Validity of Quinpirole Sensitization Rat Model of OCD: Linking Evidence from Animal and Clinical Studies

. 2016 ; 10 () : 209. [epub] 20161026

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27833539

Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder with 1-3% prevalence. OCD is characterized by recurrent thoughts (obsessions) and repetitive behaviors (compulsions). The pathophysiology of OCD remains unclear, stressing the importance of pre-clinical studies. The aim of this article is to critically review a proposed animal model of OCD that is characterized by the induction of compulsive checking and behavioral sensitization to the D2/D3 dopamine agonist quinpirole. Changes in this model have been reported at the level of brain structures, neurotransmitter systems and other neurophysiological aspects. In this review, we consider these alterations in relation to the clinical manifestations in OCD, with the aim to discuss and evaluate axes of validity of this model. Our analysis shows that some axes of validity of quinpirole sensitization model (QSM) are strongly supported by clinical findings, such as behavioral phenomenology or roles of brain structures. Evidence on predictive validity is contradictory and ambiguous. It is concluded that this model is useful in the context of searching for the underlying pathophysiological basis of the disorder because of the relatively strong biological similarities with OCD.

Zobrazit více v PubMed

Ahmari S. E., Spellman T., Douglass N. L., Kheirbek M. A., Simpson H. B., Deisseroth K., et al. . (2013). Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340, 1234–1239. 10.1126/science.1234733 PubMed DOI PMC

Albelda N., Joel D. (2012). Current animal models of obsessive compulsive disorder: an update. Neuroscience 211, 83–106. 10.1016/j.neuroscience.2011.08.070 PubMed DOI

Alexander G. E., Crutcher M. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–271. 10.1016/0166-2236(90)90107-l PubMed DOI

Alexander G. E., DeLong M. R., Strick P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381. 10.1146/annurev.neuro.9.1.357 PubMed DOI

Alonso P., López-Solà C., Real E., Segalàs C., Menchón J. M. (2015). Animal models of obsessive-compulsive disorder: utility and limitations. Neuropsychiatr. Dis. Treat. 11, 1939–1955. 10.2147/NDT.s62785 PubMed DOI PMC

Amato D., Milella M. S., Badiani A., Nencini P. (2007). Compulsive-like effects of quinpirole on drinking behavior in rats are inhibited by substituting ethanol for water. Behav. Brain Res. 177, 340–346. 10.1016/j.bbr.2006.11.016 PubMed DOI

Amato D., Stasi M. A., Borsini F., Nencini P. (2008). Haloperidol both prevents and reverses quinpirole-induced nonregulatory water intake, a putative animal model of psychogenic polydipsia. Psychopharmacology (Berl) 200, 157–165. 10.1007/s00213-008-1229-1 PubMed DOI

Ballester González J., Dvorkin-Gheva A., Silva C., Foster J., Szechtman H. (2015). Nucleus accumbens core and pathogenesis of compulsive checking. Behav. Pharmacol. 26, 200–216. 10.1097/FBP.0000000000000112 PubMed DOI PMC

Belzung C., Lemoine M. (2011). Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol. Mood Anxiety Disord. 1, 9–23. 10.1186/2045-5380-1-9 PubMed DOI PMC

Boulougouris V., Chamberlain S. R., Robbins T. W. (2009). Cross-species models of OCD spectrum disorders. Psych. Res. 170, 15–21. 10.1016/j.psychres.2008.07.016 PubMed DOI

Bourne S. K., Eckhardt C. A., Sheth S. A., Eskandar E. N. (2012). Mechanisms of deep brain stimulation for obsessive compulsive disorder: effects upon cells and circuits. Front. Integr. Neurosci. 6:29. 10.3389/fnint.2012.00029 PubMed DOI PMC

Carpenter T. L., Pazdernik T. L., Levant B. (2003). Differences in quinpirole-induced local cerebral glucose utilization between naive and sensitized rats. Brain Res. 964, 295–301. 10.1016/s0006-8993(02)04115-x PubMed DOI

Cartwright C., Hollander E. (1998). SSRI is in the treatment of obsessive-compulsive disorder. Depress. Anxiety 8, 105–113. 10.1002/(SICI)1520-6394(1998)8:1+<105::AID-DA16>3.0.CO;2-T PubMed DOI

Chamberlain S. R., Blackwell D., Fineberg N., Robbins T. W., Sahakian B. J. (2005). The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci. Biobehav. Rev. 29, 399–419. 10.1016/j.neubiorev.2004.11.006 PubMed DOI

Chamberlain S. R., Fineberg N. A., Blackwell A. D., Robbins T. W., Sahakian B. J. (2006). Motor inhibition and cognitive flexibility in obsessive- compulsive disorder and trichotillomania. Am. J. Psychiatry 163, 1282–1284. 10.1176/appi.ajp.163.7.1282 PubMed DOI

Ciesielski K. T., Rowland L. M., Harris R. J., Kerwin A. A., Reeve A., Knight J. E. (2011). Increased anterior brain activation to correct responses on high-conflict Stroop task in obsessive-compulsive disorder. Clin. Neurophysiol. 122, 107–113. 10.1016/j.clinph.2010.05.027 PubMed DOI

Cioli I., Caricati A., Nencini P. (2000). Quinpirole-and amphetamine-induced hyperdipsia: influence of fluid palatability and behavioral cost. Behav. Brain Res. 109, 9–18. 10.1016/s0166-4328(99)00155-2 PubMed DOI

Collu M., Poggiu A. S., Devoto P., Serra G. (1997). Behavioural sensitization of mesolimbic dopamine D2 receptors in chronic fluoxetine-treated rats. Eur. J. Pharmacol. 322, 123–127. 10.1016/s0014-2999(97)00006-x PubMed DOI

Culver K. E., Szechtman H., Levant B. (2008). Altered dopamine D2-like receptor binding in rats with behavioral sensitization to quinpirole: effects of pre-treatment with Ro 41–1049. Eur. J. Pharmacol. 592, 67–72. 10.1016/j.ejphar.2008.06.101 PubMed DOI PMC

De Carolis L., Schepisi C., Milella M. S., Nencini P. (2011). Clomipramine, but not haloperidol or aripiprazole, inhibits quinpirole-induced water contrafreeloading, a putative animal model of compulsive behavior. Psychopharmacology (Berl) 218, 749–759. 10.1007/s00213-011-2372-7 PubMed DOI

de Haas R., Nijdam A., Westra T. A., Kas M. J., Westenberg H. G. (2011). Behavioral pattern analysis and dopamine release in quinpirole-induced repetitive behavior in rats. J. Psychopharmacol. 25, 1712–1719. 10.1177/0269881110389093 PubMed DOI

Djodari-Irani A., Klein J., Banzhaf J., Joel D., Heinz A., Harnack D., et al. . (2011). Activity modulation of the globus pallidus and the nucleus entopeduncularis affects compulsive checking in rats. Behav. Brain Res. 219, 149–158. 10.1016/j.bbr.2010.12.036 PubMed DOI

Doshi P. K. (2009). Surgical treatment of obsessive-compulsive disorders: current status. Indian J. Psychiatry 51, 216–221. 10.4103/0019-5545.55095 PubMed DOI PMC

Dvorkin A., Culver K. E., Waxman D., Szechtman H., Kolb B. (2008). Effects of hypophysectomy on compulsive checking and cortical dendrites in an animal model of obsessive-compulsive disorder. Behav. Pharmacol. 19, 271–283. 10.1097/FBP.0b013e3283095223 PubMed DOI

Dvorkin A., Silva C., McMurran T., Bisnaire L., Foster J., Szechtman H. (2010). Features of compulsive checking behavior mediated by nucleus accumbens and orbital frontal cortex. Eur. J. Neurosci. 32, 1552–1563. 10.1111/j.1460-9568.2010.07398.x PubMed DOI

Eilam D., Golani I. (1988). The ontogeny of exploratory behavior in the house rat (Rattus rattus): the mobility gradient. Dev. Psychobiol. 21, 679–710. 10.1002/dev.420210707 PubMed DOI

Eilam D., Golani I. (1989). Home base behavior of rats (Rattus norvegicus) exploring a novel environment. Behav. Brain Res. 34, 199–211. 10.1016/s0166-4328(89)80102-0 PubMed DOI

Eilam D., Szechtman H. (1989). Biphasic effect of D-2 agonist quinpirole on locomotion and movements. Eur. J. Pharmacol. 161, 151–157. 10.1016/0014-2999(89)90837-6 PubMed DOI

Eilam D., Zor R., Fineberg N., Hermesh H. (2012). Animal behavior as a conceptual framework for the study of obsessive-compulsive disorder (OCD). Behav. Brain Res. 231, 289–296. 10.1016/j.bbr.2011.06.033 PubMed DOI

Eilam D., Zor R., Szechtman H., Hermesh H. (2006). Rituals, stereotypy and compulsive behavior in animals and humans. Neurosci. Biobehav. Rev. 30, 456–471. 10.1016/j.neubiorev.2005.08.003 PubMed DOI

Einat H., Szechtman H. (1995). Perseveration without hyperlocomotion in a spontaneous alternation task in rats sensitized to the dopamine agonist quinpirole. Physiol. Behav. 57, 55–59. 10.1016/0031-9384(94)00209-n PubMed DOI

Escobar A. P., Cornejo F. A., Olivares-Costa M., González M., Fuentealba J. A., Gysling K., et al. . (2015). Reduced dopamine and glutamate neurotransmission in the nucleus accumbens of quinpirole-sensitized rats hints at inhibitory D2 autoreceptor function. J. Neurochem. 134, 1081–1090. 10.1111/jnc.13209 PubMed DOI

Eslami-Shahrbabaki M., Fekrat A., Mazhari S. A. (2015). Study of the prevalence of psychiatric disorders in patients with methamphetamine-induced psychosis. Addict. Health 7, 37–46. PubMed PMC

Fallon B., Liebowitz M., Campeas R., Schneier F., Marshall R., Davies S., et al. . (1998). Intravenous clomipramine for obsessive-compulsive disorder refractory to oral clomipramine. Arch. Gen. Psychiatry 55, 918–924. 10.1001/archpsyc.55.10.918 PubMed DOI

Figee M., Luigjes J., Smolders R., Valencia-Alfonso C. E., van Wingen G., de Kwaasteniet B., et al. . (2013a). Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat. Neurosci. 16, 386–387. 10.1038/nn.3344 PubMed DOI

Figee M., Wielaard I., Mazaheri A., Denys D. (2013b). Neurosurgical targets for compulsivity: what can we learn from acquired brain lesions? Neurosci. Biobehav. Rev. 39, 328–339. 10.1016/j.neubiorev.2013.01.005 PubMed DOI

Fineberg N., Reghunandanan S., Simpson H. B., Phillips K., Richter M., Matthews K., et al. . (2015). Obsessive-compulsive disorder (OCD): practical strategies for pharmacological and somatic treatment in adults. Psychiatry Res. 227, 114–1125. 10.1016/j.psychres.2014.12.003 PubMed DOI

Grassi G., Pallanti S., Righi L., Figee M., Mantione M., Denys D., et al. . (2015). Think twice: impulsivity and decision making in obsessive-compulsive disorder. J. Behav. Addict. 4, 263–272. 10.1556/2006.4.2015.039 PubMed DOI PMC

Hatalova H., Radostova D., Pistikova A., Vales K., Stuchlik A. (2014). Spatial reversal learning in chronically sensitized rats and in undrugged sensitized rats with dopamine D2-like receptor agonist quinpirole. Front. Behav. Neurosci. 8:122. 10.3389/fnbeh.2014.00122 PubMed DOI PMC

Hatalova H., Radostova D., Pistikova A., Vales K., Stuchlik A. (2016). Detrimental effect of clomipramine on hippocampus-dependent learning in an animal model of obsessive-compulsive disorder induced by sensitization with d2/d3 agonist quinpirole. Behav. Brain Res. 317, 210–217. 10.1016/j.bbr.2016.09.042 PubMed DOI

Hollander E., Baldini Rossi N., Sood E., Pallanti S. (2003). Risperidone augmentation in treatment-resistant obsessive-compulsive disorder: a double-blind, placebo-controlled study. Int. J. Neuropsychopharmacol. 6, 397–401. 10.1017/s1461145703003730 PubMed DOI

Jensen G. D. (1963). Preference for bar pressing over “freeloading” as a function of number of rewarded presses. J. Exp. Psychol. 65, 451–454. 10.1037/h0049174 PubMed DOI

Koffer K., Coulson G., Hospital W. P. (1971). Feline indolence: cats prefer free to response-produced food. Psychon. Sci. 24, 41–42. 10.3758/bf03331767 DOI

Kohl S., Schönherr D. M., Luigjes J., Denys D., Mueller U. J., Lenartz D., et al. . (2014). Deep brain stimulation for treatment-refractory obsessive compulsive disorder: a systematic review. BMC Psychiatry 14:214. 10.1186/s12888-014-0214-y PubMed DOI PMC

Kopřivová J., Congedo M., Horáček J., Prasko J., Raszka M., Brunovský M., et al. . (2011). EEG source analysis in obsessive-compulsive disorder. Clin. Neurophysiol. 122, 1735–1743. 10.1016/j.clinph.2011.01.051 PubMed DOI

Kopřivová J., Congedo M., Raszka M., Prasko J., Brunovský M., Horáček J. (2013a). Prediction of treatment response and the effect of independent component neurofeedback in obsessive-compulsive disorder: a randomized, sham-controlled, double-blind study. Neuropsychobiology 67, 210–223. 10.1159/000347087 PubMed DOI

Kopřivová J., Horáček J., Raszka M., Brunovský M., Prasko J. (2013b). Standardized low-resolution electromagnetic tomography in obsessive-compulsive disorder—a replication study. Neurosci. Lett. 548, 185–189. 10.1016/j.neulet.2013.05.015 PubMed DOI

Leonard H., Swedo S., Rapoport J., Koby E., Lenane M., Cheslow D., et al. . (1989). Treatment of obsessive-compulsive disorder with clomipramine and desipramine in children and adolescents: a double-blind crossover comparison. Arch. Gen. Psychiatry 46, 1088–1092. 10.1001/archpsyc.1989.01810120030006 PubMed DOI

Lundberg S., Carlsson A., Norfeldt P., Carlsson M. L. (2004). Nicotine treatment of obsessive-compulsive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 1195–1199. 10.1016/j.pnpbp.2004.06.014 PubMed DOI

Mataix-Cols D. (2006). Deconstructing obsessive-compulsive disorder: a multidimensional perspective. Curr. Opin. Psychiatry 19, 84–89. 10.1097/01.yco.0000194809.98967.49 PubMed DOI

McDougle C. J., Goodman W. K., Leckman J. F., Lee N., Heninger G., Price L. (1994). Haloperidole addition in fluvoxamine-refractory obsessive-compulsive disorder: a double-blind, placebo-controlled study in patients with and without tics. Arch. Gen. Psychiatry 51, 302–308. 10.1001/archpsyc.1994.03950040046006 PubMed DOI

Menzies L., Chamberlain S. R., Laird A. R., Thelen S. M., Sahakian B. J., Bullmore E. T. (2008). Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci. Biobehav. Rev. 32, 525–549. 10.1016/j.neubiorev.2007.09.005 PubMed DOI PMC

Milad M. R., Rauch S. L. (2012). Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn. Sci. 16, 43–51. 10.1016/j.tics.2011.11.003 PubMed DOI PMC

Mindus S., Jenike M. (1992). Neurosurgical treatment of malignant obsessive-compulsive disorder. Psychiatr. Clin. North Am. 15, 921–938. PubMed

Mundt A., Klein J., Joel D., Heinz A., Djodari-Irani A., Harnack D., et al. . (2009). High-frequency stimulation of the nucleus accumbens core and shell reduces quinpirole-induced compulsive checking in rats. Eur. J. Neurosci. 29, 2401–2412. 10.1111/j.1460-9568.2009.06777.x PubMed DOI

Ninan P., Koran L., Kiev A., Davidson J., Rasmussen S., Zajecka J., et al. . (2006). High-dose sertraline strategy for nonresponders to acute treatment for obsessive-compulsive disorder: a multicenter double-blind trial. J. Clin. Psychiatry 67, 15–22. 10.4088/JCP.v67n0103 PubMed DOI

Olesenn J., Gustavsson A., Svensson M., Wittchen H.-U., Jönsson B., CDBE2010 study group, et al. . (2012). The economic cost of brain disorders in Europe. Eur. J. Neurol. 19, 155–162. 10.1111/j.1468-1331.2011.03590.x PubMed DOI

Pallanti S., Hollander E., Bienstock C., Koran L., Leckman J., Marazziti D., et al. . (2002). Treatment non-response in OCD: methodological issues and operational definitions. Int. J. Neuropsychopharmacol. 5, 181–191. 10.1017/s1461145702002900 PubMed DOI

Rolls E. T. (2012). Glutamate, obsessive-compulsive disorder, schizophrenia and the stability of cortical attractor neuronal networks. Pharmacol. Biochem. Behav. 100, 736–751. 10.1016/j.pbb.2011.06.017 PubMed DOI

Rosenblueth A., Wiener N. (1945). The role of models in science. Philos. Sci. 12, 316–321.

Rotge J. Y., Guehl D., Dilharreguy B., Cuny E., Tignol J., Bioulac B., et al. . (2008). Provocation of obsessive-compulsive symptoms: a quantitative voxel-based meta-analysis of functional neuroimaging studies. J. Psychiatry Neurosci. 33, 405–412. PubMed PMC

Salín-Pascual R. J., Basañez-Villa E. (2003). Changes in compulsion and anxiety symptoms with nicotine transdermal patches in non-smoking obsessive-compulsive disorder patients. Rev. Invest. Clin. 55, 650–654. PubMed

Saxena S., Brody A., Schwarz M. J., Baxter L. R. (1998). Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br. J. Psychiatry Suppl. S173, 26–37. PubMed

Schepisi C., De Carolis L., Nencini P. (2013). Effects of the 5HT2C antagonist SB242084 on the pramipexole-induced potentiation of water contrafreeloading, a putative animal model of compulsive behavior. Psychopharmacology (Berl) 227, 55–66. 10.1007/s00213-012-2938-z PubMed DOI

Schmidt T. T., Rea E., Shababi-Klein J., Panagis G., Winter C. (2013). Enhanced reward-facilitating effects of d-amphetamine in rats in the quinpirole model of obsessive—compulsive disorder. Int. J. Neuropsychopharmacol. 16, 1083–1091. 10.1017/s1461145712000983 PubMed DOI

Skoog G., Skoog I. (1999). A 40-year follow-up of patients with obsessive-compulsive disorder. Arch. Gen. Psychiatry 56, 121–127. 10.1001/archpsyc.56.2.121 PubMed DOI

Stein D. J. (2002). Obsessive-compulsive disorder. Lancet 360, 397–405. 10.1016/S0140-6736(02)09620-4 PubMed DOI

Szechtman H., Ahmari S. E., Beninger R. J., Eilam D., Harvey B. H., Edemann-Callesen H., et al. . (2016). Obsessive-compulsive disorder: insights from animal models. Neurosci. Biobehav. Rev. [Epub ahead of print]. 10.1016/j.neubiorev.2016.04.019. PubMed DOI PMC

Szechtman H., Eckert M. J., Tse W. S., Boersma J. T., Bonura C. A., McClelland J. Z., et al. . (2001). Compulsive checking behavior of quinpirole-sensitized rats as an animal model of Obsessive-Compulsive Disorder (OCD): form and control. BMC Neurosci. 2:4. 10.1186/1471-2202-2-4 PubMed DOI PMC

Szechtman H., Sulis W., Eilam D. (1998). Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Behav. Neurosci. 112, 1475–1485. 10.1037/0735-7044.112.6.1475 PubMed DOI

Szechtman H., Talangbayan H., Canaran G., Dai H., Eilam D. (1994). Dynamics of behavioral sensitization induced by the dopamine agonist quinpirole and a proposed central energy control mechanism. Psychopharmacology (Berl) 115, 95–104. 10.1007/BF02244757 PubMed DOI

Szechtman H., Woody E. (2004). Obsessive-compulsive disorder as a disturbance of security motivation. Psychol. Rev. 111, 111–127. 10.1037/0033-295X.111.1.111 PubMed DOI

Tizabi Y., Louis V. A., Taylor C. T., Waxman D., Culver K. E., Szechtman H. (2002). Effect of nicotine on quinpirole-induced checking behavior in rats: implications for obsessive-compulsive disorder. Biol. Psychiatry 51, 164–171. 10.1016/s0006-3223(01)01207-0 PubMed DOI

Ursu S., Carter C. S. (2010). An initial investigation of the orbitofrontal cortex hyperactivity in obsessive-compulsive disorder: exaggerated representations of anticipated aversive events? Neuropsychologia 47, 2145–2148. 10.1016/j.neuropsychologia.2009.03.018 PubMed DOI PMC

van Grootheest D. S., Cath D. C., Beekman A. T., Boomsma D. I. (2005). Twin studies on obsessive-compulsive disorder: a review. Twin Res. Human Genet. 8, 450–458. 10.1375/twin.8.5.450 PubMed DOI

Willner P. (1986). Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog. Neuropsychopharmacol. Biol. Psychiatry 10, 677–690. 10.1016/0278-5846(86)90051-5 PubMed DOI

Winter C., Mundt A., Jalali R., Joel D., Harnack D., Morgenstern R., et al. . (2008). High frequency stimulation and temporary inactivation of the subthalamic nucleus reduce quinpirole-induced compulsive checking behavior in rats. Exp. Neurol. 210, 217–228. 10.1016/j.expneurol.2007.10.020 PubMed DOI

Yadin E., Friedman E., Bridger W. H. (1991). Spontaneous alternation behavior: an animal model for obsessive-compulsive disorder? Pharmacol. Biochem. Behav. 40, 311–315. 10.1016/0091-3057(91)90559-k PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Dopamine and Dopamine-Related Ligands Can Bind Not Only to Dopamine Receptors

. 2022 Apr 19 ; 12 (5) : . [epub] 20220419

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...