Molecular Modeling Studies on the Multistep Reactivation Process of Organophosphate-Inhibited Acetylcholinesterase and Butyrylcholinesterase
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
V4-Korea 3/2018
Narodowe Centrum Badań i Rozwoju
18-01734S
Grantová Agentura České Republiky
VT2019-2021
University of Hradec Kralove, Faculty of Science
PubMed
33513955
PubMed Central
PMC7912477
DOI
10.3390/biom11020169
PII: biom11020169
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, butyrylcholinesterase, docking studies, molecular modeling, organophosphates, reactivation process, reactivators,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- aktivace enzymů MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory farmakologie MeSH
- fosfor chemie MeSH
- katalytická doména MeSH
- konformace proteinů MeSH
- kvantová teorie MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- myši MeSH
- organofosfáty chemie MeSH
- oximy chemie MeSH
- proteosyntéza MeSH
- reaktivátory cholinesterázy farmakologie MeSH
- sarin chemie MeSH
- shluková analýza MeSH
- simulace molekulového dockingu * MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- fosfor MeSH
- ligandy MeSH
- organofosfáty MeSH
- oximy MeSH
- reaktivátory cholinesterázy MeSH
- sarin MeSH
- tabun MeSH Prohlížeč
Poisoning with organophosphorus compounds used as pesticides or misused as chemical weapons remains a serious threat to human health and life. Their toxic effects result from irreversible blockade of the enzymes acetylcholinesterase and butyrylcholinesterase, which causes overstimulation of the cholinergic system and often leads to serious injury or death. Treatment of organophosphorus poisoning involves, among other strategies, the administration of oxime compounds. Oximes reactivate cholinesterases by breaking the covalent bond between the serine residue from the enzyme active site and the phosphorus atom of the organophosphorus compound. Although the general mechanism of reactivation has been known for years, the exact molecular aspects determining the efficiency and selectivity of individual oximes are still not clear. This hinders the development of new active compounds. In our research, using relatively simple and widely available molecular docking methods, we investigated the reactivation of acetyl- and butyrylcholinesterase blocked by sarin and tabun. For the selected oximes, their binding modes at each step of the reactivation process were identified. Amino acids essential for effective reactivation and those responsible for the selectivity of individual oximes against inhibited acetyl- and butyrylcholinesterase were identified. This research broadens the knowledge about cholinesterase reactivation and demonstrates the usefulness of molecular docking in the study of this process. The presented observations and methods can be used in the future to support the search for new effective reactivators.
Zobrazit více v PubMed
Mercey G., Verdelet T., Renou J., Kliachyna M., Baati R., Nachon F., Jean L., Renard P.-Y. Reactivators of Acetylcholinesterase Inhibited by Organophosphorus Nerve Agents. Acc. Chem. Res. 2012;45:756–766. doi: 10.1021/ar2002864. PubMed DOI
Gunnell D., Eddleston M., Phillips M.R., Konradsen F. The global distribution of fatal pesticide self-poisoning: Systematic review. BMC Public Health. 2007;7:357. doi: 10.1186/1471-2458-7-357. PubMed DOI PMC
Fukuto T.R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 1990;87:245–254. doi: 10.1289/ehp.9087245. PubMed DOI PMC
Peter J.V., Sudarsan T., Moran J. Clinical features of organophosphate poisoning: A review of different classification systems and approaches. Indian J. Crit. Care Med. 2014;18:735–745. doi: 10.4103/0972-5229.144017. PubMed DOI PMC
Jokanović M., Stojiljković M.P. Current understanding of the application of pyridinium oximes as cholinesterase reactivators in treatment of organophosphate poisoning. Eur. J. Pharmacol. 2006;553:10–17. doi: 10.1016/j.ejphar.2006.09.054. PubMed DOI
Eddleston M. Novel clinical toxicology and pharmacology of organophosphorus insecticide self-poisoning. Annu. Rev. Pharmacol. Toxicol. 2019;59:341–360. doi: 10.1146/annurev-pharmtox-010818-021842. PubMed DOI
Beaton R., Stergachis A., Oberle M., Bridges E., Nemuth M., Thomas T. The Sarin Gas Attacks on the Tokyo Subway—10 years later/Lessons Learned. Traumatology. 2005;11:103–119. doi: 10.1177/153476560501100205. DOI
Chai P.R., Hayes B.D., Erickson T.B., Boyer E.W. Novichok agents: A historical, current, and toxicological perspective. Toxicol. Commun. 2018;2:45–48. doi: 10.1080/24734306.2018.1475151. PubMed DOI PMC
John H., van der Schans M.J., Koller M., Spruit H.E.T., Worek F., Thiermann H., Noort D. Fatal sarin poisoning in Syria 2013: Forensic verification within an international laboratory network. Forensic Toxicol. 2018;36:61–71. doi: 10.1007/s11419-017-0376-7. PubMed DOI PMC
Newmark J. Therapy for Nerve Agent Poisoning. Arch. Neurol. 2004;61:649. doi: 10.1001/archneur.61.5.649. PubMed DOI
Cerasoli D.M., Griffiths E.M., Doctor B.P., Saxena A., Fedorko J.M., Greig N.H., Yu Q.S., Huang Y., Wilgus H., Karatzas C.N., et al. In vitro and in vivo characterization of recombinant human butyrylcholinesterase (ProtexiaTM) as a potential nerve agent bioscavenger. Chem. Biol. Interact. 2005;157:362–365. doi: 10.1016/j.cbi.2005.10.052. PubMed DOI
Kovarik Z., Katalinić M., Šinko G., Binder J., Holas O., Jung Y.-S., Musilova L., Jun D., Kuča K. Pseudo-catalytic scavenging: Searching for a suitable reactivator of phosphorylated butyrylcholinesterase. Chem. Biol. Interact. 2010;187:167–171. doi: 10.1016/j.cbi.2010.02.023. PubMed DOI
Sirin G.S., Zhang Y. How is acetylcholinesterase phosphonylated by Soman? An ab initio QM/MM molecular dynamics study. J. Phys. Chem. A. 2014;118:9132–9139. PubMed PMC
Carletti E., Li H., Li B., Ekström F., Nicolet Y., Loiodice M., Gillon E., Froment M.T., Lockridge O., Schopfer L.M., et al. Aging of cholinesterases phosphylated by tabun proceeds through O-dealkylation. J. Am. Chem. Soc. 2008;130:16011–16020. doi: 10.1021/ja804941z. PubMed DOI
Carletti E., Aurbek N., Gillon E., Loiodice M., Nicolet Y., Fontecilla-Camps J.-C., Masson P., Thiermann H., Nachon F., Worek F. Structure–activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun. Biochem. J. 2009;421:97–106. doi: 10.1042/BJ20090091. PubMed DOI
Hörnberg A., Tunemalm A.-K., Ekström F. Crystal Structures of Acetylcholinesterase in Complex with Organophosphorus Compounds Suggest that the Acyl Pocket Modulates the Aging Reaction by Precluding the Formation of the Trigonal Bipyramidal Transition State. Biochemistry. 2007;46:4815–4825. doi: 10.1021/bi0621361. PubMed DOI
Bajda M., Więckowska A., Hebda M., Guzior N., Sotriffer C., Malawska B. Structure-Based Search for New Inhibitors of Cholinesterases. Int. J. Mol. Sci. 2013;14:5608–5632. doi: 10.3390/ijms14035608. PubMed DOI PMC
Wiesner J., Kříž Z., Kuča K., Jun D., Koča J. Why acetylcholinesterase reactivators do not work in butyrylcholinesterase. J. Enzyme Inhib. Med. Chem. 2010;25:318–322. doi: 10.3109/14756360903179427. PubMed DOI
Ashani Y., Bhattacharjee A.K., Leader H., Saxena A., Doctor B.P. Inhibition of cholinesterases with cationic phosphonyl oximes highlights distinctive properties of the charged pyridine groups of quaternary oxime reactivators. Biochem. Pharmacol. 2003;66:191–202. doi: 10.1016/S0006-2952(03)00204-1. PubMed DOI
Allgardsson A., Berg L., Akfur C., Hörnberg A., Worek F., Linusson A., Ekström F.J. Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6. Proc. Natl. Acad. Sci. USA. 2016;113:5514–5519. doi: 10.1073/pnas.1523362113. PubMed DOI PMC
Kassa J. Review of Oximes in the Antidotal Treatment of Poisoning by Organophosphorus Nerve Agents. J. Toxicol. Clin. Toxicol. 2002;40:803–816. doi: 10.1081/CLT-120015840. PubMed DOI
Gorecki L., Soukup O., Kucera T., Malinak D., Jun D., Kuca K., Musilek K., Korabecny J. Oxime K203: A drug candidate for the treatment of tabun intoxication. Arch. Toxicol. 2019;93:673–691. doi: 10.1007/s00204-018-2377-7. PubMed DOI
Kassa J., Jun D., Karasova J., Bajgar J., Kuca K. A comparison of reactivating efficacy of newly developed oximes (K074, K075) and currently available oximes (obidoxime, HI-6) in soman, cyclosarin and tabun-poisoned rats. Chem. Biol. Interact. 2008;175:425–427. doi: 10.1016/j.cbi.2008.05.001. PubMed DOI
Ochoa R., Rodriguez C.A., Zuluaga A.F. Perspectives for the structure-based design of acetylcholinesterase reactivators. J. Mol. Graph. Model. 2016;68:176–183. doi: 10.1016/j.jmgm.2016.07.002. PubMed DOI
Iqbal A., Malik S., Nurulain S.M., Musilek K., Kuca K., Kalasz H., Fatmi M.Q. Reactivation potency of two novel oximes (K456 and K733) against paraoxon-inhibited acetyl and butyrylcholinesterase: In silico and in vitro models. Chem. Biol. Interact. 2019;310:108735. doi: 10.1016/j.cbi.2019.108735. PubMed DOI
Malinak D., Dolezal R., Hepnarova V., Hozova M., Andrys R., Bzonek P., Racakova V., Korabecny J., Gorecki L., Mezeiova E., et al. Synthesis, in vitro screening and molecular docking of isoquinolinium-5-carbaldoximes as acetylcholinesterase and butyrylcholinesterase reactivators. J. Enzyme Inhib. Med. Chem. 2020;35:478–488. doi: 10.1080/14756366.2019.1710501. PubMed DOI PMC
Gerlits O., Kong X., Cheng X., Wymore T., Blumenthal D.K., Taylor P., Radić Z., Kovalevsky A. Productive reorientation of a bound oxime reactivator revealed in room temperature X-ray structures of native and VX-inhibited human acetylcholinesterase. J. Biol. Chem. 2019;294:10607–10618. doi: 10.1074/jbc.RA119.008725. PubMed DOI PMC
Lo R., Chandar N.B., Ghosh S., Ganguly B. The reactivation of tabun-inhibited mutant AChE with Ortho-7: Steered molecular dynamics and quantum chemical studies. Mol. Biosyst. 2016;12:1224–1231. doi: 10.1039/C5MB00735F. PubMed DOI
Da Silva J.A.V., Nepovimova E., Ramalho T.C., Kuca K., Celmar Costa França T. Molecular modeling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime, 4-PA, 2-PAM, and obidoxime with VX-inhibited human acetylcholinesterase: A near attack conformation approach. J. Enzyme Inhib. Med. Chem. 2019;34:1018–1029. doi: 10.1080/14756366.2019.1609953. PubMed DOI PMC
Polisel D.A., de Castro A.A., Mancini D.T., da Cunha E.F.F., França T.C.C., Ramalho T.C., Kuca K. Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: Theoretical and experimental aspects. Chem. Biol. Interact. 2019;309:108671. doi: 10.1016/j.cbi.2019.05.037. PubMed DOI
Jones G., Willett P., Glen R.C., Leach A.R., Taylor R., Uk K.B.R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997;267:727–748. doi: 10.1006/jmbi.1996.0897. PubMed DOI
Madhavi Sastry G., Adzhigirey M., Day T., Annabhimoju R., Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided. Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. PubMed DOI
PyMOL. DeLano Scientific LLC; Palo Alto, CA, USA: 2006. version 0.99rc6.
Bartling A., Worek F., Szinicz L., Thiermann H. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase. Toxicology. 2007;233:166–172. doi: 10.1016/j.tox.2006.07.003. PubMed DOI
Kuca K., Cabal J., Jun D., Musilek K. In vitro reactivation potency of acetylcholinesterase reactivators—K074 and K075—To reactivate tabun-inhibited human brain cholinesterases. Neurotox. Res. 2007;11:101–106. doi: 10.1007/BF03033389. PubMed DOI
Kovarik Z., Vrdoljak A.L., Berend S., Katalinić M., Kuč K., Musilek K., Radić B. Evaluation of oxime K203 as antidote in tabun poisoning. Arh. Hig. Rada Toksikol. 2009;60:19–26. doi: 10.2478/10004-1254-60-2009-1890. PubMed DOI
Zorbaz T., Malinak D., Kuca K., Musilek K., Kovarik Z. Butyrylcholinesterase inhibited by nerve agents is efficiently reactivated with chlorinated pyridinium oximes. Chem. Biol. Interact. 2019;307:16–20. doi: 10.1016/j.cbi.2019.04.020. PubMed DOI
Lucić Vrdoljak A., Čalić M., Radić B., Berend S., Jun D., Kuča K., Kovarik Z. Pretreatment with pyridinium oximes improves antidotal therapy against tabun poisoning. Toxicology. 2006;228:41–50. doi: 10.1016/j.tox.2006.08.012. PubMed DOI
Kuca K., Musilek K., Jun D., Zdarova-Karasova J., Nepovimova E., Soukup O., Hrabinova M., Mikler J., Franca T.C.C., Da Cunha E.F.F., et al. A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase. BMC Pharmacol. Toxicol. 2018;19:1–10. doi: 10.1186/s40360-018-0196-3. PubMed DOI PMC
Nachon F., Carletti E., Worek F., Masson P. Aging mechanism of butyrylcholinesterase inhibited by an N-methyl analogue of tabun: Implications of the trigonal-bipyramidal transition state rearrangement for the phosphylation or reactivation of cholinesterases. Chem. Biol. Interact. 2010;187:44–48. doi: 10.1016/j.cbi.2010.03.053. PubMed DOI
Bester S.M., Guelta M.A., Cheung J., Winemiller M.D., Bae S.Y., Myslinski J., Pegan S.D., Height J.J. Structural Insights of Stereospecific Inhibition of Human Acetylcholinesterase by VX and Subsequent Reactivation by HI-6. Chem. Res. Toxicol. 2018;31:1405–1417. doi: 10.1021/acs.chemrestox.8b00294. PubMed DOI
Franklin M.C., Rudolph M.J., Ginter C., Cassidy M.S., Cheung J. Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface. Proteins Struct. Funct. Bioinform. 2016;84:1246–1256. doi: 10.1002/prot.25073. PubMed DOI
Luo C., Saxena A., Smith M., Garcia G., Radić Z., Taylor P., Doctor B.P. Phosphoryl Oxime Inhibition of Acetylcholinesterase during Oxime Reactivation Is Prevented by Edrophonium. Biochemistry. 1999;38:9937–9947. doi: 10.1021/bi9905720. PubMed DOI
da Silva J.A.V., Pereira A.F., Laplante S.R., Kuca K., Ramalho T.C., França T.C.C. Reactivation of VX-inhibited human acetylcholinesterase by deprotonated pralidoxime. A complementary quantum mechanical study. Biomolecules. 2020;10:192. doi: 10.3390/biom10020192. PubMed DOI PMC
Ghosh S., Chandar N.B., Jana K., Ganguly B. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies. J. Comput. Aided. Mol. Des. 2017;31:729–742. doi: 10.1007/s10822-017-0036-3. PubMed DOI
Semenov V.E., Zueva I.V., Lushchekina S.V., Lenina O.A., Gubaidullina L.M., Saifina L.F., Shulaeva M.M., Kayumova R.M., Saifina A.F., Gubaidullin A.T., et al. 6-Methyluracil derivatives as peripheral site ligand-hydroxamic acid conjugates: Reactivation for paraoxon-inhibited acetylcholinesterase. Eur. J. Med. Chem. 2020;185:111787. doi: 10.1016/j.ejmech.2019.111787. PubMed DOI