Understanding the Interaction Modes and Reactivity of Trimedoxime toward MmAChE Inhibited by Nerve Agents: Theoretical and Experimental Aspects

. 2020 Sep 05 ; 21 (18) : . [epub] 20200905

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32899591

Grantová podpora
CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico
FAPEMIG Fundação de Amparo ao Ensino e Pesquisa de Minas Gerais
CAPES/MD Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Ministério da Defesa
UFLA Federal University of Lavras
VT2019-2021 UHK CEP - Centrální evidence projektů

Organophosphorus (OP) compounds are used as both chemical weapons and pesticides. However, these agents are very dangerous and toxic to humans, animals, and the environment. Thus, investigations with reactivators have been deeply developed in order to design new antidotes with better efficiency, as well as a greater spectrum of action in the acetylcholinesterase (AChE) reactivation process. With that in mind, in this work, we investigated the behavior of trimedoxime toward the Mus musculus acetylcholinesterase (MmAChE) inhibited by a range of nerve agents, such as chemical weapons. From experimental assays, reactivation percentages were obtained for the reactivation of different AChE-OP complexes. On the other hand, theoretical calculations were performed to assess the differences in interaction modes and the reactivity of trimedoxime within the AChE active site. Comparing theoretical and experimental data, it is possible to notice that the oxime, in most cases, showed better reactivation percentages at higher concentrations, with the best result for the reactivation of the AChE-VX adduct. From this work, it was revealed that the mechanistic process contributes most to the oxime efficiency than the interaction in the site. In this way, this study is important to better understand the reactivation process through trimedoxime, contributing to the proposal of novel antidotes.

Zobrazit více v PubMed

Sadik O.A., Land W.H., Wang J. Targeting Chemical and Biological Warfare Agents at the Molecular Level. Electroanal. 2003;15:1149–1159. doi: 10.1002/elan.200390140. DOI

Ramalho T.C., de Castro A.A., Silva D.R., Silva M.C., Franca T.C.C., Bennion B.J., Kuca K. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches toward Remediation Technologies of Warfare Agents and Pesticides. Curr. Med. Chem. 2016;23:1041–1061. doi: 10.2174/0929867323666160222113504. PubMed DOI

Spiers J. New perspectives on vulnerability using emic and etic approaches. J. Adv. Nurs. 2000;31:715–721. doi: 10.1046/j.1365-2648.2000.01328.x. PubMed DOI

França T.C.C., Silva G.R., Castro A.T. De Chemical Defense: A new subject in the Chemical Teaching. Rev. Virtual Quím. 2010;2:84–104.

Chauhan S., Chauhan S., D’Cruz R., Faruqi S., Singh K.K., Varma S., Singh M., Karthik V. Chemical warfare agents. Environ. Toxicol. Pharmacol. 2008;26:113–122. doi: 10.1016/j.etap.2008.03.003. PubMed DOI

Gravett M.R., Hopkins F.B., Self A.J., Webb A.J., Timperley C.M., Baker M.J. Evidence of VX nerve agent use from contaminated white mustard plants. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014;470:20140076. doi: 10.1098/rspa.2014.0076. PubMed DOI PMC

Ganesan K., Raza S., Vijayaraghavan R. Chemical warfare agents. J. Pharm. Bioallied Sci. 2010;2:166–178. doi: 10.4103/0975-7406.68498. PubMed DOI PMC

El-Ebiary A.A., Elsharkawy R.E., Soliman N.A., Soliman M.A., Hashem A.A. N-acetylcysteine in Acute Organophosphorus Pesticide Poisoning: A Randomized, Clinical Trial. Basic Clin. Pharmacol. Toxicol. 2016;119:222–227. doi: 10.1111/bcpt.12554. PubMed DOI

Dos Santos V.M.R., Donnici C.L., DaCosta J.B.N., Caixeiro J.M.R. Organophosphorus pentavalent compounds: History, synthetic methods of preparation and application as insecticides and antitumor agents. Quim. Nova. 2007;30:159–170.

Black R.M., Read R.W. Biological markers of exposure to organophosphorus nerve agents. Arch. Toxicol. 2013;87:421–437. doi: 10.1007/s00204-012-1005-1. PubMed DOI

Dong H., Weng Y.B., Zhen G.S., Li F.J., Jin A.C., Liu J., Pany S. Clinical emergency treatment of 68 critical patients with severe organophosphorus poisoning and prognosis analysis after rescue. Medicine. 2017;96:9–12. doi: 10.1097/MD.0000000000007237. PubMed DOI PMC

Kassa J., Korabecny J., Nepovimova E., Jun D. The influence of modulators of acetylcholinesterase on the resistance of mice against soman and on the effectiveness of antidotal treatment of soman poisoning in mice. J. Appl. Biomed. 2018;16:10–14. doi: 10.1016/j.jab.2017.01.004. DOI

Worek F., Thiermann H., Wille T. Organophosphorus compounds and oximes: A critical review. Arch. Toxicol. 2020;94:2275–2292. doi: 10.1007/s00204-020-02797-0. PubMed DOI PMC

de Castro A.A., Assis L.C., Soares F.V., Kuca K., Polisel D.A., da Cunha E.F.F., Ramalho T.C. Trends in the Recent Patent Literature on Cholinesterase Reactivators (2016–2019) Biomolecules. 2020;10:436. doi: 10.3390/biom10030436. PubMed DOI PMC

Chambers J.E., Meek E.C. Novel centrally active oxime reactivators of acetylcholinesterase inhibited by surrogates of sarin and VX. Neurobiol. Dis. 2020;133:104487. doi: 10.1016/j.nbd.2019.104487. PubMed DOI PMC

Lorke D.E., Petroianu G.A. The Experimental Oxime K027-A Promising Protector From Organophosphate Pesticide Poisoning. A Review Comparing K027, K048, Pralidoxime, and Obidoxime. Front. Neurosci. 2019;13:427. doi: 10.3389/fnins.2019.00427. PubMed DOI PMC

Herbert J., Thiermann H., Worek F., Wille T. Precision cut lung slices as test system for candidate therapeutics in organophosphate poisoning. Toxicology. 2017;389:94–100. doi: 10.1016/j.tox.2017.07.011. PubMed DOI

Alencar Filho E.B., Santos A.A., Oliveira B.G. A quantum chemical study of molecular properties and QSPR modeling of oximes, amidoximes and hydroxamic acids with nucleophilic activity against toxic organophosphorus agents. J. Mol. Struct. 2017;1133:338–347. doi: 10.1016/j.molstruc.2016.12.035. DOI

Malfatti M.A., Enright H.A., Be N.A., Kuhn E.A., Hok S., McNerney M.W., Lao V., Nguyen T.H., Lightstone F.C., Carpenter T.S., et al. The biodistribution and pharmacokinetics of the oxime acetylcholinesterase reactivator RS194B in guinea pigs. Chem. Biol. Interact. 2017;277:159–167. doi: 10.1016/j.cbi.2017.09.016. PubMed DOI PMC

Kuča K., Kassa J. A comparison of the ability of a new bispyridinium oxime—1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide and currently used oximes to reactivate nerve agent-inhibited rat brain acetylcholinesterase by in vitro methods. J. Enzym. Inhib. Med. Chem. 2003;18:529–535. doi: 10.1080/14756360310001605552. PubMed DOI

Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus compounds as chemical warfare agents: A review. Sect. Title Toxicol. 2009;20:407–428. doi: 10.1590/S0103-50532009000300003. DOI

Bajgar J., Fusek J., Kuca K., Bartosova L., Jun D. Treatment of Organophosphate Intoxication Using Cholinesterase Reactivators:Facts and Fiction. Mini-Rev. Med. Chem. 2007;7:461–466. doi: 10.2174/138955707780619581. PubMed DOI

Polisel D.A., de Castro A.A., Mancini D.T., da Cunha E.F.F., França T.C.C., Ramalho T.C., Kuca K. Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: Theoretical and experimental aspects. Chem. Biol. Interact. 2019;309:108671. doi: 10.1016/j.cbi.2019.05.037. PubMed DOI

Matos K.S., Mancini D.T., da Cunha E.F.F., Kuča K., França T.C.C., Ramalho T.C. Molecular aspects of the reactivation process of acetylcholinesterase inhibited by cyclosarin. J. Braz. Chem. Soc. 2011;6:286–289. doi: 10.1590/S0103-50532011001000023. DOI

Giacoppo J.O.S., França T.C.C., Kuča K., Da Cunha E.F.F., Abagyan R., Mancini D.T., Ramalho T.C. Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents. J. Biomol. Struct. Dyn. 2015;33:2048–2058. doi: 10.1080/07391102.2014.989408. PubMed DOI

Kuca K., Musilek K., Jun D., Zdarova-Karasova J., Nepovimova E., Soukup O., Hrabinova M., Mikler J., Franca T.C.C., Da Cunha E.F.F., et al. A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase. BMC Pharmacol. Toxicol. 2018;19:1–10. doi: 10.1186/s40360-018-0196-3. PubMed DOI PMC

Musilek K., Holas O., Kuca K., Jun D., Dohnal V., Opletalova V., Dolezal M. Synthesis of monooxime-monocarbamoyl bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase. J. Enzym. Inhib. Med. Chem. 2008;23:70–76. doi: 10.1080/14756360701383981. PubMed DOI

Jun D., Stodulka P., Kuca K., Dolezal B. High-performance liquid chromatography analysis of by-products and intermediates arising during the synthesis of the acetylcholinesterase reactivator HI-6. J. Chromatogr. Sci. 2010;48:694–696. doi: 10.1093/chromsci/48.8.694. PubMed DOI

Kuča K., Cabal J. Evaluation of Newly Synthesized Reactivators of the Brain Cholinesterase Inhibited by Sarin Nerve Agent. Toxicol. Mech. Methods. 2005;15:247–252. doi: 10.1080/15376520590968770. PubMed DOI

Gaussian 09, Revision A.02. Gaussian, Inc.; Wallingford, CT, USA: 2009.

Artursson E., Andersson P.O., Akfur C., Linusson A., Börjegren S., Ekström F. Catalytic-site conformational equilibrium in nerve-agent adducts of acetylcholinesterase: Possible implications for the HI-6 antidote substrate specificity. Biochem. Pharmacol. 2013;85:1389–1397. doi: 10.1016/j.bcp.2013.01.016. PubMed DOI

Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI

Silva T.C., dos Santos Pires M., de Castro A.A., da Cunha E.F.F., Caetano M.S., Ramalho T.C. Molecular insight into the inhibition mechanism of plant and rat 4-hydroxyphenylpyruvate dioxygenase by molecular docking and DFT calculations. Med. Chem. Res. 2015;24:3958–3971. doi: 10.1007/s00044-015-1436-3. DOI

Guimaraes A.P., Oliveira A.A., da Cunha E.F.F., Ramalho T.C., Franco T.C.C. Analysis of Bacillus anthracis nucleoside hydrolase via in silico docking with inhibitors and molecular dynamics simulation. J. Mol. Model. 2011;17:2939–2951. doi: 10.1007/s00894-011-0968-9. PubMed DOI

da Cunha E.F.F., Barbosa E.F., Oliveira A.A., Ramalho T.C. Molecular Modeling of Mycobacterium Tuberculosis DNA Gyrase and its Molecular Docking Study with Gatifloxacin Inhibitors. J. Biomol. Struct. Dyn. 2010;27:619–625. doi: 10.1080/07391102.2010.10508576. PubMed DOI

Souza T.C.S., Josa D., Ramalho T.C., Caetano M.S., da Cunha E.F.F. Molecular modelling of Mycobacterium tuberculosis acetolactate synthase catalytic subunit and its molecular docking study with inhibitors. Mol. Simul. 2008;34:707–713. doi: 10.1080/08927020802129974. DOI

Nemukhin A.V., Grigorenko B.L., Morozov D.I., Kochetov M.S., Lushchekina S.V., Varfolomeev S.D. On quantum mechanical-molecular mechanical (QM/MM) approaches to model hydrolysis of acetylcholine by acetylcholinesterase. Chem. Biol. Interact. 2013;203:51–56. doi: 10.1016/j.cbi.2012.08.027. PubMed DOI

Da Silva Gonçalves A., França T.C.C., Caetano M.S., Ramalho T.C. Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: Reducing the computational cost in hybrid QM/MM methods. J. Biomol. Struct. Dyn. 2014;32:301–307. doi: 10.1080/07391102.2013.765361. PubMed DOI

Matos K., Cunha E., Abagyan R., Ramalho T. Computational Evidence for the Reactivation Process of Human Acetylcholinesterase Inhibited by Carbamates. Comb. Chem. High Throughput Screen. 2013;17:554–564. doi: 10.2174/1386207316666131217100416. PubMed DOI

Heyden A., Lin H., Truhlar D.G. Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. J. Phys. Chem. B. 2007;111:2231–2241. doi: 10.1021/jp0673617. PubMed DOI

Ramalho T.C., Caetano M.S., da Cunha E.F.F., Souza T.C.S., Rocha M.V.J. Construction and Assessment of Reaction Models of Class I EPSP Synthase: Molecular Docking and Density Functional Theoretical Calculations. J. Biomol. Struct. Dyn. 2009;27:195–207. doi: 10.1080/07391102.2009.10507309. PubMed DOI

Kuca K., Musilek K., Jun D., Nepovimova E., Soukup O., Korabecny J., França T.C.C., de Castro A.A., Krejcar O., da Cunha E.F.F., et al. Oxime K074—In vitro and in silico reactivation of acetylcholinesterase inhibited by nerve agents and pesticides. Toxin Rev. 2020;39:157–166. doi: 10.1080/15569543.2018.1485702. DOI

da Silva J.A., Pereira A.F., LaPlante S.R., Kuca K., Ramalho T.C., França T.C. Reactivation of VX-Inhibited Human Acetylcholinesterase by Deprotonated Pralidoxime. A Complementary Quantum Mechanical Study. Biomolecules. 2020;10:192. doi: 10.3390/biom10020192. PubMed DOI PMC

Besler B.H., Merz K.M., Kollman P.A. Atomic charges derived from semiempirical methods. J. Comput. Chem. 1990;11:431–439. doi: 10.1002/jcc.540110404. DOI

Singh U.C., Kollman P.A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 1984;5:129–145. doi: 10.1002/jcc.540050204. DOI

Li R., Liu Y., Zhang J., Chen K., Li S., Jiang J. An isofenphos-methyl hydrolase (Imh) capable of hydrolyzing the P-O-Z moiety of organophosphorus pesticides containing an aryl or heterocyclic group. Appl. Microbiol. Biotechnol. 2012;94:1553–1564. doi: 10.1007/s00253-011-3709-1. PubMed DOI

Gorecki L., Korabecny J., Musilek K., Malinak D., Nepovimova E., Dolezal R., Jun D., Soukup O., Kuca K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch. Toxicol. 2016;90:2831–2859. doi: 10.1007/s00204-016-1827-3. PubMed DOI

da Cunha E.F.F., Ramalho T.C., Reynolds R.C. Binding mode analysis of 2,4-diamino-5-methyl-5-deaza-6-substituted pteridines with mycobacterium tuberculosis and human dihydrofolate reductases. J. Biomol. Struct. Dyn. 2008;25:377–385. doi: 10.1080/07391102.2008.10507186. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace