In Vitro Evaluation of Oxidative Stress Induced by Oxime Reactivators of Acetylcholinesterase in HepG2 Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37950699
PubMed Central
PMC10731658
DOI
10.1021/acs.chemrestox.3c00203
Knihovny.cz E-zdroje
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antidota farmakologie MeSH
- buňky Hep G2 MeSH
- cholinesterasové inhibitory toxicita MeSH
- lidé MeSH
- organofosfáty toxicita MeSH
- oxidační stres MeSH
- oximy farmakologie chemie MeSH
- pyridinové sloučeniny farmakologie chemie MeSH
- reaktivátory cholinesterázy * farmakologie chemie MeSH
- uhlík MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- antidota MeSH
- cholinesterasové inhibitory MeSH
- organofosfáty MeSH
- oximy MeSH
- pyridinové sloučeniny MeSH
- reaktivátory cholinesterázy * MeSH
- uhlík MeSH
Oxime reactivators of acetylcholinesterase (AChE) are used as causal antidotes for intended and unintended poisoning by organophosphate nerve agents and pesticides. Despite all efforts to develop new AChE reactivators, none of these drug candidates replaced conventional clinically used oximes. In addition to the therapeutic efficacy, determining the safety profile is crucial in preclinical drug evaluation. The exact mechanism of oxime toxicity and the structure-toxicity relationship are subjects of ongoing research, with oxidative stress proposed as a possible mechanism. In the present study, we investigated four promising bispyridinium oxime AChE reactivators, K048, K074, K075, and K203, and their ability to induce oxidative stress in vitro. Cultured human hepatoma cells were exposed to oximes at concentrations corresponding to their IC50 values determined by the MTT assay after 24 h. Their potency to generate reactive oxygen species, interfere with the thiol antioxidant system, and induce lipid peroxidation was evaluated at 1, 4, and 24 h of exposure. Reactivators without a double bond in the four-carbon linker, K048 and K074, showed a greater potential to induce oxidative stress compared with K075 and K203, which contain a double bond. Unlike oximes with a three-carbon-long linker, the number of aldoxime groups attached to the pyridinium moieties does not determine the oxidative stress induction for K048, K074, K075, and K203 oximes. In conclusion, our results emphasize that the structure of oximes plays a critical role in inducing oxidative stress, and this relationship does not correlate with their cytotoxicity expressed as the IC50 value. However, it is important to note that oxidative stress cannot be disregarded as a potential contributor to the side effects associated with oximes.
Zobrazit více v PubMed
Worek F.; Thiermann H.; Wille T. Organophosphorus compounds and oximes: a critical review. Arch. Toxicol. 2020, 94, 2275–2292. 10.1007/s00204-020-02797-0. PubMed DOI PMC
Lorke D. E.; Petroianu G. A. The Experimental Oxime K027—A Promising Protector From Organophosphate Pesticide Poisoning. A Review Comparing K027, K048, Pralidoxime, and Obidoxime. Front. Neurosci. 2019, 13, 427. PubMed PMC
Gorecki L.; Soukup O.; Kucera T.; Malinak D.; Jun D.; Kuca K.; Musilek K.; Korabecny J. Oxime K203: a drug candidate for the treatment of tabun intoxication. Arch. Toxicol. 2019, 93, 673–691. 10.1007/s00204-018-2377-7. PubMed DOI
Hepnarova V.; Muckova L.; Ring A.; Pejchal J.; Herman D.; Misik J.; Hrabinova M.; Jun D.; Soukup O. Pharmacological and toxicological in vitro and in vivo effect of higher doses of oxime reactivators. Toxicol. Appl. Pharmacol. 2019, 383, 11477610.1016/j.taap.2019.114776. PubMed DOI
Kuca K.; Musilek M.; Jun D.; Nepovimova E.; Soukup O.; Korabecny J.; França T. C. C.; de Castro A. A.; Krejcar O.; da Cunha E. F. F.; Ramalho T. C. Oxime K074 – in vitro and in silico reactivation of acetylcholinesterase inhibited by nerve agents and pesticides. Toxin Rev. 2020, 39 (2), 157–166. 10.1080/15569543.2018.1485702. DOI
Kuca K.; Jun D.; Musilek K. Structural Requirements of Acetylcholinesterase Reactivators. Mini-Rev. Med. Chem. 2006, 6 (3), 269–277. 10.2174/138955706776073510. PubMed DOI
Jokanovic M. Structure-Activity Relationship and Efficacy of Pyridinium Oximes in the Treatment of Poisoning with Organophosphorus Compounds: A Review of Recent Data. Curr. Top. Med. Chem. 2012, 12 (16), 1775–1789. 10.2174/1568026611209061775. PubMed DOI
Sepsova V.; Karasova J. Z.; Korabecny J.; Dolezal R.; Zemek F.; Bennion B. J.; Kuca K. Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study. Int. J. Mol. Sci. 2013, 14, 16882–16900. 10.3390/ijms140816882. PubMed DOI PMC
Vanova N.; Pejchal J.; Herman D.; Dlabkova A.; Jun D. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy. J. Appl. Toxicol. 2018, 38, 1058–1070. 10.1002/jat.3605. PubMed DOI
Muckova L.; Vanova N.; Misik J.; Herman D.; Pejchal J.; Jun D. Oxidative stress induced by oxime reactivators of acetylcholinesterase in vitro. Toxicol. In Vitro 2019, 56, 110–117. 10.1016/j.tiv.2019.01.013. PubMed DOI
Muckova L.; Pejchal J.; Jost P.; Vanova N.; Herman D.; Jun D. Cytotoxicity of acetylcholinesterase reactivators evaluated in vitro and its relation to their structure. Drug Chem. Toxicol. 2019, 42 (3), 252–256. 10.1080/01480545.2018.1432641. PubMed DOI
Tafazoli S.; Spehar D. D.; O’Brien P. J. Oxidative Stress Mediated Idiosyncratic Drug Toxicity. Drug Metab. Rev. 2005, 37 (2), 311–325. 10.1081/DMR-55227. PubMed DOI
Vanova N.; Hojna A.; Pejchal A.; Herman D.; Malinak D.; Prchalova E.; Musilek K.; Karasova J. Z. Determination of K869, a novel oxime reactivator of acetylcholinesterase, in rat body fluids and tissues by liquid-chromatography methods: pharmacokinetic study. J. Pharm. Sci. 2021, 110 (4), 1842–1852. 10.1016/j.xphs.2021.01.031. PubMed DOI
Prado A.; Petroianu G. A.; Lorke D. E.; Chambers J. W. A trivalent approach for determining in vitro toxicology: Examination of oxime K027. J. Appl. Toxicol 2015, 35 (2), 219–227. 10.1002/jat.3013. PubMed DOI
Westerink W. M. A.; Willem Schoonen W. G. E. J. Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol. In Vitro 2007, 21 (8), 1581–1591. 10.1016/j.tiv.2007.05.014. PubMed DOI
Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524 (524), 13–30. 10.1016/j.ab.2016.10.021. PubMed DOI
Gaschler M. M.; Stockwell B. R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. 10.1016/j.bbrc.2016.10.086. PubMed DOI PMC
Chen W.; Zhao Y.; Seefeldt T.; Guan X. Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid. J. Pharm. Biomed. Anal. 2008, 48 (5), 1375–1380. 10.1016/j.jpba.2008.08.033. PubMed DOI PMC
Vanova N.; Muckova L.; Schmidt M.; Herman D.; Dlabkova A.; Pejchal J.; Jun D. Simultaneous determination of malondialdehyde and 3-nitrotyrosine in cultured human hepatoma cells by liquid chromatography–mass spectrometry. Biomed. Chromatogr. 2018, 32, e434910.1002/bmc.4349. PubMed DOI
Gorecki L.; Korabecny J.; Musilek K.; Nepovimova E.; Malinak D.; Kucera T.; Dolezal R.; Jun D.; Soukup O.; Kuca K. Progress in acetylcholinesterase reactivators and in the treatment of organophosphorus intoxication: a patent review (2006–2016). Expert Opin. Ther. Pat. 2017, 27 (9), 971–985. 10.1080/13543776.2017.1338275. PubMed DOI
Kohoutova Z.; Malinak D.; Andrys R.; Svobodova J.; Psotka M.; Schmidt M.; Prchal L.; Musilek K. Charged pyridinium oximes with thiocarboxamide moiety are equally or less effective reactivators of organophosphate-inhibited cholinesterases compared to analogous carboxamides. J. Enzyme Inhib. Med. Chem. 2022, 37 (1), 760–767. 10.1080/14756366.2022.2041628. PubMed DOI PMC
Kobrlova T.; Korabecny J.; Soukup O. Current approaches to enhancing oxime reactivator delivery into the brain. Toxicology 2019, 423, 75–83. 10.1016/j.tox.2019.05.006. PubMed DOI
Musilek K.; Dolezal M.; Gunn-Moore F.; Kuca K. Design, evaluation and structure-activity relationship studies of the AChE reactivators against organophosphorus pesticides. Med. Res. Rev. 2011, 31 (4), 548–575. 10.1002/med.20192. PubMed DOI
Bartosova L.; Kuca K.; Kunesova G.; Jun D. The Acute Toxicity of Acetylcholinesterase Reactivators in Mice in Relation to Their Structure. Neurotoxic. Res. 2006, 9, 291–296. 10.1007/BF03033319. PubMed DOI
Handl J.; Malinak D.; Capek J.; Andrys R.; Rousarova E.; Hauschke M.; Bruckova L.; Cesla P.; Rousar T.; Musilek K. Effects of Charged Oxime Reactivators on the HK-2 Cell Line in Renal Toxicity Screening. Chem. Res. Toxicol. 2021, 34 (3), 699–703. 10.1021/acs.chemrestox.0c00489. PubMed DOI
Zandona A.; Madunić J.; Miš K.; Maraković N.; Dubois-Geoffroy P.; Cavaco M.; Mišetić P.; Padovan J.; Castanho M.; Jean L.; Renard P. Y.; Pirkmajer S.; Neves V.; Katalinić M. Biological response and cell death signaling pathways modulated by tetrahydroisoquinoline-based aldoximes in human cells. Toxicology 2023, 494, 15358810.1016/j.tox.2023.153588. PubMed DOI
Lorke D. E.; Petroianu G. A. Minireview: Does in-vitro testing of oximes help predict their in-vivo action after paraoxon exposure?. J. Appl. Toxicol. 2009, 29 (6), 459–469. 10.1002/jat.1457. PubMed DOI
Zandona A.; Maraković N.; Mišetić P.; Madunić J.; Miš K.; Padovan J.; Pirkmajer S.; Katalinić M. Activation of (un)regulated cell death as a new perspective for bispyridinium and imidazolium oximes. Arch. Toxicol. 2021, 95 (8), 2737–2754. 10.1007/s00204-021-03098-w. PubMed DOI
Zuo Y.; Xiang B.; Yang J.; Sun X.; Wang Y.; Cang H.; Yi J. Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1 (2009). Cell Res. 2009, 19 (4), 449–457. 10.1038/cr.2009.19. PubMed DOI
Wang B.; Wang Y.; Zhang J.; Hu C.; Jiang J.; Li Y.; Peng Z. ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis. Arch. Toxicol. 2023, 97, 1439–1451. 10.1007/s00204-023-03476-6. PubMed DOI
Sinha K.; Das J.; Pal P. B.; Sil P. C. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol. 2013, 87, 1157–1180. 10.1007/s00204-013-1034-4. PubMed DOI
Sakurada K.; Ikegaya H.; Ohta H.; Fukushima H.; Akutsu T.; Watanabe K. Effects of oximes on mitochondrial oxidase aktivity. Toxicol. Lett. 2009, 189 (2), 110–114. 10.1016/j.toxlet.2009.05.007. PubMed DOI
Hrouová J.; Fišar Z.; Korábečný J.; Kuča K. In vitro effects of acetylcholinesterase inhibitors and reactivators on Complex I of electron transport chain. Neuroendocrinol. Lett. 2011, 32 (3), 259–263. PubMed
Pohanka M.; Karasova J. Z.; Musilek K.; Kuca K.; Jung Y. S.; Kassa J. Changes of rat plasma total low molecular weight antioxidant level after tabun exposure and consequent treatment by acetylcholinesterase reactivators. J. Enzyme Inhib. Med. Chem. 2011, 26, 93–97. 10.3109/14756361003733613. PubMed DOI
Berend S.; Vrdoljak A. L.; Musilek K.; Kuča K.; Radić B. Effects of Oxime K203 and Oxidative Stress in Plasma of Tabun Poisoned Rats. Croat. Chem. Acta 2012, 85 (2), 193–199. 10.5562/cca1811. DOI
Jaćević V.; Nepovimova E.; Kuča K. Acute Toxic Injuries of Rat’s Visceral Tissues Induced by Different Oximes. Sci. Rep. 2019, 9, 1642510.1038/s41598-019-52768-4. PubMed DOI PMC
Nagiah S.; Phulukdaree A.; Chuturgoon A. Mitochondrial and Oxidative Stress Response in HepG2 Cells Following Acute and Prolonged Exposure to Antiretroviral Drugs. J. Cell. Biochem. 2015, 116 (9), 1939–1946. 10.1002/jcb.25149. PubMed DOI
Sarkar M. K.; Sil P. C. Prevention of tertiary butyl hydroperoxide induced oxidative impairment and cell death by a novel antioxidant protein molecule isolated from the herb, Phyllanthus niruri. Toxicol. In Vitro 2010, 24 (6), 1711–1719. 10.1016/j.tiv.2010.05.014. PubMed DOI
Muckova L.In vitro charakterizácia látok modulujúcich aktivitu acetylcholinesterasy; Faculty of Military Health Sciences, University of Defense, 2020.
Karasová J. Ž.; Hnídková D.; Pohanka M.; Musílek K.; Chilcott R. P.; Kuča K. Pharmacokinetics of acetylcholinesterase reactivator K203 and consequent evaluation of low molecular weight antioxidants/markers of oxidative stress. J. Appl. Biomed. 2012, 10, 71–78. 10.2478/v10136-011-0015-2. DOI
Žunec S.; Kopjar N.; Želježić D.; Kuča K.; Musílek K.; Vrdoljak A. L. In Vivo Evaluation of Cholinesterase Activity, Oxidative Stress Markers, Cyto- and Genotoxicity of K048 Oxime - a Promising Antidote against Organophosphate Poisoning. Basic Clin. Pharmacol. Toxicol. 2014, 114 (4), 344–351. 10.1111/bcpt.12158. PubMed DOI