DOI
Chamberlain S. R., Blackwell D., Fineberg N., Robbins T. W., Sahakian B. J. (2005). The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci. Biobehav. Rev. 29, 399–419. 10.1016/j.neubiorev.2004.11.006 PubMed DOI
Chamberlain S. R., Fineberg N. A., Blackwell A. D., Robbins T. W., Sahakian B. J. (2006). Motor inhibition and cognitive flexibility in obsessive- compulsive disorder and trichotillomania. Am. J. Psychiatry 163, 1282–1284. 10.1176/appi.ajp.163.7.1282 PubMed DOI
Ciesielski K. T., Rowland L. M., Harris R. J., Kerwin A. A., Reeve A., Knight J. E. (2011). Increased anterior brain activation to correct responses on high-conflict Stroop task in obsessive-compulsive disorder. Clin. Neurophysiol. 122, 107–113. 10.1016/j.clinph.2010.05.027 PubMed DOI
Cioli I., Caricati A., Nencini P. (2000). Quinpirole-and amphetamine-induced hyperdipsia: influence of fluid palatability and behavioral cost. Behav. Brain Res. 109, 9–18. 10.1016/s0166-4328(99)00155-2 PubMed DOI
Collu M., Poggiu A. S., Devoto P., Serra G. (1997). Behavioural sensitization of mesolimbic dopamine D2 receptors in chronic fluoxetine-treated rats. Eur. J. Pharmacol. 322, 123–127. 10.1016/s0014-2999(97)00006-x PubMed DOI
Culver K. E., Szechtman H., Levant B. (2008). Altered dopamine D2-like receptor binding in rats with behavioral sensitization to quinpirole: effects of pre-treatment with Ro 41–1049. Eur. J. Pharmacol. 592, 67–72. 10.1016/j.ejphar.2008.06.101 PubMed DOI PMC
De Carolis L., Schepisi C., Milella M. S., Nencini P. (2011). Clomipramine, but not haloperidol or aripiprazole, inhibits quinpirole-induced water contrafreeloading, a putative animal model of compulsive behavior. Psychopharmacology (Berl) 218, 749–759. 10.1007/s00213-011-2372-7 PubMed DOI
de Haas R., Nijdam A., Westra T. A., Kas M. J., Westenberg H. G. (2011). Behavioral pattern analysis and dopamine release in quinpirole-induced repetitive behavior in rats. J. Psychopharmacol. 25, 1712–1719. 10.1177/0269881110389093 PubMed DOI
Djodari-Irani A., Klein J., Banzhaf J., Joel D., Heinz A., Harnack D., et al. . (2011). Activity modulation of the globus pallidus and the nucleus entopeduncularis affects compulsive checking in rats. Behav. Brain Res. 219, 149–158. 10.1016/j.bbr.2010.12.036 PubMed DOI
Doshi P. K. (2009). Surgical treatment of obsessive-compulsive disorders: current status. Indian J. Psychiatry 51, 216–221. 10.4103/0019-5545.55095 PubMed DOI PMC
Dvorkin A., Culver K. E., Waxman D., Szechtman H., Kolb B. (2008). Effects of hypophysectomy on compulsive checking and cortical dendrites in an animal model of obsessive-compulsive disorder. Behav. Pharmacol. 19, 271–283. 10.1097/FBP.0b013e3283095223 PubMed DOI
Dvorkin A., Silva C., McMurran T., Bisnaire L., Foster J., Szechtman H. (2010). Features of compulsive checking behavior mediated by nucleus accumbens and orbital frontal cortex. Eur. J. Neurosci. 32, 1552–1563. 10.1111/j.1460-9568.2010.07398.x PubMed DOI
Eilam D., Golani I. (1988). The ontogeny of exploratory behavior in the house rat (Rattus rattus): the mobility gradient. Dev. Psychobiol. 21, 679–710. 10.1002/dev.420210707 PubMed DOI
Eilam D., Golani I. (1989). Home base behavior of rats (Rattus norvegicus) exploring a novel environment. Behav. Brain Res. 34, 199–211. 10.1016/s0166-4328(89)80102-0 PubMed DOI
Eilam D., Szechtman H. (1989). Biphasic effect of D-2 agonist quinpirole on locomotion and movements. Eur. J. Pharmacol. 161, 151–157. 10.1016/0014-2999(89)90837-6 PubMed DOI
Eilam D., Zor R., Fineberg N., Hermesh H. (2012). Animal behavior as a conceptual framework for the study of obsessive-compulsive disorder (OCD). Behav. Brain Res. 231, 289–296. 10.1016/j.bbr.2011.06.033 PubMed DOI
Eilam D., Zor R., Szechtman H., Hermesh H. (2006). Rituals, stereotypy and compulsive behavior in animals and humans. Neurosci. Biobehav. Rev. 30, 456–471. 10.1016/j.neubiorev.2005.08.003 PubMed DOI
Einat H., Szechtman H. (1995). Perseveration without hyperlocomotion in a spontaneous alternation task in rats sensitized to the dopamine agonist quinpirole. Physiol. Behav. 57, 55–59. 10.1016/0031-9384(94)00209-n PubMed DOI
Escobar A. P., Cornejo F. A., Olivares-Costa M., González M., Fuentealba J. A., Gysling K., et al. . (2015). Reduced dopamine and glutamate neurotransmission in the nucleus accumbens of quinpirole-sensitized rats hints at inhibitory D2 autoreceptor function. J. Neurochem. 134, 1081–1090. 10.1111/jnc.13209 PubMed DOI
Eslami-Shahrbabaki M., Fekrat A., Mazhari S. A. (2015). Study of the prevalence of psychiatric disorders in patients with methamphetamine-induced psychosis. Addict. Health 7, 37–46. PubMed PMC
Fallon B., Liebowitz M., Campeas R., Schneier F., Marshall R., Davies S., et al. . (1998). Intravenous clomipramine for obsessive-compulsive disorder refractory to oral clomipramine. Arch. Gen. Psychiatry 55, 918–924. 10.1001/archpsyc.55.10.918 PubMed DOI
Figee M., Luigjes J., Smolders R., Valencia-Alfonso C. E., van Wingen G., de Kwaasteniet B., et al. . (2013a). Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat. Neurosci. 16, 386–387. 10.1038/nn.3344 PubMed DOI
Figee M., Wielaard I., Mazaheri A., Denys D. (2013b). Neurosurgical targets for compulsivity: what can we learn from acquired brain lesions? Neurosci. Biobehav. Rev. 39, 328–339. 10.1016/j.neubiorev.2013.01.005 PubMed DOI
Fineberg N., Reghunandanan S., Simpson H. B., Phillips K., Richter M., Matthews K., et al. . (2015). Obsessive-compulsive disorder (OCD): practical strategies for pharmacological and somatic treatment in adults. Psychiatry Res. 227, 114–1125. 10.1016/j.psychres.2014.12.003 PubMed DOI
Grassi G., Pallanti S., Righi L., Figee M., Mantione M., Denys D., et al. . (2015). Think twice: impulsivity and decision making in obsessive-compulsive disorder. J. Behav. Addict. 4, 263–272. 10.1556/2006.4.2015.039 PubMed DOI PMC
Hatalova H., Radostova D., Pistikova A., Vales K., Stuchlik A. (2014). Spatial reversal learning in chronically sensitized rats and in undrugged sensitized rats with dopamine D2-like receptor agonist quinpirole. Front. Behav. Neurosci. 8:122. 10.3389/fnbeh.2014.00122 PubMed DOI PMC
Hatalova H., Radostova D., Pistikova A., Vales K., Stuchlik A. (2016). Detrimental effect of clomipramine on hippocampus-dependent learning in an animal model of obsessive-compulsive disorder induced by sensitization with d2/d3 agonist quinpirole. Behav. Brain Res. 317, 210–217. 10.1016/j.bbr.2016.09.042 PubMed DOI
Hollander E., Baldini Rossi N., Sood E., Pallanti S. (2003). Risperidone augmentation in treatment-resistant obsessive-compulsive disorder: a double-blind, placebo-controlled study. Int. J. Neuropsychopharmacol. 6, 397–401. 10.1017/s1461145703003730 PubMed DOI
Jensen G. D. (1963). Preference for bar pressing over “freeloading” as a function of number of rewarded presses. J. Exp. Psychol. 65, 451–454. 10.1037/h0049174 PubMed DOI
Koffer K., Coulson G., Hospital W. P. (1971). Feline indolence: cats prefer free to response-produced food. Psychon. Sci. 24, 41–42. 10.3758/bf03331767 DOI
Kohl S., Schönherr D. M., Luigjes J., Denys D., Mueller U. J., Lenartz D., et al. . (2014). Deep brain stimulation for treatment-refractory obsessive compulsive disorder: a systematic review. BMC Psychiatry 14:214. 10.1186/s12888-014-0214-y PubMed DOI PMC
Kopřivová J., Congedo M., Horáček J., Prasko J., Raszka M., Brunovský M., et al. . (2011). EEG source analysis in obsessive-compulsive disorder. Clin. Neurophysiol. 122, 1735–1743. 10.1016/j.clinph.2011.01.051 PubMed DOI
Kopřivová J., Congedo M., Raszka M., Prasko J., Brunovský M., Horáček J. (2013a). Prediction of treatment response and the effect of independent component neurofeedback in obsessive-compulsive disorder: a randomized, sham-controlled, double-blind study. Neuropsychobiology 67, 210–223. 10.1159/000347087 PubMed DOI
Kopřivová J., Horáček J., Raszka M., Brunovský M., Prasko J. (2013b). Standardized low-resolution electromagnetic tomography in obsessive-compulsive disorder—a replication study. Neurosci. Lett. 548, 185–189. 10.1016/j.neulet.2013.05.015 PubMed DOI
Leonard H., Swedo S., Rapoport J., Koby E., Lenane M., Cheslow D., et al. . (1989). Treatment of obsessive-compulsive disorder with clomipramine and desipramine in children and adolescents: a double-blind crossover comparison. Arch. Gen. Psychiatry 46, 1088–1092. 10.1001/archpsyc.1989.01810120030006 PubMed DOI
Lundberg S., Carlsson A., Norfeldt P., Carlsson M. L. (2004). Nicotine treatment of obsessive-compulsive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 1195–1199. 10.1016/j.pnpbp.2004.06.014 PubMed DOI
Mataix-Cols D. (2006). Deconstructing obsessive-compulsive disorder: a multidimensional perspective. Curr. Opin. Psychiatry 19, 84–89. 10.1097/01.yco.0000194809.98967.49 PubMed DOI
McDougle C. J., Goodman W. K., Leckman J. F., Lee N., Heninger G., Price L. (1994). Haloperidole addition in fluvoxamine-refractory obsessive-compulsive disorder: a double-blind, placebo-controlled study in patients with and without tics. Arch. Gen. Psychiatry 51, 302–308. 10.1001/archpsyc.1994.03950040046006 PubMed DOI
Menzies L., Chamberlain S. R., Laird A. R., Thelen S. M., Sahakian B. J., Bullmore E. T. (2008). Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci. Biobehav. Rev. 32, 525–549. 10.1016/j.neubiorev.2007.09.005 PubMed DOI PMC
Milad M. R., Rauch S. L. (2012). Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn. Sci. 16, 43–51. 10.1016/j.tics.2011.11.003 PubMed DOI PMC
Mindus S., Jenike M. (1992). Neurosurgical treatment of malignant obsessive-compulsive disorder. Psychiatr. Clin. North Am. 15, 921–938. PubMed
Mundt A., Klein J., Joel D., Heinz A., Djodari-Irani A., Harnack D., et al. . (2009). High-frequency stimulation of the nucleus accumbens core and shell reduces quinpirole-induced compulsive checking in rats. Eur. J. Neurosci. 29, 2401–2412. 10.1111/j.1460-9568.2009.06777.x PubMed DOI
Ninan P., Koran L., Kiev A., Davidson J., Rasmussen S., Zajecka J., et al. . (2006). High-dose sertraline strategy for nonresponders to acute treatment for obsessive-compulsive disorder: a multicenter double-blind trial. J. Clin. Psychiatry 67, 15–22. 10.4088/JCP.v67n0103 PubMed DOI
Olesenn J., Gustavsson A., Svensson M., Wittchen H.-U., Jönsson B., CDBE2010 study group, et al. . (2012). The economic cost of brain disorders in Europe. Eur. J. Neurol. 19, 155–162. 10.1111/j.1468-1331.2011.03590.x PubMed DOI
Pallanti S., Hollander E., Bienstock C., Koran L., Leckman J., Marazziti D., et al. . (2002). Treatment non-response in OCD: methodological issues and operational definitions. Int. J. Neuropsychopharmacol. 5, 181–191. 10.1017/s1461145702002900 PubMed DOI
Rolls E. T. (2012). Glutamate, obsessive-compulsive disorder, schizophrenia and the stability of cortical attractor neuronal networks. Pharmacol. Biochem. Behav. 100, 736–751. 10.1016/j.pbb.2011.06.017 PubMed DOI
Rosenblueth A., Wiener N. (1945). The role of models in science. Philos. Sci. 12, 316–321.
Rotge J. Y., Guehl D., Dilharreguy B., Cuny E., Tignol J., Bioulac B., et al. . (2008). Provocation of obsessive-compulsive symptoms: a quantitative voxel-based meta-analysis of functional neuroimaging studies. J. Psychiatry Neurosci. 33, 405–412. PubMed PMC
Salín-Pascual R. J., Basañez-Villa E. (2003). Changes in compulsion and anxiety symptoms with nicotine transdermal patches in non-smoking obsessive-compulsive disorder patients. Rev. Invest. Clin. 55, 650–654. PubMed
Saxena S., Brody A., Schwarz M. J., Baxter L. R. (1998). Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br. J. Psychiatry Suppl. S173, 26–37. PubMed
Schepisi C., De Carolis L., Nencini P. (2013). Effects of the 5HT2C antagonist SB242084 on the pramipexole-induced potentiation of water contrafreeloading, a putative animal model of compulsive behavior. Psychopharmacology (Berl) 227, 55–66. 10.1007/s00213-012-2938-z PubMed DOI
Schmidt T. T., Rea E., Shababi-Klein J., Panagis G., Winter C. (2013). Enhanced reward-facilitating effects of d-amphetamine in rats in the quinpirole model of obsessive—compulsive disorder. Int. J. Neuropsychopharmacol. 16, 1083–1091. 10.1017/s1461145712000983 PubMed DOI
Skoog G., Skoog I. (1999). A 40-year follow-up of patients with obsessive-compulsive disorder. Arch. Gen. Psychiatry 56, 121–127. 10.1001/archpsyc.56.2.121 PubMed DOI
Stein D. J. (2002). Obsessive-compulsive disorder. Lancet 360, 397–405. 10.1016/S0140-6736(02)09620-4 PubMed DOI
Szechtman H., Ahmari S. E., Beninger R. J., Eilam D., Harvey B. H., Edemann-Callesen H., et al. . (2016). Obsessive-compulsive disorder: insights from animal models. Neurosci. Biobehav. Rev. [Epub ahead of print]. 10.1016/j.neubiorev.2016.04.019. PubMed DOI PMC
Szechtman H., Eckert M. J., Tse W. S., Boersma J. T., Bonura C. A., McClelland J. Z., et al. . (2001). Compulsive checking behavior of quinpirole-sensitized rats as an animal model of Obsessive-Compulsive Disorder (OCD): form and control. BMC Neurosci. 2:4. 10.1186/1471-2202-2-4 PubMed DOI PMC
Szechtman H., Sulis W., Eilam D. (1998). Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Behav. Neurosci. 112, 1475–1485. 10.1037/0735-7044.112.6.1475 PubMed DOI
Szechtman H., Talangbayan H., Canaran G., Dai H., Eilam D. (1994). Dynamics of behavioral sensitization induced by the dopamine agonist quinpirole and a proposed central energy control mechanism. Psychopharmacology (Berl) 115, 95–104. 10.1007/BF02244757 PubMed DOI
Szechtman H., Woody E. (2004). Obsessive-compulsive disorder as a disturbance of security motivation. Psychol. Rev. 111, 111–127. 10.1037/0033-295X.111.1.111 PubMed DOI
Tizabi Y., Louis V. A., Taylor C. T., Waxman D., Culver K. E., Szechtman H. (2002). Effect of nicotine on quinpirole-induced checking behavior in rats: implications for obsessive-compulsive disorder. Biol. Psychiatry 51, 164–171. 10.1016/s0006-3223(01)01207-0 PubMed DOI
Ursu S., Carter C. S. (2010). An initial investigation of the orbitofrontal cortex hyperactivity in obsessive-compulsive disorder: exaggerated representations of anticipated aversive events? Neuropsychologia 47, 2145–2148. 10.1016/j.neuropsychologia.2009.03.018 PubMed DOI PMC
van Grootheest D. S., Cath D. C., Beekman A. T., Boomsma D. I. (2005). Twin studies on obsessive-compulsive disorder: a review. Twin Res. Human Genet. 8, 450–458. 10.1375/twin.8.5.450 PubMed DOI
Willner P. (1986). Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog. Neuropsychopharmacol. Biol. Psychiatry 10, 677–690. 10.1016/0278-5846(86)90051-5 PubMed DOI
Winter C., Mundt A., Jalali R., Joel D., Harnack D., Morgenstern R., et al. . (2008). High frequency stimulation and temporary inactivation of the subthalamic nucleus reduce quinpirole-induced compulsive checking behavior in rats. Exp. Neurol. 210, 217–228. 10.1016/j.expneurol.2007.10.020 PubMed DOI
Yadin E., Friedman E., Bridger W. H. (1991). Spontaneous alternation behavior: an animal model for obsessive-compulsive disorder? Pharmacol. Biochem. Behav. 40, 311–315. 10.1016/0091-3057(91)90559-k PubMed DOI
Dopamine and Dopamine-Related Ligands Can Bind Not Only to Dopamine Receptors