A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29467029
PubMed Central
PMC5822599
DOI
10.1186/s40360-018-0196-3
PII: 10.1186/s40360-018-0196-3
Knihovny.cz E-zdroje
- Klíčová slova
- Antidotes, Chemical warfare agents, Oxime, Poisoning, Reactivator, Treatment,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antidota metabolismus MeSH
- cholinesterasové inhibitory metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mozek enzymologie MeSH
- organofosfáty metabolismus MeSH
- oximy metabolismus MeSH
- pyridinové sloučeniny metabolismus MeSH
- reaktivátory cholinesterázy metabolismus MeSH
- simulace molekulového dockingu MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-(4-carbamoylpyridinium)-4-(4-hydroxyiminomethylpyridinium)but-2-ene MeSH Prohlížeč
- acetylcholinesterasa MeSH
- antidota MeSH
- cholinesterasové inhibitory MeSH
- organofosfáty MeSH
- oximy MeSH
- pyridinové sloučeniny MeSH
- reaktivátory cholinesterázy MeSH
- tabun MeSH Prohlížeč
BACKGROUND: Based on in vitro and in vivo rat experiments, the newly developed acetylcholinesterase (AChE) reactivator, K203, appears to be much more effective in the treatment of tabun poisonings than currently fielded oximes. METHODS: To determine if this reactivating efficacy would extend to humans, studies were conducted in vitro using human brain homogenate as the source of AChE. The efficacy of K203 was compared with commercially available oximes; pralidoxime, obidoxime and asoxime (HI-6). RESULTS: Reactivation studies showed that K203 was the most effective reactivator with a second order kinetic constant (kr) of 2142 min- 1. M- 1, which was 51 times higher than that obtained for obidoxime (kr = 42 min- 1. M- 1). Both pralidoxime and asoxime (HI-6) failed to significantly reactivate tabun-inhibited human AChE. DISCUSSION: According to these results and previous studies, using K203, it appears that oxime K203 is the most effective reactivator of tabun-inhibited cholinesterase in several species including humans and should be considered as a possible medical countermeasure to tabun exposure.
Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove Czech Republic
Department of Chemistry Federal University of Lavras Lavras MG Brazil
Faculty of Military Health Sciences University of Defence Hradec Kralove Czech Republic
Neurology Clinic University Hospital Hradec Kralove Hradec Kralove Czech Republic
Zobrazit více v PubMed
Marrs TC. Organophosphate poisoning. Pharmacol. Ther. 1993;58:51–66. doi: 10.1016/0163-7258(93)90066-M. PubMed DOI
Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. doi: 10.1016/S0065-2423(04)38006-6. PubMed DOI
Jokanovic M, Stojiljkovic MP. Current understanding of the application of pyridinium oximes ascholinesterase reactivators in treatment of organophosphate poisoning. Eur J Pharmacol. 2006;553:10–17. doi: 10.1016/j.ejphar.2006.09.054. PubMed DOI
Cabal J, Kuca K, Kassa J. Specification of the structure of oximes able to reactivate tabun inhibited acetylcholinesterase. Basic Clin Pharmacol Toxicol. 2004;95(2):81–86. doi: 10.1111/j.1742-7843.2004.950207.x. PubMed DOI
Calic M, Lucic VA, Radic B, Jelic D, Jun D, Kuca K, Kovarik Z. In vitro and in vivo evaluation of pyridinium oximes: mode of interaction with acetylcholinesterase, effect on tabun- and soman-poisoned mice and their cytotoxicity. Toxicol. 2006;219(1-3):85–96. doi: 10.1016/j.tox.2005.11.003. PubMed DOI
Koplovitz I, Stewart JR. A comparison of the efficacy of HI-6 and 2-PAM against soman, tabun, sarin and VX in the rabbit. Toxicol Lett. 1994;70:169–179. doi: 10.1016/0378-4274(94)90121-X. PubMed DOI
Wilson IB, Sondheimer F. A specific antidote against lethal alkyl phosphate intoxication. V. Antidotal properties. Arch. Biochem. Biophys. 1957;69:468–474. doi: 10.1016/0003-9861(57)90511-8. PubMed DOI
Ekstrom F, Akfur C, Tunemalm AK, Lundberg S. Structural changes of phenylalanine 338 and histidine 447 revealed by the crystal structures of tabun-inhibited murine acetylcholinesterase. Biochem. 2006;45:74–81. doi: 10.1021/bi051286t. PubMed DOI
Puu G, Artursson E, Bucht G. Reactivation of nerve agent inhibited acetylcholinesterases by HI-6 and obidoxime. Biochem Pharmacol. 1986;35:1505–1510. doi: 10.1016/0006-2952(86)90116-4. PubMed DOI
Clement JG, Shiloff JD, Gennings C. Efficacy of a combination of acetylcholinesterase reactivators, HI-6 and obidoxime, against tabun and soman poisoning in mice. Arch Toxicol. 1987;61:70–75. doi: 10.1007/BF00324551. PubMed DOI
Jun D, Kuca K, Hronek M, Opletal L. Effect of some acetylcholinesterase reactivators on human platelet aggregation in vitro. J App Toxicol. 2006;26(3):262–268. doi: 10.1002/jat.1126. PubMed DOI
Balali-Mood M, Shariat M. Treatment of organophosphate poisoning. Experience of nerve agents and acute pesticide poisoning on the effects of oximes. J Physiol (Paris) 1998;92:375–378. doi: 10.1016/S0928-4257(99)80008-4. PubMed DOI
Musilek K, Kuca K, Jun D, Dohnal V, Dolezal M. Synthesis of the novel series of bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against chlorpyrifos-inhibited acetylcholinesterase. Bioorg Med Chem Lett. 2006;16(3):622–627. doi: 10.1016/j.bmcl.2005.10.059. PubMed DOI
Kuca K, Bielavský J, Cabal J, Bielavská M. Synthesis of a potential reactivator of acetylcholinesterase 1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium)-propane dibromide. Tetrahedron Lett. 2003;44:3123–3125. doi: 10.1016/S0040-4039(03)00538-0. DOI
Kuca K, Bielavský J, Cabal J, Kassa J. Synthesis of a new reactivator of tabun inhibited acetylcholinesterase. Bioorg Med Chem Lett. 2003;13:3545–3547. doi: 10.1016/S0960-894X(03)00751-0. PubMed DOI
Kuca K, Kassa J. A Comparison of the Ability of a New Bispyridinium Oxime--1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane Dibromide and Currently used Oximes to Reactivate Nerve Agent-inhibited Rat Brain Acetylcholinesterase by In Vitro Methods. J Enzym Inhib Med Chem. 2003;18:529–535. doi: 10.1080/14756360310001605552. PubMed DOI
Kuca K, Kassa J. In vitro reactivation of acetylcholinesterase using of the oxime K027. Veterinary and Human Toxicology. 2004;46:15–18. PubMed
Kuca K, Kassa J. Oximes-induced reactivation of rat brain acetylcholinesterase inhibited by VX agent. Hum Exp Toxicol. 2004;23(4):167–171. doi: 10.1191/0960327104ht434oa. PubMed DOI
da Silva AP, Farina M, Franco JL, Dafre AL, Kassa J, Kuca K. Temporal effects of newly developed oximes (K027, K048) on malathion-induced acetylcholinesterase inhibition and lipid peroxidation in mouse prefrontal cortex. NeuroToxicology. 2008;29(1):184–189. doi: 10.1016/j.neuro.2007.10.005. PubMed DOI
Kassa J, Kuca K, Cabal J, Paar M. A comparison of the efficacy of new asymmetric bispyridinium oximes (K027, K048) with currently available oximes against tabun by in vitro and in vivo methods. J Toxicol Environ Health. 2006;69(20):1875–1882. doi: 10.1080/15287390600631730. PubMed DOI
Lucić-Vrdoljak A, Čalić M, Radić B, Berend S, Kuca K, Kovarik Z. Pre-treatment with pyridinium oximes improves antidotal therapy against tabun poisoning. Toxicology. 2006;228(1):41–50. doi: 10.1016/j.tox.2006.08.012. PubMed DOI
Kuca K, Cabal J, Kassa J. In vitro reactivation of sarin-inhibited brain acetylcholinesterase from various species by various oximes. J Enzym Inhib Med Chem. 2005;20(3):227–232. doi: 10.1080/14756360500043208. PubMed DOI
Kuca K, Cabal J, Musilek K, Jun D, Bajgar J. Effective bisquaternary reactivators of tabun-inhibited AChE. J Appl Toxicol. 2005;25(6):491–495. doi: 10.1002/jat.1084. PubMed DOI
Kassa J, Jun D, Kuca K. A comparison of reactivating efficacy of newly developed oximes (K074, K075) and currently available oximes (obidoxime, HI-6) in cyclosarin and tabun-poisoned rats. J Enzym Inhib Med Chem. 2007;22(3):297–300. doi: 10.1080/14756360601114361. PubMed DOI
Kuca K, Cabal J, Jun D, Musilek K. In vitro reactivation potency of acetylcholinesterase reactivators – K074 and K075 – to reactivate tabun inhibited human brain cholinesterases. Neurotoxicity Res. 2007;11(2):101–106. doi: 10.1007/BF03033389. PubMed DOI
Musilek K, Jun D, Cabal J, Kassa J, Gunn-Moore F, Kuca K. Design of a Potent Reactivator of Tabun-Inhibited Acetylcholinesterase - Synthesis and evaluation of (E)-1-(4-carbamoylpyridinium)-4-(4-hydroxyiminomethylpyridinium)-but-2-ene Dibromide (K203) J Med Chem. 2007;50(22):5514–5518. doi: 10.1021/jm070653r. PubMed DOI
Kassa J, Karasova J, Musilek K, Kuca K. An evaluation of therapeutic and reactivating effects of newly developed oximes (K156, K203) and commonly used oximes (obidoxime, trimedoxime, HI-6) in tabun-poisoned rats and mice. Toxicology. 2008;243(3):311–316. doi: 10.1016/j.tox.2007.10.015. PubMed DOI
Worek F, Reiter G, Eyer P, Szinicz L. Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates. Arch Toxicol. 2002;76:523–529. doi: 10.1007/s00204-002-0375-1. PubMed DOI
Wiesner J, Kriz Z, Kuca K, Jun D, Koca J. Acetylcholinesterases – the structural similarities and differences. J Enzym Inhib Med Chem. 2007;22(4):417–424. doi: 10.1080/14756360701421294. PubMed DOI
Jun D, Stodulka P, Kuca K, Koleckar V, Dolezal B, Simon P, Veverka M. HPLC analysis of HI-6 dichloride and dimethanesulfonate – antidotes against nerve agents and organophosphorus pesticides. Anal Lett. 2007;40(14):2783–2787. doi: 10.1080/00032710701588531. DOI
Jun D, Stodulka P, Kuca K, Koleckar V, Dolezal B, Simon P, Veverka M. TLC analysis of intermediates arising during the preparation of oxime HI-6 dimethanesulfonate. J Chromatogr Sci. 2008;46(4):316–319. doi: 10.1093/chromsci/46.4.316. PubMed DOI
Carletti E, Li H, Li B, Ekstroem F, Nicolet Y, Loiodice M, Gillon E, Froment MT, Lockridge O, Schopfer LM, Masson P, Nachon F. Aging of cholinesterases phosphylated by tabun proceeds through O-dealkylation. J Am Chem Soc. 2008;130:16011–16020. doi: 10.1021/ja804941z. PubMed DOI
Goncalves AS, Franca TCC, Wilter A, Figueroa-Villar JD. Molecular Dynamics of the Interaction of Pralidoxime and Deazapralidoxime with Acetylcholinesterase Inhibited by the Neurotoxic Agent Tabun. J Braz Chem Soc. 2006;17:968–975. doi: 10.1590/S0103-50532006000500022. DOI
Gonçalves AS, França TCC, Figueroa-Villar JD, Pascutti PG. Molecular Dynamics Simulations and QM/MM Studies of the Reactivation by 2-Pam of Tabun Inhibited Human Acethylcolinesterase. J Braz Chem Soc. 2011;22:155–165. doi: 10.1590/S0103-50532011000100021. DOI
Hehre WJ, Deppmeier BJ, Klunzinger PE. PC SPARTAN Plus TUTORIAL version 2.0. Irvine, CA: Wavefunction, Inc.; 1999.
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, Connecticut (2004)
Thomsen R, Christensen MH. MolDock: A new technique for high-accuracy molecular docking. J Med Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI
Silva MC, Torres JA, Castro AA, da Cunha EF. Alves de Oliveira LC., Corrêa AD., Ramalho TC. Combined experimental and theoretical study on the removal of pollutant compounds by peroxidases: affinity and reactivity toward a bioremediation catalyst. J Biomol Struct Dyn. 2016;34(9):1839–1848. doi: 10.1080/07391102.2015.1063456. PubMed DOI
Guimarães AP, França TCC, Ramalho TC, Rennó MN, Ferreira da Cunha EF, Matos KS, Mancini DT, Kuča K. Docking studies and effects of. syn-anti isomery of oximes derived from pyridine. imidazol bicycled systems as potential human. acetylcholinesterase reactivators. J Appl Biomed. 2011;9:163–171. doi: 10.2478/v10136-009-0037-1. DOI
Matos KS, Mancini DT, da Cunha EF, Kuca K, França TC, Ramalho TC. Molecular aspects of the reactivation process of acetylcholinesterase inhibited by cyclosarin. J Braz Chem Soc. 2011;22:1999–2004.
Ramalho TC, Caetano MS, da Cunha EF, Souza TC, Rocha MV. Construction and assessment of reaction models of class I EPSP synthase: molecular docking and density functional theoretical calculations. J Biomol Struct Dyn. 2009;27(2):195–207. doi: 10.1080/07391102.2009.10507309. PubMed DOI
da Cunha EF, Ramalho TC, Reynolds RC. Binding mode analysis of 2,4-diamino-5-methyl-5-deaza-6-substituted pteridines with Mycobacterium tuberculosis and human dihydrofolate reductases. J Biomol Struct Dyn. 2008;25(4):377–385. doi: 10.1080/07391102.2008.10507186. PubMed DOI
da Cunha EE, Barbosa EF, Oliveira AA, Ramalho TC. Molecular modeling of Mycobacterium tuberculosis DNA gyrase and its molecular docking study with gatifloxacin inhibitors. J Biomol Struct Dyn. 2010;27(5):619–625. doi: 10.1080/07391102.2010.10508576. PubMed DOI
Borman SA. Much to do about enzyme mechanism. Chem Eng News. 2004;8:35–39. doi: 10.1021/cen-v082n008.p035. DOI
Heyden A, Lin H, Truhlar DG. Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. J Phys Chem B. 2007;111:2231–2241. doi: 10.1021/jp0673617. PubMed DOI
Ramalho TC, Da Cunha EFF, De Alencastro RB. Solvent effects on 13 C and 15 N shielding tensors of nitroimidazoles in the condensed phase: a sequential molecular dynamics/quantum mechanics study. J Phys Condens Matter. 2004;16:6159–6170. doi: 10.1088/0953-8984/16/34/015. DOI
Matos KS, da Cunha EFF, Abagyan R, Ramalho TC. Computational evidence for the reactivation process of human acetylcholinesterase inhibited by carbamates. Comb.Chem. High Throughput Screen. 2014;17(6):554–564. doi: 10.2174/1386207316666131217100416. PubMed DOI
Singh UC. Kollman PA An approach to computing electro-. static charges for molecules. J Comput Chem. 1984;5:129–134. doi: 10.1002/jcc.540050204. DOI
Besler BH, Merz KM, Kollman PA. Atomic charges derived from semiempirical methods. J Comput Chem. 1990;11:431–439. doi: 10.1002/jcc.540110404. DOI
Gustin DJ, Mattei P, Kast P, Wiest O, Lee L, Cleland WW, Hilvert D. Heavy atom isotope effects reveal a highly polarized. transition state for chorismate mutase. J Am Chem Soc. 1999;121:1756–1765. doi: 10.1021/ja9841759. DOI
Rutkowska-Zbik D, Witko M. Following nature-theoretical studies on factors modulating catalytic activity of porphyrins. J Mol Catal Chem. 2006;258(1-2):376–380. doi: 10.1016/j.molcata.2006.07.017. DOI
Giacoppo JOS, França TCC, Kuca K, da Cunha EFF, Abagyan R, Mancini DT, Ramalho TC. Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetyl- cholinesterase inhibited by different nerve agents. J Biomol Struct Dyn. 2015;33:2048–2058. doi: 10.1080/07391102.2014.989408. PubMed DOI
Li R, Liu Y, Zhang J, Chen K, Li S, Jiang J. An isofenphos-. methyl hydrolase (Imh) capable of hydrolyzing the P–O–Z moiety. of organophosphorus pesticides containing an aryl or heterocyclic group. Appl Microbiol Biotechnol. 2012;94(6):1553–64. PubMed
Gorecki L, Korabecny J, Musilek K, Malinak D, Nepovimova E, Dolezal R, Jun D, Soukup O. Kuca K.¨ SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch Toxicol. 2016;90(12):2831–2859. doi: 10.1007/s00204-016-1827-3. PubMed DOI
Nepovimova E, Korabecny J, Dolezal R, Nguyen TD, Jun D, Soukup O, Pasdiorova M, Jost P, Muckova L, Malinak D, Gorecki L, Musilek K, Kuca K. A 7-methoxytacrine–4-pyridinealdoxime hybrid as a novel prophylactic agent with reactivation properties in organophosphate. Toxicol res. 2016;4(5):1012–1016. doi: 10.1039/C6TX00130K. PubMed DOI PMC
Kuca K, Cabal J. Evaluation of newly synthesized reactivators of the brain cholinesterase inhibited by sarin nerve agent. Toxicol Mech Methods. 2005;15(4):247–252. doi: 10.1080/15376520590968770. PubMed DOI
Kuca K, Jun D, Musilek K. Structural requirements of acetylcholinesterase reactivators. Mini Rev Med Chem. 2006;6(3):269–277. doi: 10.2174/138955706776073510. PubMed DOI
Kalász H, Hasan MY, Sheen R, Kuca K, Petroianu GA, Ludány K, Gergely A, Tekes K. HPLC Analysis of K-48 concentration in plasma. Anal Bioanal Chem. 2006;385(6):1062–1067. doi: 10.1007/s00216-006-0490-6. PubMed DOI
Tekes K, Hasan MY, Sheen R, Kuca K, Petroianu G, Ludányi K, Kalász H. HPLC determination of the serum concentration of K-27, a novel oxime-type cholinesterase reactivator. J Chromatogr A. 2006;1122(1-2):84–87. doi: 10.1016/j.chroma.2006.04.016. PubMed DOI
Petroianu GA, Arafat K, Nurulain SM, Kuca K, Kassa J. In vitro oxime reactivation of red blood cell acetylcholinesterase inhibited by methyl-paraoxon. J Appl Toxicol. 2007;27(2):168–175. doi: 10.1002/jat.1189. PubMed DOI
Petroianu GA, Nurulain SM, Nagelkerke N, Shafiullah M, Kassa J, Kuca K. Five oximes (K-27, K-48, obidoxime, HI-6 and trimedoxime) in comparison with pralidoxime: survival in rats exposed to methyl-paraoxon. J Appl Toxicol. 2007;27(5):453–457. doi: 10.1002/jat.1224. PubMed DOI
Kovarik Z, Lucić VA, Berend S, Katalinić M, Kuca K, Musilek K, Radić B. Evaluation of oxime K203 as antidote in tabun poisoning. Arhiv za Higijenu Rada i Toksikologiju. 2009;60(1):19–26. doi: 10.2478/10004-1254-60-2009-1890. PubMed DOI
Lorke DE, Hasan MY, Nurulain SM, Sheen R, Kuca K, Petroianu GA. Entry of two new asymmetric bispyridinium oximes (K-27 and K-48) into the rat brain: comparison with obidoxime. J Appl Toxicol. 2007;27(5):482–490. doi: 10.1002/jat.1229. PubMed DOI
Petroianu GA, Arafat K, Kuca K, Kassa J. Five oximes (K-27, K-33, K-48, BI-6 and methoxime) in comparison with pralidoxime: in vitro reactivation of red blood cell acetylcholinesterase inhibited by paraoxon. J Appl Toxicol. 2006;26(1):64–71. doi: 10.1002/jat.1108. PubMed DOI
Trends in the Recent Patent Literature on Cholinesterase Reactivators (2016-2019)
Toxic Injury to Muscle Tissue of Rats Following Acute Oximes Exposure