Acute Toxic Injuries of Rat's Visceral Tissues Induced by Different Oximes

. 2019 Nov 11 ; 9 (1) : 16425. [epub] 20191111

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31712702
Odkazy

PubMed 31712702
PubMed Central PMC6848205
DOI 10.1038/s41598-019-52768-4
PII: 10.1038/s41598-019-52768-4
Knihovny.cz E-zdroje

Certain AChE reactivators, asoxime, obidoxime, K027, K048, and K075, when taken in overdoses and sometimes even when introduced within therapeutic ranges, may injure the different organs. As a continuation of previously published data, in this study, Wistar rats have sacrificed 24 hrs and 7 days after single im application of 0.1LD50, 0.5LD50 and 1.0LD50 of each reactivator, and examinated tissue samples were obtained for pathohistological and semiquantitative analysis. A severity of tissue alteration, expressed as different tissue damage scores were evaluated. Morphological structure of examinated tissues treated with of 0.1LD50 of all reactivators was comparable with the control group of rats. Moderate injuries were seen in visceral tissues treated with 0.5LD50 of asoxime, obidoxime and K027. Acute damages were enlarged after treatment with 0.5LD50 and 1.0LD50 of all reactivators during the next 7 days. The most prominent changes were seen in rats treated with 1.0LD50 of K048 and K075 (P < 0.001 vs. control and asoxime-treated group). All reactivators given by a single, high, unitary dose regimen, have an adverse effect not only on the main visceral tissue, but on the whole rat as well, but the exact mechanism of cellular injury remains to be confirmed in further investigation.

Zobrazit více v PubMed

Okumura T, et al. The Tokyo subway sarin attack: disaster management, Part 1: Community emergency response. Acad. Emerg. Med. 1988;5:613–617. doi: 10.1111/j.1553-2712.1998.tb02470.x. PubMed DOI

John H, et al. Fatal sarin poisoning in Syria 2013: forensic verification within an international laboratory network. Foren. Toxicol. 2013;36:61–71. doi: 10.1007/s11419-017-0376-7. PubMed DOI PMC

McCurry, J. Kim Jong-un’s half-brother dies after ‘attack’ at the airport in Malaysia. The Guardian. (2017).

Jett DA. The NIH Countermeasures Against Chemical Threats Program: overview and special challenges. Ann. N. Y. Acad. Sci. 2016;1374:5–9. doi: 10.1111/nyas.13179. PubMed DOI PMC

Singh VK, et al. Medical countermeasures for unwanted CBRN exposures: Part I chemical and biological threats with a review of recent countermeasure patents. Expert. Opin. Ther. 2016;26:1431–1447. doi: 10.1080/13543776.2017.1233178. PubMed DOI

Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. doi: 10.1016/S0065-2423(04)38006-6. PubMed DOI

Abou-Donia MB, et al. GB, O-isopropylmethylphosphonofluoridate) neurotoxicity: a critical review. Crit. Rev. Toxicol. 2016;46:845–875. doi: 10.1080/10408444.2016.1220916. PubMed DOI PMC

Jokanovic M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett. 2009;190:107–115. doi: 10.1016/j.toxlet.2009.07.025. PubMed DOI

Jokanovic M. Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: a review of recent data. Curr. Top. Med. Chem. 2012;12:1775–1789. doi: 10.2174/1568026611209061775. PubMed DOI

Balali-Mood M, Saber H. Recent Advances in the Treatment of Organophosphorous Poisonings. Iran. J. Med. Sci. 2012;37:74–91. PubMed PMC

Gorecki L, et al. SAR study to find optimal cholinesterase reactivator against organophosphorus nerve agents and pesticides. Arch. Toxicol. 2016;90:2831–2859. doi: 10.1007/s00204-016-1827-3. PubMed DOI

Marrs TC, Rice P, Vale JA. The role of oximes in the treatment of nerve agent poisoning in civilian casualties. Toxicol. Rev. 2006;25:297–323. doi: 10.2165/00139709-200625040-00009. PubMed DOI

Petroianu GA. The history of pyridinium oximes as nerve gas antidotes: the British contribution. Pharmazie. 2013;68:916–918. PubMed

Korabecny J, et al. From pyridinium-based to centrally active acetylcholinesterase reactivators. Mini Rev. Med. Chem. 2014;14:215–221. doi: 10.2174/1389557514666140219103138. PubMed DOI

Nepovimova E, et al. Tacrine-Trolox Hybrids: A Novel Class of Centrally Active, Nonhepatotoxic Multi-Target-Directed Ligands Exerting Anticholinesterase and Antioxidant Activities with Low In Vivo Toxicity. J. Med. Chem. 2015;58:8985–9003. doi: 10.1021/acs.jmedchem.5b01325. PubMed DOI

Sharma R, et al. Synthesis and in-vitro reactivation screening of imidazolium aldoximes as reactivators of sarin and VX-inhibited human acetylcholinesterase (hAChE) Chem. Biol. Interact. 2016;259:85–92. doi: 10.1016/j.cbi.2016.04.034. PubMed DOI

Wei Z, et al. Novel nonquaternary reactivators showing reactivation efficiency for soman-inhibited human acetylcholinesterase. Toxicol. Lett. 2016;246:1–6. doi: 10.1016/j.toxlet.2016.01.015. PubMed DOI

Bartosova L, et al. The acute toxicity of acetylcholinesterase reactivators in mice in relation to their structure. Neurotox. Res. 2006;9:291–296. doi: 10.1007/BF03033319. PubMed DOI

Musilek K, et al. Design of a potent reactivator of tabun-inhibited acetylcholinesterase-synthesis and evaluation of (E)-1-(4-carbamoylpyridinium)-4-(4-hydroxyiminomethylpyridinium)-but-2-ene dibromide (K203) J Med. Chem. 2007;50:5514–5518. doi: 10.1021/jm070653r. PubMed DOI

Čalić M, et al. In vitro and in vivo evaluation of pyridinium oximes: mode of interaction with acetylcholinesterase, the effect on tabun- and soman-poisoned mice and their cytotoxicity. Toxicology. 2006;219:85–96. doi: 10.1016/j.tox.2005.11.003. PubMed DOI

Svobodova H, Jost P, Stetina R. Cytotoxicity and genotoxicity evaluation of antidote oxime HI-6 tested on eight cell lines of human and rodent origin. Gen. Physiol. Biophys. 2012;31:77–84. doi: 10.4149/gpb_2012_010. PubMed DOI

Karasova JZ, et al. Pharmacokinetic study of two acetylcholinesterase reactivators, trimedoxime and newly synthesized oxime K027, in rat plasma. J. Appl. Toxicol. 2013;33:18–23. doi: 10.1002/jat.1699. PubMed DOI

Chambers JE, Meek EC, Chambers HW. Novel brain-penetrating oximes for reactivation of cholinesterase inhibited by sarin and VX surrogates. Ann. N. Y. Acad. Sci. 2016;1374:52–58. doi: 10.1111/nyas.13053. PubMed DOI PMC

Karasova JZ, et al. Pharmacokinetic profile of promising acetylcholinesterase reactivators K027 and K203 in experimental pigs. Toxicol. Lett. 2017;273:20–25. doi: 10.1016/j.toxlet.2017.03.017. PubMed DOI

Jaćević V, Nepovimova E, Kuča K. Toxic injury to muscle tissue of rats following acute oximes exposure. Sci. Rep. 2019;9:1457. doi: 10.1038/s41598-018-37837-4. PubMed DOI PMC

Jaćević V, Nepovimova E, Kuča K. Interspecies Interspecies and intergender differences in acute toxicity of K-oximes drug candidates. Chem. Biolog. Inter. 2019;308:312–316. doi: 10.1016/j.cbi.2019.05.035. PubMed DOI

Lorke DE, Petroianu GA. The experimental oxime K027–a promising protector from organophosphate pesticide poisoning. a review comparing k027, k048, pralidoxime, and obidoxime. Front. Neurosci. 2019;13:427. doi: 10.3389/fnins.2019.00427. PubMed DOI PMC

Žunec S, et al. Comparative determination of the efficacy of bispyridinium oximes in paraoxon poisoning. Comparative determination of the efficacy of bispyridinium oximes in paraoxon poisoning. Arh. Hig. Rada Toksikol. 2015;66:129–134. doi: 10.1515/aiht-2015-66-2623. PubMed DOI

Pejchal V, et al. The Influence of Acetylcholinesterase Reactivators on Selected Hepatic Functions in Rats. Basic Clinic. Pharmacol. Toxicol. 2008;103:119–123. PubMed

Nocetini S, et al. Induction of mitochondrial dysfunction and apoptosis in HeLa cells by bis-pyridinium oximes, a newly synthesized family of lipophilic biscations. Biochem. Pharmacol. 1997;53:1543–1552. doi: 10.1016/S0006-2952(97)00092-0. PubMed DOI

Moreno G, et al. Effects of the lipophilic bisection, bis-pyridinium oxime BP12, on bioenergetics and induction of permeability transition in isolated mitochondria. Biochem. Pharmacol. 2000;59:261–266. doi: 10.1016/S0006-2952(99)00318-4. PubMed DOI

Mehendale HM. Tissue repair: an important determinant of final outcome of toxicant-induced injury. Toxicol. Pathol. 2005;33:41–51. doi: 10.1080/01926230590881808. PubMed DOI

Parke DV. Mechanisms of chemical toxicity-a unifying hypothesis. Regul. Toxicol. Pharmacol. 1992;4(1982):267–286. PubMed

Mai Y, et al. Endoplasmic reticulum stress and related pathological processes. J. Pharmacol. Biomed. Anal. 2013;1:1000107. PubMed PMC

Piao MJ, et al. Particular matter 2.5 damages skin cells by inducing oxidative stress subcellular organelle dysfunction, and apoptosis. Arch. Toxicol. 2017;92:2077–2091. doi: 10.1007/s00204-018-2197-9. PubMed DOI PMC

Schrock JM, et al. Sequential cytoprotective responses to sigma1 ligand-induced endoplasmic reticulum stress. Mol. Pharmacol. 2013;84:751–762. doi: 10.1124/mol.113.087809. PubMed DOI PMC

Laing S, et al. Air-borne particulate matter selectively activate the endoplasmic reticulum stress response in the lung and liver tissue. Am. J. Physiol. Cell. Physiol. 2010;299:C736–C749. doi: 10.1152/ajpcell.00529.2009. PubMed DOI PMC

Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human cells. Antioxid. Redox. Signal. 2014;21:396–413. doi: 10.1089/ars.2014.5851. PubMed DOI PMC

Begriche K. Drug-induced toxicity on mitochondria and lipid metabolism: Mechanistic diversity and deleterious consequences for the liver. J. Hepatol. 2011;54:773–794. doi: 10.1016/j.jhep.2010.11.006. PubMed DOI

Kulkarni OP, Lichtnekert J, Anders HJ, Mulay SR. The immune system in tissue environments regaining homeostasis after injury: Is “inflammation” always inflammation? Mediators Inflamm. 2016;2016:2856213. doi: 10.1155/2016/2856213. PubMed DOI PMC

Rossi G, et al. The role of macrophages in interstitial lung diseases. Eur. Respir. Rev. 2017;26:170009. doi: 10.1183/16000617.0009-2017. PubMed DOI PMC

Nakagaki BN, et al. Tissue macrophages as mediators of a healthy relationship with gut commensal microbiota. Cell. Immunol. 2018;330:16–26. doi: 10.1016/j.cellimm.2018.01.017. PubMed DOI

Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 2017;17:306–321. doi: 10.1038/nri.2017.11. PubMed DOI

A-Gonzales N, Castrillo A. Origin and specialization of splenic macrophages. Cell. Immunol. 2018;330:151–158. doi: 10.1016/j.cellimm.2018.05.005. PubMed DOI

Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000 Prime Rep. 2014;6:13. doi: 10.12703/P6-13. PubMed DOI PMC

Mehendale HM. Injury and repair as opposing forces in risk assessment. Toxicol. Lett. 1995;82-83:891–899. doi: 10.1016/0378-4274(95)03602-4. PubMed DOI

Mehendale HM. Toxicodynamics of low-level toxicant interactions of biological significance: inhibition of tissue repair. Toxicology. 1995;105:251–266. doi: 10.1016/0300-483X(95)03220-A. PubMed DOI

Musilek, K. et al. Novel cholinesterase reactivators. In: Handbook of toxicology of chemical warfare agents (ed. Gupta, R.C.) 1071–1087 (Acaedemic Press, 2015).

Kuca K. Synthesis of a new reactivator of tabun-inhibited acetylcholinesterase. Bioorg. Med. Chem. Lett. 2003;13:3545–3547. doi: 10.1016/S0960-894X(03)00751-0. PubMed DOI

Kuca K, et al. Synthesis of a potential reactivator of acetylcholinesterase-1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium)propane dibromide. Tetrahed. Lett. 2003;44:3123–3125. doi: 10.1016/S0040-4039(03)00538-0. DOI

Kuca K, et al. Effective bisquaternary reactivators of tabun-inhibited AChE. J. Appl. Toxicol. 2005;25:491–495. doi: 10.1002/jat.1084. PubMed DOI

Jun D, et al. HPLC Analysis of HI-6 Dichloride and Dimethanesulfonate-Antidotes against Nerve Agents and Organophosphorus Pesticides. Analyt. Lett. 2007;40:2783–2787. doi: 10.1080/00032710701588531. DOI

Jun D. TLC Analysis of Intermediates Arising During the Preparation of Oxime HI-6 Dimethanesulfonate. J. Chromat. Sci. 2008;46:316–319. doi: 10.1093/chromsci/46.4.316. PubMed DOI

Litchfield JT, Wilcoxon F. A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 1949;96:99–113. PubMed

Sorichter S, Puschendorf B, Mair J. Skeletal muscle injury induced by eccentric muscle action: Muscle proteins as markers of muscle fibre injury. Exerc. Immunol. Rev. 1999;5:5–21. PubMed

European Medicines Agency. ICH Topic M 3 (R2) Non-Clinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals, https://www.ema.europa.eu/documents/scientific-guideline/ich-m-3-r2-non-clinical-safety-studies-conduct-human-clinical-trials-marketing-authorization_en.pdf (2008).

Andrade EL, et al. Non-clinical studies in the process of new drug development – Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies. Braz. J. Med. Biol. Res. 2016;49:e5646. PubMed PMC

EUR-Lex. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410 (2006).

Nakatsu N, et al. Isoflurane is a suitable alternative to the ether for anaesthetizing rats prior to euthanasia for gene expression analysis. J. Toxicol. Sci. 2017;4:491–497. doi: 10.2131/jts.42.491. PubMed DOI

Titford M. Progress in the development of microscopical techniques for diagnostic pathology. J. Histotechnol. 2009;32:9–19. doi: 10.1179/his.2009.32.1.9. DOI

Jacevic V, et al. Effects of fullerenol nanoparticles and amifostine on radiation-induced tissue damages: Histopathological analysis. J. Appl. Biomed. 2016;14:285–297. doi: 10.1016/j.jab.2016.05.004. DOI

Jacevic V, et al. Fullerenol nanoparticles prevent doxorubicin-induced acute hepatotoxicity in rats. Exp. Mol. Path. 2017;102:360–369. doi: 10.1016/j.yexmp.2017.03.005. PubMed DOI

Jacevic V, et al. Gastroprotective effects of amifostine in rats treated by the T-2 toxin. Tox. Rev. 2018;3:123–127. doi: 10.1080/15569543.2017.1329211. DOI

Jaćević V, et al. The efficacy of amifostine against multiple-dose doxorubicin-induced toxicity in rats. Int. J. Mol. Sci. 2018;19:2370. doi: 10.3390/ijms19082370. PubMed DOI PMC

Nežić L, et al. Simvastatin Protects Cardiomyocytes Against Endotoxin-induced Apoptosis and Up-regulates Survivin/NF-κB/p65 Expression. Sci. Rep. 2018;8(14652):1–10. PubMed PMC

Nežić L, et al. Simvastatin inhibits endotoxin-induced apoptosis in liver and spleen through up-regulation of survivin/NF-kB/p65 expression. Front. Pharmacol. 2019;10:54. doi: 10.3389/fphar.2019.00054. PubMed DOI PMC

Jaćević V, Wu Q, Nepovimova E, Kuča K. Efficacy of methylprednisolone on T-2 toxin-induced cardiotoxicity in vivo: a pathohistological study. Environ. Toxicol. Pharmacol. 2019;71:103221. doi: 10.1016/j.etap.2019.103221. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...