Identification of potential bioactive phytochemicals for the inhibition of platelet-derived growth factor receptor β: a structure-based approach for cancer therapy

. 2024 ; 11 () : 1492847. [epub] 20241015

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39473823

Platelet-derived growth factor receptor beta (PDGFRβ) belongs to the receptor tyrosine kinase (RTK) protein family and is implicated in several disorders such as hematopoietic, glial, and soft-tissue cancer, non-cancerous disorders, including skeletal defects, brain calcification, and vascular anomalies. The research on small molecule inhibitors targeting PDGFRβ in cancer treatment has seen promising developments, but significant gaps remain. PDGFRβ, receptor tyrosine kinase, is overexpressed in various cancers and plays an important role in tumor progression, making it a potential therapeutic target. However, despite advances in identifying and characterizing PDGFRβ inhibitors, few have progressed to clinical trials, and the mechanistic details of PDGFRβ's interactions with small molecule inhibitors are still not fully understood. Moreover, the specificity and selectivity of these inhibitors remain challenging, as off-target effects can lead to unwanted toxicity. In this investigation, two compounds, Genostrychnine and Chelidonine, were discovered that help inhibit the kinase activity of PDGFRβ. These small molecules were identified by employing various parameters involved in the drug discovery process, such as Lipinski's rule of five (RO5), 2D similarity search and 3D pharmacophore-based virtual screening followed by MD simulation studies. The identified molecules were found to be effective and significantly bound with the PDGFRβ kinase domain. Overall, our findings demonstrate that these small drug-like compounds can be beneficial tools in studying the properties of PDGFRβ and can play a crucial role in the therapeutic development of cancers and other associated diseases.

Zobrazit více v PubMed

Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., et al. (2015). GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25. 10.1016/j.softx.2015.06.001 DOI

Adnan M., Jairajpuri D. S., Chaddha M., Khan M. S., Yadav D. K., Mohammad T., et al. (2022a). Discovering tuberosin and villosol as potent and selective inhibitors of AKT1 for therapeutic targeting of oral squamous cell carcinoma. J. Pers. Med. 12, 1083. 10.3390/jpm12071083 PubMed DOI PMC

Adnan M., Koli S., Mohammad T., Siddiqui A. J., Patel M., Alshammari N., et al. (2022b). Searching for novel anaplastic lymphoma kinase inhibitors: structure-guided screening of natural compounds for a tyrosine kinase therapeutic target in cancers. OMICS 26, 461–470. 10.1089/omi.2022.0067 PubMed DOI

Altis A., Otten M., Nguyen P. H., Hegger R., Stock G. (2008). Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis. J. Chem. Phys. 128, 245102. 10.1063/1.2945165 PubMed DOI

Amir M., Mohammad T., Prasad K., Hasan G. M., Kumar V., Dohare R., et al. (2020). Virtual high-throughput screening of natural compounds in-search of potential inhibitors for protection of telomeres 1 (POT1). J. Biomol. Struct. Dyn. 38, 4625–4634. 10.1080/07391102.2019.1682052 PubMed DOI

Andrae J., Gallini R., Betsholtz C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes. and Dev. 22, 1276–1312. 10.1101/gad.1653708 PubMed DOI PMC

Anjum F., Ali F., Mohammad T., Shafie A., Akhtar O., Abdullaev B., et al. (2021). Discovery of natural compounds as potential inhibitors of human carbonic anhydrase II: an integrated virtual screening, docking, and molecular dynamics simulation study. OMICS A J. Integr. Biol. 25, 513–524. 10.1089/omi.2021.0059 PubMed DOI

Anjum F., Sulaimani M. N., Shafie A., Mohammad T., Ashraf G. M., Bilgrami A. L., et al. (2022a). Bioactive phytoconstituents as potent inhibitors of casein kinase-2: dual implications in cancer and COVID-19 therapeutics. RSC Adv. 12, 7872–7882. 10.1039/d1ra09339h PubMed DOI PMC

Anjum F., Sulaimani M. N., Shafie A., Mohammad T., Ashraf G. M., Bilgrami A. L., et al. (2022b). Bioactive phytoconstituents as potent inhibitors of casein kinase-2: dual implications in cancer and COVID-19 therapeutics. RSC Adv. 12, 7872–7882. 10.1039/d1ra09339h PubMed DOI PMC

Azribi F., Razak A. R. A., Dildey P., Adam J., Wilsdon J., Verrill M. (2009). Imatinib in gastrointestinal stromal tumour: northern Cancer Network experience. Ecancermedicalscience 3, 162. 10.3332/ecancer.2010.162 PubMed DOI PMC

Böhm A.-M., Dirckx N., Tower R. J., Peredo N., Vanuytven S., Theunis K., et al. (2019). Activation of skeletal stem and progenitor cells for bone regeneration is driven by PDGFRβ signaling. Dev. Cell. 51, 236–254. 10.1016/j.devcel.2019.08.013 PubMed DOI

Chen P.-H., Chen X., He X. (2013). Platelet-derived growth factors and their receptors: structural and functional perspectives. Biochimica Biophysica Acta (BBA)-Proteins Proteomics 1834, 2176–2186. 10.1016/j.bbapap.2012.10.015 PubMed DOI PMC

Chen Z., Lee F. Y., Bhalla K. N., Wu J. (2006). Potent inhibition of platelet-derived growth factor-induced responses in vascular smooth muscle cells by BMS-354825 (dasatinib). Mol. Pharmacol. 69, 1527–1533. 10.1124/mol.105.020172 PubMed DOI

Daina A., Michielin O., Zoete V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717–42813. 10.1038/srep42717 PubMed DOI PMC

Demoulin J.-B., Essaghir A. (2014). PDGF receptor signaling networks in normal and cancer cells. Cytokine and growth factor Rev. 25, 273–283. 10.1016/j.cytogfr.2014.03.003 PubMed DOI

Druker B. J., Talpaz M., Resta D. J., Peng B., Buchdunger E., Ford J. M., et al. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037. 10.1056/NEJM200104053441401 PubMed DOI

Du Z., Lovly C. M. (2018). Mechanisms of receptor tyrosine kinase activation in cancer. Mol. cancer 17, 58–13. 10.1186/s12943-018-0782-4 PubMed DOI PMC

Ferreira L. L., Andricopulo A. D. (2019). ADMET modeling approaches in drug discovery. Drug Discov. today 24, 1157–1165. 10.1016/j.drudis.2019.03.015 PubMed DOI

Fredriksson L., Li H., Eriksson U. (2004). The PDGF family: four gene products form five dimeric isoforms. Cytokine and growth factor Rev. 15, 197–204. 10.1016/j.cytogfr.2004.03.007 PubMed DOI

Gonçalves M. A., Gonçalves A. S., Franca T. C., Santana M. S., Da Cunha E. F., Ramalho T. C. (2022). Improved protocol for the selection of structures from molecular dynamics of organic systems in solution: the value of investigating different wavelet families. J. Chem. Theory Comput. 18, 5810–5818. 10.1021/acs.jctc.2c00593 PubMed DOI

Gonçalves M. A., Santos L. S., Prata D. M., Peixoto F. C., Da Cunha E. F., Ramalho T. C. (2017). Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: application to thermal and solvent effects of MRI probes. Theor. Chem. Accounts 136, 15–13. 10.1007/s00214-016-2037-z DOI

Guérit E., Arts F., Dachy G., Boulouadnine B., Demoulin J.-B. (2021). PDGF receptor mutations in human diseases. Cell. Mol. Life Sci. 78, 3867–3881. 10.1007/s00018-020-03753-y PubMed DOI PMC

Gupta D., Kumar M., Singh M., Salman M., Das U., Kaur P. (2022). Identification of polypharmacological anticancerous molecules against Aurora kinase family of proteins. J. Cell. Biochem. 123, 719–735. 10.1002/jcb.30214 PubMed DOI

Hassan M. I., Anjum D., Mohammad T., Alam M., Khan M. S., Shahwan M., et al. (2022). Integrated virtual screening and MD simulation study to discover potential inhibitors of Lyn-kinase: targeting cancer therapy. J. Biomol. Struct. Dyn. 41, 10558–10568. 10.1080/07391102.2022.2154849 PubMed DOI

Heldin C.-H., Lennartsson J. (2013). Structural and functional properties of platelet-derived growth factor and stem cell factor receptors. Cold Spring Harb. Perspect. Biol. 5, a009100. 10.1101/cshperspect.a009100 PubMed DOI PMC

Heldin C.-H., Östman A., Rönnstrand L. (1998). Signal transduction via platelet-derived growth factor receptors. Biochimica Biophysica Acta (BBA)-reviews cancer 1378, F79–F113. 10.1016/s0304-419x(98)00015-8 PubMed DOI

Heuchel R., Berg A., Tallquist M., Åhlén K., Reed R. K., Rubin K., et al. (1999). Platelet-derived growth factor beta receptor regulates interstitial fluid homeostasis through phosphatidylinositol-3' kinase signaling. Proc. Natl. Acad. Sci. 96, 11410–11415. 10.1073/pnas.96.20.11410 PubMed DOI PMC

Hubbard R. E., Haider M. K. (2010). Hydrogen bonds in proteins: role and strength. eLS. 10.1002/9780470015902.a0003011.pub2 DOI

Jairajpuri D. S., Mohammad T., Adhikari K., Gupta P., Hasan G. M., Alajmi M. F., et al. (2020). Identification of sphingosine kinase-1 inhibitors from bioactive natural products targeting cancer therapy. ACS omega 5, 14720–14729. 10.1021/acsomega.0c01511 PubMed DOI PMC

Jolliffe I. T. (1982). A note on the use of principal components in regression. J. R. Stat. Soc. Ser. C Appl. Statistics 31, 300–303. 10.2307/2348005 DOI

Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858. 10.1038/nprot.2015.053 PubMed DOI PMC

Kim J. O., Baek S. E., Jeon E. Y., Choi J. M., Jang E. J., Kim C. D. (2022). PDGFR-β signaling mediates HMGB1 release in mechanically stressed vascular smooth muscle cells. PloS one 17, e0265191. 10.1371/journal.pone.0265191 PubMed DOI PMC

Lagunin A., Stepanchikova A., Filimonov D., Poroikov V. (2000). PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16, 747–748. 10.1093/bioinformatics/16.8.747 PubMed DOI

Laskowski R. A., Macarthur M. W., Moss D. S., Thornton J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291. 10.1107/s0021889892009944 DOI

Lemmon M. A., Schlessinger J. (2010). Cell signaling by receptor tyrosine kinases. Cell. 141, 1117–1134. 10.1016/j.cell.2010.06.011 PubMed DOI PMC

Lewis N. L. (2007). The platelet-derived growth factor receptor as a therapeutic target. Curr. Oncol. Rep. 9, 89–95. 10.1007/s11912-007-0003-6 PubMed DOI

Lill M. A., Danielson M. L. (2011). Computer-aided drug design platform using PyMOL. J. computer-aided Mol. Des. 25, 13–19. 10.1007/s10822-010-9395-8 PubMed DOI

Manley P., Cowan-Jacob S., Buchdunger E., Fabbro D., Fendrich G., Furet P., et al. (2002). Imatinib: a selective tyrosine kinase inhibitor. Eur. J. cancer 38, S19–S27. 10.1016/s0959-8049(02)80599-8 PubMed DOI

Manning G., Whyte D. B., Martinez R., Hunter T., Sudarsanam S. (2002). The protein kinase complement of the human genome. Science 298, 1912–1934. 10.1126/science.1075762 PubMed DOI

Mendel D. B., Laird A. D., Xin X., Louie S. G., Christensen J. G., Li G., et al. (2003). In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9, 327–337. PubMed

Millot F., Guilhot J., Baruchel A., Petit A., Leblanc T., Bertrand Y., et al. (2014). Growth deceleration in children treated with imatinib for chronic myeloid leukaemia. Eur. J. Cancer 50, 3206–3211. 10.1016/j.ejca.2014.10.007 PubMed DOI

Mohammad T., Batra S., Dahiya R., Baig M. H., Rather I. A., Dong J. J., et al. (2019). Identification of high-affinity inhibitors of cyclin-dependent kinase 2 towards anticancer therapy. Molecules 24, 4589. 10.3390/molecules24244589 PubMed DOI PMC

Mohammad T., Mathur Y., Hassan M. I. (2021). InstaDock: a single-click graphical user interface for molecular docking-based virtual high-throughput screening. Briefings Bioinforma. 22, bbaa279. 10.1093/bib/bbaa279 PubMed DOI

Mohammad T., Siddiqui S., Shamsi A., Alajmi M. F., Hussain A., Islam A., et al. (2020a). Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: combined molecular docking and simulation studies. Molecules 25, 823. 10.3390/molecules25040823 PubMed DOI PMC

Mohammad T., Siddiqui S., Shamsi A., Alajmi M. F., Hussain A., Islam A., et al. (2020b). Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: combined molecular docking and simulation studies. Molecules 25, 823. 10.3390/molecules25040823 PubMed DOI PMC

Mohanraj K., Karthikeyan B. S., Vivek-Ananth R., Chand R., Aparna S., Mangalapandi P., et al. (2018). IMPPAT: a curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep. 8, 4329–4417. 10.1038/s41598-018-22631-z PubMed DOI PMC

Naqvi A. A., Mohammad T., Hasan G. M., Hassan M. I. (2018). Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr. Top. Med. Chem. 18, 1755–1768. 10.2174/1568026618666181025114157 PubMed DOI

Pietras K., ÖStman A., SjöQuist M., Buchdunger E., Reed R. K., Heldin C.-H., et al. (2001). Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res. 61, 2929–2934. PubMed

Pietras K., Rubin K., SjöBlom T., Buchdunger E., SjöQuist M., Heldin C.-H., et al. (2002). Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res. 62, 5476–5484. PubMed

Pietras K., Sjöblom T., Rubin K., Heldin C.-H., Östman A. (2003a). PDGF receptors as cancer drug targets. Cancer Cell. 3, 439–443. 10.1016/s1535-6108(03)00089-8 PubMed DOI

Pietras K., Stumm M., Hubert M., Buchdunger E., Rubin K., Heldin C.-H., et al. (2003b). STI571 enhances the therapeutic index of epothilone B by a tumor-selective increase of drug uptake. Clin. Cancer Res. 9, 3779–3787. PubMed

Pires D. E., Blundell T. L., Ascher D. B. (2015). pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 58, 4066–4072. 10.1021/acs.jmedchem.5b00104 PubMed DOI PMC

Richmond T. J. (1984). Solvent accessible surface area and excluded volume in proteins: analytical equations for overlapping spheres and implications for the hydrophobic effect. J. Mol. Biol. 178, 63–89. 10.1016/0022-2836(84)90231-6 PubMed DOI

Robinson D. R., Wu Y.-M., Lin S.-F. (2000). The protein tyrosine kinase family of the human genome. Oncogene 19, 5548–5557. 10.1038/sj.onc.1203957 PubMed DOI

Roskoski Jr. R. (2018). The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders. Pharmacol. Res. 129, 65–83. 10.1016/j.phrs.2018.01.021 PubMed DOI

Salsbury Jr. F. R. (2010). Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr. Opin. Pharmacol. 10, 738–744. 10.1016/j.coph.2010.09.016 PubMed DOI PMC

Shafie A., Khan S., Zehra, Mohammad T., Anjum F., Hasan G. M., et al. (2021). Identification of phytoconstituents as potent inhibitors of casein kinase-1 alpha using virtual screening and molecular dynamics simulations. Pharmaceutics 13, 2157. 10.3390/pharmaceutics13122157 PubMed DOI PMC

Shakya A. K. (2016). Medicinal plants: future source of new drugs. Int. J. Herb. Med. 4, 59–64.

Shamah S. M., Alberta J. A., Giannobile W. V., Guha A., Kwon Y. K., Carroll R. S., et al. (1997). Detection of activated platelet-derived growth factor receptors in human meningioma. Cancer Res. 57, 4141–4147. PubMed

Sirois M. G., Simons M., Edelman E. R. (1997). Antisense oligonucleotide inhibition of PDGFR-beta receptor subunit expression directs suppression of intimal thickening. Circulation 95, 669–676. 10.1161/01.cir.95.3.669 PubMed DOI

Steer E. J., Cross N. C. (2002). Myeloproliferative disorders with translocations of chromosome 5q31–35: role of the platelet-derived growth factor receptor Beta. Acta Haematol. 107, 113–122. 10.1159/000046641 PubMed DOI

Trenker R., Jura N. (2020). Receptor tyrosine kinase activation: from the ligand perspective. Curr. Opin. Cell. Biol. 63, 174–185. 10.1016/j.ceb.2020.01.016 PubMed DOI PMC

Trinh T. A., Park J., Oh J. H., Park J. S., Lee D., Kim C. E., et al. (2020). Effect of herbal formulation on immune response enhancement in RAW 264.7 macrophages. Biomolecules 10, 424. 10.3390/biom10030424 PubMed DOI PMC

Williams M., Ladbury J. (2003). Hydrogen bonds in protein-ligand complexes. METHODS Princ. Med. Chem. 19, 137.

Yadav D. K., Kumar S., Choi E.-H., Chaudhary S., Kim M.-H. (2020). Computational modeling on aquaporin-3 as skin cancer target: a virtual screening study. Front. Chem. 8, 250. 10.3389/fchem.2020.00250 PubMed DOI PMC

Yang C., Alam A., Alhumaydhi F. A., Khan M. S., Alsagaby S. A., Al Abdulmonem W., et al. (2022). Bioactive phytoconstituents as potent inhibitors of tyrosine-protein kinase yes (YES1): implications in anticancer therapeutics. Molecules 27, 3060. 10.3390/molecules27103060 PubMed DOI PMC

Yoon S.-Y., Tefferi A., Li C.-Y. (2000). Cellular distribution of platelet-derived growth factor, transforming growth factor-beta, basic fibroblast growth factor, and their receptors in normal bone marrow. Acta Haematol. 104, 151–157. 10.1159/000046507 PubMed DOI

Yousuf M., Shamsi A., Mohammad T., Azum N., Alfaifi S. Y. M., Asiri A. M., et al. (2022). Inhibiting cyclin-dependent kinase 6 by taurine: implications in anticancer therapeutics. ACS Omega 7, 25844–25852. 10.1021/acsomega.2c03479 PubMed DOI PMC

Yue Z., Chen J., Lian H., Pei J., Li Y., Chen X., et al. (2019). PDGFR-β signaling regulates cardiomyocyte proliferation and myocardial regeneration. Cell. Rep. 28, 966–978. 10.1016/j.celrep.2019.06.065 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace