• This record comes from PubMed

Toxic Injury to Muscle Tissue of Rats Following Acute Oximes Exposure

. 2019 Feb 06 ; 9 (1) : 1457. [epub] 20190206

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 30728420
PubMed Central PMC6365527
DOI 10.1038/s41598-018-37837-4
PII: 10.1038/s41598-018-37837-4
Knihovny.cz E-resources

Therapeutic application of newly developed oximes is limited due to their adverse effects on different tissues. Within this article, it has been investigated which morphological changes could be observed in Wistar rats after the treatment with increasing doses of selected acetyl cholinesterase reactivators - asoxime, obidoxime, K027, K048, and K075. Subsequently, heart, diaphragm and musculus popliteus were obtained for pathohistological and semiquantitative analysis 24 hrs and 7 days after im administration of a single dose of 0.1 LD50, 0.5 LD50, and 1.0 LD50 of each oxime. Different muscle damage score was based on an estimation scale from 0 (no damage) to 5 (strong damage). In rats treated with 0.1 LD50 of each oxime, muscle fibres did not show any change. The intensive degeneration was found in all muscles after treatment with 0.5 LD50 of asoxime and obidoxime, respectively. Acute toxic muscle injury was developed within 7 days following treatment with 0.5 LD50 and 1.0 LD50 of each oxime, with the highest values in K048 and K075 group (P < 0.001 vs. control and asoxime), respectively. The early muscle alterations observed in our study seem to contribute to the pathogenesis of the oxime-induced toxic muscle injury, which probably manifests as necrosis and/or inflammation.

See more in PubMed

Szinicz L. History of chemical and biological warfare agents. Toxicol. 2005;214:167–81. doi: 10.1016/j.tox.2005.06.011. PubMed DOI

Smart, J. K. History of chemical and biological warfare: an American perspective in Medical Aspects of Chemical and Biological Warfare (eds Sidell, F. R., Takafuji, E. T. & Franz, D. R.) 9–86 (Borden Institute, Walter Reed Army Medical Center, Washington DC, USA 1997).

Willingham S. Military Role in U.S. Response to Terrorism Remains Unclear. Nat. Def. Mag. 2000;6:1–7.

Antonijevic B, Stojiljkovic MP. Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. Clinic. Med. Res. 2007;5:71–82. doi: 10.3121/cmr.2007.701. PubMed DOI PMC

Sidell, F. R. Nerve agents in Textbook of Military Medicine: Medical Aspects of Chemical and Biological Warfare (eds Sidell, F. R., Takafuji, T. E. & Franz, D. R.) 129–179 (Falls Church, VA, Office of the Surgeon General, U.S. Army 1997).

Wiener SW, Hoffman RS. Nerve Agents: A Comprehensive. Review J. Intens. Care. Med. 2004;19:22–37. doi: 10.1177/0885066603258659. PubMed DOI

Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. doi: 10.1016/S0065-2423(04)38006-6. PubMed DOI

Bajgar J, et al. Chemical aspects of pharmacological prophylaxis against nerve agent poisoning. Curr. Med. Chem. 2009;16:2977–2986. doi: 10.2174/092986709788803088. PubMed DOI

Masson P. Evolution of and perspectives on therapeutic approaches to nerve agent poisoning. Toxicol. Lett. 2011;206:5–13. doi: 10.1016/j.toxlet.2011.04.006. PubMed DOI

Dalton CH, et al. Absorption of the nerve agent VX (O-ethyl-S-[2(di-isopropylamino)ethyl] methylphosphonothioate)through the pig, human and guinea pig skin in vitro. Toxicol. In Vitro. 2006;20:1532–1536. doi: 10.1016/j.tiv.2006.06.009. PubMed DOI

Jokanovic M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett. 2009;190:107–115. doi: 10.1016/j.toxlet.2009.07.025. PubMed DOI

Jokanovic M. Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: a review of recent data. Curr. Top. Med. Chem. 2012;12:1775–1789. doi: 10.2174/1568026611209061775. PubMed DOI

Kuca K, Jun D, Bajgar J. Currently used cholinesterase reactivators against nerve agent intoxication: comparison of their effectivity in vitro. Drug Chem. Toxicol. 2007;30:31–40. doi: 10.1080/01480540601017637. PubMed DOI

Gorecki L, et al. SAR study to find optimal cholinesterase reactivator against organophosphorus nerve agents and pesticides. Arch. Toxicol. 2016;90:2831–2859. doi: 10.1007/s00204-016-1827-3. PubMed DOI

Sakurada K, et al. Pralidoximeiodide (2-pAM) penetrates across the blood-brain barrier. Neurochem. Res. 2003;28:1401–1407. doi: 10.1023/A:1024960819430. PubMed DOI

Lorke DE, Petroianu GA. Minireview: does in-vitro testing of oximes help predict their in-vivo action after paraoxon exposure? J. Appl. Toxicol. 2009;29:459–469. doi: 10.1002/jat.1457. PubMed DOI

Spöhrer U, Thiermann H, Klimmek R, Eyer P. Pharmacokinetics of the oximes HI 6 and HLö 7 in a dog after i.m. injection with newly developed dry/wet autoinjectors. Arch. Toxicol. 1994;68:480–489. doi: 10.1007/s002040050100. PubMed DOI

Schlager JW, Dolzine TW, Stewart JR, Wannarka GL, Shih ML. Operation evaluation of three commercial configurations of atropine/HI-6 wet/dry autoinjectors. Pharm. Res. 1991;8:1191–1194. doi: 10.1023/A:1015818821686. PubMed DOI

Korabecny J, et al. From pyridinium-based to centrally active acetylcholinesterase reactivators. Mini. Rev. Med. Chem. 2014;14:215–221. doi: 10.2174/1389557514666140219103138. PubMed DOI

Nepovimova E, et al. A 7-methoxytacrine-4-pyridinealdoxime hybrid as a novel prophylactic agent with reactivation properties in organophosphate intoxication. Toxicol. Res. 2016;5:1012–1016. doi: 10.1039/C6TX00130K. PubMed DOI PMC

Sharma R, et al. Synthesis and in-vitro reactivation screening of imidazolium and oximes as reactivators of sarin and VX-inhibited human acetylcholinesterase (hAChE) Chem. Biol. Interact. 2016;259:85–92. doi: 10.1016/j.cbi.2016.04.034. PubMed DOI

Chambers JE, Chambers HW, Meek EC, Pringle RB. Testing of novel brain-penetrating oxime reactivators of acetylcholinesterase inhibited by nerve agent surrogates. Chem. Biol. Interact. 2013;203:135–138. doi: 10.1016/j.cbi.2012.10.017. PubMed DOI

Radic Z, et al. Mechanism of interaction of novel uncharged, centrally active reactivators with OP-hAChE conjugates. Chem. Biol. Interact. 2013;203:67–71. doi: 10.1016/j.cbi.2012.08.014. PubMed DOI PMC

Kovarik Z, et al. Centrally acting oximes in reactivation of tabun-phosphoramidite AChE. Chem. Biol. Interact. 2013;203:77–80. doi: 10.1016/j.cbi.2012.08.019. PubMed DOI PMC

de Koning MC, van Grol M, Noort D. Peripheral site ligand conjugation to a non-quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase. Toxicol Lett. 2011;206:54–59. doi: 10.1016/j.toxlet.2011.04.004. PubMed DOI

Garattini S, Perico N. Drug development: how academia, industry and authorities interact. Nat. Rev. Nephrol. 2014;10:602–610. doi: 10.1038/nrneph.2014.133. PubMed DOI

Sepsova V, et al. Oximes: inhibitors of human recombinant acetylcholinesterase. A structure-activity relationship (SAR) study. Int. J. Mol. Sci. 2014;14:16882–16900. doi: 10.3390/ijms140816882. PubMed DOI PMC

Lorke DE, et al. Entry of two new asymmetric bispyridinium oximes (K-27 and K-48) into the rat brain: comparison with obidoxime. J. Appl. Toxicol. 2007;27:482–490. doi: 10.1002/jat.1229. PubMed DOI

Soukup O, et al. Novel acetylcholinesterase reactivator K112 and its cholinergic properties. Biomed. Pharmacother. 2010;64:541–545. doi: 10.1016/j.biopha.2010.01.002. PubMed DOI

Soukup O, et al. Oxime reactivators and their in vivo and in vitro effects on nicotinic receptors. Physiol. Res. 2011;60:679–686. PubMed

Soukup O, Jun D, Tobin G, Kuca K. The summary on non-reactivation cholinergic properties of oxime reactivators: the interaction with muscarinic and nicotinic receptors. Arch Toxicol. 2013;87:711–719. doi: 10.1007/s00204-012-0977-1. PubMed DOI

Calić M, et al. In vitro and in vivo evaluation of pyridinium oximes: mode of interaction with acetylcholinesterase, the effect on tabun- and soman-poisoned mice and their cytotoxicity. Toxicol. 2006;219:85–96. doi: 10.1016/j.tox.2005.11.003. PubMed DOI

Bartosova L, Kuca K, Kunesova G, Jun D. The acute toxicity of acetylcholinesterase reactivators in mice in relation to their structure. Neurotox. Res. 2006;9:291–296. doi: 10.1007/BF03033319. PubMed DOI

Antonijevic E, et al. Therapeutic and reactivating efficacy of oximes K027 and K203 against a direct acetylcholinesterase inhibitor. Neurotoxicol. 2016;55:33–39. doi: 10.1016/j.neuro.2016.05.006. PubMed DOI

European Medicines Agency. ICH Topic M 3 (R2) Non-Clinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals, https://www.ema.europa.eu/documents/scientific-guideline/ich-m-3-r2-non-clinical-safety-studies-conduct-human-clinical-trials-marketing-authorization_en.pdf (2008).

Andrade EL, et al. Non-clinical studies in the process of new dru development – Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies. Braz. J. Med. Biol. Res. 2016;49:e5646. doi: 10.1590/1414-431X20165646. PubMed DOI PMC

EUR-Lex. Regulation (EC) no 1907/2006 of the European Parliament and of the council of 18 december 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410 (2006).

Swami D, Saxena N, Karade HN, Kumar P. Comparative toxicity of bis-pyridinium acetamide derivatives in human cell lines and their acute toxicity in Swiss albino mice. Def. Life Sci. J. 2016;1:149–154. doi: 10.14429/dlsj.1.10733. DOI

Adamson RH. The acute lethal dose 50 (LD50) of caffeine in albino rats. Reg. Toxicol. Pharmacol. 2016;80:274–276. doi: 10.1016/j.yrtph.2016.07.011. PubMed DOI

Musilek K, et al. Design of a potent reactivator of tabun-inhibited acetylcholinesterase-synthesis and evaluation of (E)-1-(4-carbamoylpyridinium)-4-(4-hydroxyiminomethylpyridinium)-but-2-ene dibromide (K203) J. Med. Chem. 2007;50:5514–5548. doi: 10.1021/jm070653r. PubMed DOI

Wang Y, et al. Relationship between lethal toxicity in oral administration and injection to mice: Effect of exposure routes. Reg. Toxicol. Pharma. 2015;71:205–212. doi: 10.1016/j.yrtph.2014.12.019. PubMed DOI

Kuča K, et al. A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase. BC Pharmacol. Toxicol. 2018;19:2–10. doi: 10.1186/s40360-017-0193-y. PubMed DOI PMC

Žunec S, et al. Comparative determination of the efficacy of bispyridinium oximes in paraoxon poisoning. Arh. Hig. Rada Toksikol. 2015;66:129–134. doi: 10.1515/aiht-2015-66-2623. PubMed DOI

Pejchal V, et al. The Influence of Acetylcholinesterase Reactivators on Selected Hepatic Functions in Rats. Basic Clinic. Pharmacol. Toxicol. 2008;103:119–123. doi: 10.1111/j.1742-7843.2008.00249.x. PubMed DOI

Vassallo JD, et al. Biomarkers of drug-induced skeletal muscle injury in the rat: troponin I and myoglobin. Toxicol. Sci. 2009;111:402–412. doi: 10.1093/toxsci/kfp166. PubMed DOI

Brazeau, G. A. Drug induced muscle damage oxidative stress in muscle (eds Reznic, A. Z. et al.) 295–316 (Springer, Basel AG 1998).

Jones JD, Kirsch HL, Wortmann RL, Pillinger MH. The causes of drug-induced muscle toxicity. Curr. Opin. Rheumatol. 2014;26:697–703. doi: 10.1097/BOR.0000000000000108. PubMed DOI

Moshiri M, et al. Injury to skeletal muscle of mice following acute and sub-acute pregabalin exposure. Iran. J. Basic Med. Sci. 2017;20:256–259. PubMed PMC

Bender, H. S. Muscle in Veterinary Laboratory Medicine: ClinicalPathology (eds Latimer, K. S, Mahaffey, E. A. & Prasse, K. W.) 260–269 (Iowa State University Press, Ames, IA 2003).

Bohlmeyer TJ, Wu AHB, Perryman MB. Evaluation of laboratory tests as a guide to diagnosis and therapy of myositis. Rheum. Dis.Clin. North Am. 1994;20:845–856. PubMed

Sorichter S, Puschendorf B, Mair J. Skeletal muscle injury induced by eccentric muscle action: Muscle proteins as markers of muscle fibre injury. Exerc. Immunol. Rev. 1999;5:5–21. PubMed

Laumonier T, Menetrey J. Muscle injuries and strategies for improving their repair. J. Exp. Orthop. 2016;3:1–9. doi: 10.1186/s40634-016-0051-7. PubMed DOI PMC

Tidball JG. Mechanisms of muscle injury, repair, and regeneration. Compr. Physiol. 2011;1:2029–2062. PubMed

Tidball JG. Inflammatory processes in muscle injury and repair. Am. J.Physiol. Regul. Integr. Comp. Physiol. 2005;288:R345–R353. doi: 10.1152/ajpregu.00454.2004. PubMed DOI

Tidball JG. Inflammatory cell response to acute muscle injury. Med. Sci. Sports Exerc. 1995;27:1022–1032. doi: 10.1249/00005768-199507000-00011. PubMed DOI

Toumi H, Best TM. The inflammatory response: friend or enemy for muscle injury? Br. J. Sports Med. 2003;37:284–286. doi: 10.1136/bjsm.37.4.284. PubMed DOI PMC

Tidball JG, Wehling-Henricks M. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J. Physiol. 2007;578:327–336. doi: 10.1113/jphysiol.2006.118265. PubMed DOI PMC

Tidball JG, Welc SS. Macrophage-derived IGF-1 is a potent coordinator of myogenesis and inflammation in regenerating muscle. Mol. Ther. 2015;23:1134–1135. doi: 10.1038/mt.2015.97. PubMed DOI PMC

McLennan IS. Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions. J. Anat. 1996;188:17–28. PubMed PMC

Arnold L, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 2007;204:1057–1069. doi: 10.1084/jem.20070075. PubMed DOI PMC

Zhao W, et al. CX3CR1 deficiency delays acute skeletal muscle injury repair by impairing macrophage functions. FASEB J. 2016;30:380–393. doi: 10.1096/fj.14-270090. PubMed DOI PMC

Chazaud B. Macrophages: supportive cells for tissue repair andregeneration. Immunobiol. 2014;219:172–178. doi: 10.1016/j.imbio.2013.09.001. PubMed DOI

Chazaud B, et al. Satellite cells attract monocytes and usemacrophages as a support to escape apoptosis and enhance muscle growth. J. Cell. Biol. 2003;163:1133–1143. doi: 10.1083/jcb.200212046. PubMed DOI PMC

Munoz-Canoves P, Serrano AL. Macrophages decide between regenerationand fibrosis in muscle. Trends Endocrinol. Metab. 2015;26:449–450. doi: 10.1016/j.tem.2015.07.005. PubMed DOI

Lemos DR, et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis fibro/adipogenic progenitors. Nat. Med. 2015;21:786–794. doi: 10.1038/nm.3869. PubMed DOI

Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns to centre stage. Develop. 2012;13:2845–2856. doi: 10.1242/dev.069088. PubMed DOI

Sambasivan R, et al. Pax7-expressing satellitecells are indispensable for adult skeletal muscle regeneration. Develop. 2011;138:3647–3656. doi: 10.1242/dev.067587. PubMed DOI

Collins CA. Satellite cell self-renewal. Curr. Opin. Pharmacol. 2006;6:301–306. doi: 10.1016/j.coph.2006.01.006. PubMed DOI

Dhawan J, Rando TA. Stem cells in postnatal myogenesis: molecularmechanisms of satellite cell quiescence, activation and replenishment. Trends Cell. Biol. 2005;15:666–673. doi: 10.1016/j.tcb.2005.10.007. PubMed DOI

Kuca K, Bielavsky J, Cabal J, Bielavska M. Synthesis of a potential reactivator of acetylcholinesterase-1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium)propane dibromide. Tetrahed. Lett. 2003;44:3123–3125. doi: 10.1016/S0040-4039(03)00538-0. DOI

Kuca K, Bielavsky J, Cabal J, Kassa J. Synthesis of a new reactivator of tabun-inhibited acetylcholinesterase. Bioorg. Med. Chem. Lett. 2003;13:3545–3547. doi: 10.1016/S0960-894X(03)00751-0. PubMed DOI

Kuca K, et al. Effective bisquaternary reactivators of tabun-inhibited AChE. J. Appl Toxicol. 2005;25:491–495. doi: 10.1002/jat.1084. PubMed DOI

Jun D, et al. HPLC analysis of HI‐6 dichloride and dimethanesulfonate-antidotes against nerve agents and organophosphorus pesticides. Analyt. Lett. 2007;40:2783–2787. doi: 10.1080/00032710701588531. DOI

Jun D, et al. TLC Analysis of intermediates arising during the preparation of oxime HI-6 dimethanesulfonate. J. Chromat. Sci. 2008;46:316–319. doi: 10.1093/chromsci/46.4.316. PubMed DOI

Litchfield JT, Wilcoxon F. A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 1949;96:99–113. PubMed

Jaćević V, et al. Effects of fullerenol nanoparticles and amifostine on radiation-induced tissue damages: Histopathological analysis. J. Appl. Biomed. 2016;14:285–297. doi: 10.1016/j.jab.2016.05.004. DOI

Jaćević V, et al. Fullerenol nanoparticles prevent doxorubicin-induced acute hepatotoxicity in rats. Exp. Mol. Path. 2017;102:360–369. doi: 10.1016/j.yexmp.2017.03.005. PubMed DOI

Jaćević V, et al. The efficacy of amifostine against multiple-dose doxorubicin-induced toxicity in rats. Int. J. Mol. Sci. 2018;19:2370. doi: 10.3390/ijms19082370. PubMed DOI PMC

Nežić L, et al. Simvastatin protects cardiomyocytes against endotoxin-induced apoptosis and up-regulates survivin/NF-κB/p65 expression. Sci. Rep. 2018;8:14652. doi: 10.1038/s41598-018-32376-4. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...