Understanding the Interaction Modes and Reactivity of Trimedoxime toward MmAChE Inhibited by Nerve Agents: Theoretical and Experimental Aspects
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CNPq
Conselho Nacional de Desenvolvimento Científico e Tecnológico
FAPEMIG
Fundação de Amparo ao Ensino e Pesquisa de Minas Gerais
CAPES/MD
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Ministério da Defesa
UFLA
Federal University of Lavras
VT2019-2021
UHK
CEP - Centrální evidence projektů
PubMed
32899591
PubMed Central
PMC7554915
DOI
10.3390/ijms21186510
PII: ijms21186510
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, computational methods, mechanistic studies, nerve agents, reactivation, trimedoxime,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antidota farmakologie MeSH
- cholinesterasové inhibitory metabolismus farmakologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- nervová bojová látka chemie MeSH
- organofosforové sloučeniny chemie MeSH
- oximy chemie MeSH
- reaktivátory cholinesterázy chemie farmakologie MeSH
- trimedoxim farmakologie terapeutické užití MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- antidota MeSH
- cholinesterasové inhibitory MeSH
- nervová bojová látka MeSH
- organofosforové sloučeniny MeSH
- oximy MeSH
- reaktivátory cholinesterázy MeSH
- trimedoxim MeSH
Organophosphorus (OP) compounds are used as both chemical weapons and pesticides. However, these agents are very dangerous and toxic to humans, animals, and the environment. Thus, investigations with reactivators have been deeply developed in order to design new antidotes with better efficiency, as well as a greater spectrum of action in the acetylcholinesterase (AChE) reactivation process. With that in mind, in this work, we investigated the behavior of trimedoxime toward the Mus musculus acetylcholinesterase (MmAChE) inhibited by a range of nerve agents, such as chemical weapons. From experimental assays, reactivation percentages were obtained for the reactivation of different AChE-OP complexes. On the other hand, theoretical calculations were performed to assess the differences in interaction modes and the reactivity of trimedoxime within the AChE active site. Comparing theoretical and experimental data, it is possible to notice that the oxime, in most cases, showed better reactivation percentages at higher concentrations, with the best result for the reactivation of the AChE-VX adduct. From this work, it was revealed that the mechanistic process contributes most to the oxime efficiency than the interaction in the site. In this way, this study is important to better understand the reactivation process through trimedoxime, contributing to the proposal of novel antidotes.
Biomedical Research Center University Hospital Hradec Kralove 500 05 Hradec Kralove Czech Republic
Department of Chemistry Federal University of Lavras 37200 000 Lavras Brazil
Zobrazit více v PubMed
Sadik O.A., Land W.H., Wang J. Targeting Chemical and Biological Warfare Agents at the Molecular Level. Electroanal. 2003;15:1149–1159. doi: 10.1002/elan.200390140. DOI
Ramalho T.C., de Castro A.A., Silva D.R., Silva M.C., Franca T.C.C., Bennion B.J., Kuca K. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches toward Remediation Technologies of Warfare Agents and Pesticides. Curr. Med. Chem. 2016;23:1041–1061. doi: 10.2174/0929867323666160222113504. PubMed DOI
Spiers J. New perspectives on vulnerability using emic and etic approaches. J. Adv. Nurs. 2000;31:715–721. doi: 10.1046/j.1365-2648.2000.01328.x. PubMed DOI
França T.C.C., Silva G.R., Castro A.T. De Chemical Defense: A new subject in the Chemical Teaching. Rev. Virtual Quím. 2010;2:84–104.
Chauhan S., Chauhan S., D’Cruz R., Faruqi S., Singh K.K., Varma S., Singh M., Karthik V. Chemical warfare agents. Environ. Toxicol. Pharmacol. 2008;26:113–122. doi: 10.1016/j.etap.2008.03.003. PubMed DOI
Gravett M.R., Hopkins F.B., Self A.J., Webb A.J., Timperley C.M., Baker M.J. Evidence of VX nerve agent use from contaminated white mustard plants. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014;470:20140076. doi: 10.1098/rspa.2014.0076. PubMed DOI PMC
Ganesan K., Raza S., Vijayaraghavan R. Chemical warfare agents. J. Pharm. Bioallied Sci. 2010;2:166–178. doi: 10.4103/0975-7406.68498. PubMed DOI PMC
El-Ebiary A.A., Elsharkawy R.E., Soliman N.A., Soliman M.A., Hashem A.A. N-acetylcysteine in Acute Organophosphorus Pesticide Poisoning: A Randomized, Clinical Trial. Basic Clin. Pharmacol. Toxicol. 2016;119:222–227. doi: 10.1111/bcpt.12554. PubMed DOI
Dos Santos V.M.R., Donnici C.L., DaCosta J.B.N., Caixeiro J.M.R. Organophosphorus pentavalent compounds: History, synthetic methods of preparation and application as insecticides and antitumor agents. Quim. Nova. 2007;30:159–170.
Black R.M., Read R.W. Biological markers of exposure to organophosphorus nerve agents. Arch. Toxicol. 2013;87:421–437. doi: 10.1007/s00204-012-1005-1. PubMed DOI
Dong H., Weng Y.B., Zhen G.S., Li F.J., Jin A.C., Liu J., Pany S. Clinical emergency treatment of 68 critical patients with severe organophosphorus poisoning and prognosis analysis after rescue. Medicine. 2017;96:9–12. doi: 10.1097/MD.0000000000007237. PubMed DOI PMC
Kassa J., Korabecny J., Nepovimova E., Jun D. The influence of modulators of acetylcholinesterase on the resistance of mice against soman and on the effectiveness of antidotal treatment of soman poisoning in mice. J. Appl. Biomed. 2018;16:10–14. doi: 10.1016/j.jab.2017.01.004. DOI
Worek F., Thiermann H., Wille T. Organophosphorus compounds and oximes: A critical review. Arch. Toxicol. 2020;94:2275–2292. doi: 10.1007/s00204-020-02797-0. PubMed DOI PMC
de Castro A.A., Assis L.C., Soares F.V., Kuca K., Polisel D.A., da Cunha E.F.F., Ramalho T.C. Trends in the Recent Patent Literature on Cholinesterase Reactivators (2016–2019) Biomolecules. 2020;10:436. doi: 10.3390/biom10030436. PubMed DOI PMC
Chambers J.E., Meek E.C. Novel centrally active oxime reactivators of acetylcholinesterase inhibited by surrogates of sarin and VX. Neurobiol. Dis. 2020;133:104487. doi: 10.1016/j.nbd.2019.104487. PubMed DOI PMC
Lorke D.E., Petroianu G.A. The Experimental Oxime K027-A Promising Protector From Organophosphate Pesticide Poisoning. A Review Comparing K027, K048, Pralidoxime, and Obidoxime. Front. Neurosci. 2019;13:427. doi: 10.3389/fnins.2019.00427. PubMed DOI PMC
Herbert J., Thiermann H., Worek F., Wille T. Precision cut lung slices as test system for candidate therapeutics in organophosphate poisoning. Toxicology. 2017;389:94–100. doi: 10.1016/j.tox.2017.07.011. PubMed DOI
Alencar Filho E.B., Santos A.A., Oliveira B.G. A quantum chemical study of molecular properties and QSPR modeling of oximes, amidoximes and hydroxamic acids with nucleophilic activity against toxic organophosphorus agents. J. Mol. Struct. 2017;1133:338–347. doi: 10.1016/j.molstruc.2016.12.035. DOI
Malfatti M.A., Enright H.A., Be N.A., Kuhn E.A., Hok S., McNerney M.W., Lao V., Nguyen T.H., Lightstone F.C., Carpenter T.S., et al. The biodistribution and pharmacokinetics of the oxime acetylcholinesterase reactivator RS194B in guinea pigs. Chem. Biol. Interact. 2017;277:159–167. doi: 10.1016/j.cbi.2017.09.016. PubMed DOI PMC
Kuča K., Kassa J. A comparison of the ability of a new bispyridinium oxime—1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide and currently used oximes to reactivate nerve agent-inhibited rat brain acetylcholinesterase by in vitro methods. J. Enzym. Inhib. Med. Chem. 2003;18:529–535. doi: 10.1080/14756360310001605552. PubMed DOI
Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus compounds as chemical warfare agents: A review. Sect. Title Toxicol. 2009;20:407–428. doi: 10.1590/S0103-50532009000300003. DOI
Bajgar J., Fusek J., Kuca K., Bartosova L., Jun D. Treatment of Organophosphate Intoxication Using Cholinesterase Reactivators:Facts and Fiction. Mini-Rev. Med. Chem. 2007;7:461–466. doi: 10.2174/138955707780619581. PubMed DOI
Polisel D.A., de Castro A.A., Mancini D.T., da Cunha E.F.F., França T.C.C., Ramalho T.C., Kuca K. Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: Theoretical and experimental aspects. Chem. Biol. Interact. 2019;309:108671. doi: 10.1016/j.cbi.2019.05.037. PubMed DOI
Matos K.S., Mancini D.T., da Cunha E.F.F., Kuča K., França T.C.C., Ramalho T.C. Molecular aspects of the reactivation process of acetylcholinesterase inhibited by cyclosarin. J. Braz. Chem. Soc. 2011;6:286–289. doi: 10.1590/S0103-50532011001000023. DOI
Giacoppo J.O.S., França T.C.C., Kuča K., Da Cunha E.F.F., Abagyan R., Mancini D.T., Ramalho T.C. Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents. J. Biomol. Struct. Dyn. 2015;33:2048–2058. doi: 10.1080/07391102.2014.989408. PubMed DOI
Kuca K., Musilek K., Jun D., Zdarova-Karasova J., Nepovimova E., Soukup O., Hrabinova M., Mikler J., Franca T.C.C., Da Cunha E.F.F., et al. A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase. BMC Pharmacol. Toxicol. 2018;19:1–10. doi: 10.1186/s40360-018-0196-3. PubMed DOI PMC
Musilek K., Holas O., Kuca K., Jun D., Dohnal V., Opletalova V., Dolezal M. Synthesis of monooxime-monocarbamoyl bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase. J. Enzym. Inhib. Med. Chem. 2008;23:70–76. doi: 10.1080/14756360701383981. PubMed DOI
Jun D., Stodulka P., Kuca K., Dolezal B. High-performance liquid chromatography analysis of by-products and intermediates arising during the synthesis of the acetylcholinesterase reactivator HI-6. J. Chromatogr. Sci. 2010;48:694–696. doi: 10.1093/chromsci/48.8.694. PubMed DOI
Kuča K., Cabal J. Evaluation of Newly Synthesized Reactivators of the Brain Cholinesterase Inhibited by Sarin Nerve Agent. Toxicol. Mech. Methods. 2005;15:247–252. doi: 10.1080/15376520590968770. PubMed DOI
Gaussian 09, Revision A.02. Gaussian, Inc.; Wallingford, CT, USA: 2009.
Artursson E., Andersson P.O., Akfur C., Linusson A., Börjegren S., Ekström F. Catalytic-site conformational equilibrium in nerve-agent adducts of acetylcholinesterase: Possible implications for the HI-6 antidote substrate specificity. Biochem. Pharmacol. 2013;85:1389–1397. doi: 10.1016/j.bcp.2013.01.016. PubMed DOI
Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI
Silva T.C., dos Santos Pires M., de Castro A.A., da Cunha E.F.F., Caetano M.S., Ramalho T.C. Molecular insight into the inhibition mechanism of plant and rat 4-hydroxyphenylpyruvate dioxygenase by molecular docking and DFT calculations. Med. Chem. Res. 2015;24:3958–3971. doi: 10.1007/s00044-015-1436-3. DOI
Guimaraes A.P., Oliveira A.A., da Cunha E.F.F., Ramalho T.C., Franco T.C.C. Analysis of Bacillus anthracis nucleoside hydrolase via in silico docking with inhibitors and molecular dynamics simulation. J. Mol. Model. 2011;17:2939–2951. doi: 10.1007/s00894-011-0968-9. PubMed DOI
da Cunha E.F.F., Barbosa E.F., Oliveira A.A., Ramalho T.C. Molecular Modeling of Mycobacterium Tuberculosis DNA Gyrase and its Molecular Docking Study with Gatifloxacin Inhibitors. J. Biomol. Struct. Dyn. 2010;27:619–625. doi: 10.1080/07391102.2010.10508576. PubMed DOI
Souza T.C.S., Josa D., Ramalho T.C., Caetano M.S., da Cunha E.F.F. Molecular modelling of Mycobacterium tuberculosis acetolactate synthase catalytic subunit and its molecular docking study with inhibitors. Mol. Simul. 2008;34:707–713. doi: 10.1080/08927020802129974. DOI
Nemukhin A.V., Grigorenko B.L., Morozov D.I., Kochetov M.S., Lushchekina S.V., Varfolomeev S.D. On quantum mechanical-molecular mechanical (QM/MM) approaches to model hydrolysis of acetylcholine by acetylcholinesterase. Chem. Biol. Interact. 2013;203:51–56. doi: 10.1016/j.cbi.2012.08.027. PubMed DOI
Da Silva Gonçalves A., França T.C.C., Caetano M.S., Ramalho T.C. Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: Reducing the computational cost in hybrid QM/MM methods. J. Biomol. Struct. Dyn. 2014;32:301–307. doi: 10.1080/07391102.2013.765361. PubMed DOI
Matos K., Cunha E., Abagyan R., Ramalho T. Computational Evidence for the Reactivation Process of Human Acetylcholinesterase Inhibited by Carbamates. Comb. Chem. High Throughput Screen. 2013;17:554–564. doi: 10.2174/1386207316666131217100416. PubMed DOI
Heyden A., Lin H., Truhlar D.G. Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. J. Phys. Chem. B. 2007;111:2231–2241. doi: 10.1021/jp0673617. PubMed DOI
Ramalho T.C., Caetano M.S., da Cunha E.F.F., Souza T.C.S., Rocha M.V.J. Construction and Assessment of Reaction Models of Class I EPSP Synthase: Molecular Docking and Density Functional Theoretical Calculations. J. Biomol. Struct. Dyn. 2009;27:195–207. doi: 10.1080/07391102.2009.10507309. PubMed DOI
Kuca K., Musilek K., Jun D., Nepovimova E., Soukup O., Korabecny J., França T.C.C., de Castro A.A., Krejcar O., da Cunha E.F.F., et al. Oxime K074—In vitro and in silico reactivation of acetylcholinesterase inhibited by nerve agents and pesticides. Toxin Rev. 2020;39:157–166. doi: 10.1080/15569543.2018.1485702. DOI
da Silva J.A., Pereira A.F., LaPlante S.R., Kuca K., Ramalho T.C., França T.C. Reactivation of VX-Inhibited Human Acetylcholinesterase by Deprotonated Pralidoxime. A Complementary Quantum Mechanical Study. Biomolecules. 2020;10:192. doi: 10.3390/biom10020192. PubMed DOI PMC
Besler B.H., Merz K.M., Kollman P.A. Atomic charges derived from semiempirical methods. J. Comput. Chem. 1990;11:431–439. doi: 10.1002/jcc.540110404. DOI
Singh U.C., Kollman P.A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 1984;5:129–145. doi: 10.1002/jcc.540050204. DOI
Li R., Liu Y., Zhang J., Chen K., Li S., Jiang J. An isofenphos-methyl hydrolase (Imh) capable of hydrolyzing the P-O-Z moiety of organophosphorus pesticides containing an aryl or heterocyclic group. Appl. Microbiol. Biotechnol. 2012;94:1553–1564. doi: 10.1007/s00253-011-3709-1. PubMed DOI
Gorecki L., Korabecny J., Musilek K., Malinak D., Nepovimova E., Dolezal R., Jun D., Soukup O., Kuca K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch. Toxicol. 2016;90:2831–2859. doi: 10.1007/s00204-016-1827-3. PubMed DOI
da Cunha E.F.F., Ramalho T.C., Reynolds R.C. Binding mode analysis of 2,4-diamino-5-methyl-5-deaza-6-substituted pteridines with mycobacterium tuberculosis and human dihydrofolate reductases. J. Biomol. Struct. Dyn. 2008;25:377–385. doi: 10.1080/07391102.2008.10507186. PubMed DOI