In Vitro Evaluation of Oxidative Stress Induced by Oxime Reactivators of Acetylcholinesterase in HepG2 Cells

. 2023 Dec 18 ; 36 (12) : 1912-1920. [epub] 20231111

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37950699

Oxime reactivators of acetylcholinesterase (AChE) are used as causal antidotes for intended and unintended poisoning by organophosphate nerve agents and pesticides. Despite all efforts to develop new AChE reactivators, none of these drug candidates replaced conventional clinically used oximes. In addition to the therapeutic efficacy, determining the safety profile is crucial in preclinical drug evaluation. The exact mechanism of oxime toxicity and the structure-toxicity relationship are subjects of ongoing research, with oxidative stress proposed as a possible mechanism. In the present study, we investigated four promising bispyridinium oxime AChE reactivators, K048, K074, K075, and K203, and their ability to induce oxidative stress in vitro. Cultured human hepatoma cells were exposed to oximes at concentrations corresponding to their IC50 values determined by the MTT assay after 24 h. Their potency to generate reactive oxygen species, interfere with the thiol antioxidant system, and induce lipid peroxidation was evaluated at 1, 4, and 24 h of exposure. Reactivators without a double bond in the four-carbon linker, K048 and K074, showed a greater potential to induce oxidative stress compared with K075 and K203, which contain a double bond. Unlike oximes with a three-carbon-long linker, the number of aldoxime groups attached to the pyridinium moieties does not determine the oxidative stress induction for K048, K074, K075, and K203 oximes. In conclusion, our results emphasize that the structure of oximes plays a critical role in inducing oxidative stress, and this relationship does not correlate with their cytotoxicity expressed as the IC50 value. However, it is important to note that oxidative stress cannot be disregarded as a potential contributor to the side effects associated with oximes.

Zobrazit více v PubMed

Worek F.; Thiermann H.; Wille T. Organophosphorus compounds and oximes: a critical review. Arch. Toxicol. 2020, 94, 2275–2292. 10.1007/s00204-020-02797-0. PubMed DOI PMC

Lorke D. E.; Petroianu G. A. The Experimental Oxime K027—A Promising Protector From Organophosphate Pesticide Poisoning. A Review Comparing K027, K048, Pralidoxime, and Obidoxime. Front. Neurosci. 2019, 13, 427. PubMed PMC

Gorecki L.; Soukup O.; Kucera T.; Malinak D.; Jun D.; Kuca K.; Musilek K.; Korabecny J. Oxime K203: a drug candidate for the treatment of tabun intoxication. Arch. Toxicol. 2019, 93, 673–691. 10.1007/s00204-018-2377-7. PubMed DOI

Hepnarova V.; Muckova L.; Ring A.; Pejchal J.; Herman D.; Misik J.; Hrabinova M.; Jun D.; Soukup O. Pharmacological and toxicological in vitro and in vivo effect of higher doses of oxime reactivators. Toxicol. Appl. Pharmacol. 2019, 383, 11477610.1016/j.taap.2019.114776. PubMed DOI

Kuca K.; Musilek M.; Jun D.; Nepovimova E.; Soukup O.; Korabecny J.; França T. C. C.; de Castro A. A.; Krejcar O.; da Cunha E. F. F.; Ramalho T. C. Oxime K074 – in vitro and in silico reactivation of acetylcholinesterase inhibited by nerve agents and pesticides. Toxin Rev. 2020, 39 (2), 157–166. 10.1080/15569543.2018.1485702. DOI

Kuca K.; Jun D.; Musilek K. Structural Requirements of Acetylcholinesterase Reactivators. Mini-Rev. Med. Chem. 2006, 6 (3), 269–277. 10.2174/138955706776073510. PubMed DOI

Jokanovic M. Structure-Activity Relationship and Efficacy of Pyridinium Oximes in the Treatment of Poisoning with Organophosphorus Compounds: A Review of Recent Data. Curr. Top. Med. Chem. 2012, 12 (16), 1775–1789. 10.2174/1568026611209061775. PubMed DOI

Sepsova V.; Karasova J. Z.; Korabecny J.; Dolezal R.; Zemek F.; Bennion B. J.; Kuca K. Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study. Int. J. Mol. Sci. 2013, 14, 16882–16900. 10.3390/ijms140816882. PubMed DOI PMC

Vanova N.; Pejchal J.; Herman D.; Dlabkova A.; Jun D. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy. J. Appl. Toxicol. 2018, 38, 1058–1070. 10.1002/jat.3605. PubMed DOI

Muckova L.; Vanova N.; Misik J.; Herman D.; Pejchal J.; Jun D. Oxidative stress induced by oxime reactivators of acetylcholinesterase in vitro. Toxicol. In Vitro 2019, 56, 110–117. 10.1016/j.tiv.2019.01.013. PubMed DOI

Muckova L.; Pejchal J.; Jost P.; Vanova N.; Herman D.; Jun D. Cytotoxicity of acetylcholinesterase reactivators evaluated in vitro and its relation to their structure. Drug Chem. Toxicol. 2019, 42 (3), 252–256. 10.1080/01480545.2018.1432641. PubMed DOI

Tafazoli S.; Spehar D. D.; O’Brien P. J. Oxidative Stress Mediated Idiosyncratic Drug Toxicity. Drug Metab. Rev. 2005, 37 (2), 311–325. 10.1081/DMR-55227. PubMed DOI

Vanova N.; Hojna A.; Pejchal A.; Herman D.; Malinak D.; Prchalova E.; Musilek K.; Karasova J. Z. Determination of K869, a novel oxime reactivator of acetylcholinesterase, in rat body fluids and tissues by liquid-chromatography methods: pharmacokinetic study. J. Pharm. Sci. 2021, 110 (4), 1842–1852. 10.1016/j.xphs.2021.01.031. PubMed DOI

Prado A.; Petroianu G. A.; Lorke D. E.; Chambers J. W. A trivalent approach for determining in vitro toxicology: Examination of oxime K027. J. Appl. Toxicol 2015, 35 (2), 219–227. 10.1002/jat.3013. PubMed DOI

Westerink W. M. A.; Willem Schoonen W. G. E. J. Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol. In Vitro 2007, 21 (8), 1581–1591. 10.1016/j.tiv.2007.05.014. PubMed DOI

Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524 (524), 13–30. 10.1016/j.ab.2016.10.021. PubMed DOI

Gaschler M. M.; Stockwell B. R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. 10.1016/j.bbrc.2016.10.086. PubMed DOI PMC

Chen W.; Zhao Y.; Seefeldt T.; Guan X. Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid. J. Pharm. Biomed. Anal. 2008, 48 (5), 1375–1380. 10.1016/j.jpba.2008.08.033. PubMed DOI PMC

Vanova N.; Muckova L.; Schmidt M.; Herman D.; Dlabkova A.; Pejchal J.; Jun D. Simultaneous determination of malondialdehyde and 3-nitrotyrosine in cultured human hepatoma cells by liquid chromatography–mass spectrometry. Biomed. Chromatogr. 2018, 32, e434910.1002/bmc.4349. PubMed DOI

Gorecki L.; Korabecny J.; Musilek K.; Nepovimova E.; Malinak D.; Kucera T.; Dolezal R.; Jun D.; Soukup O.; Kuca K. Progress in acetylcholinesterase reactivators and in the treatment of organophosphorus intoxication: a patent review (2006–2016). Expert Opin. Ther. Pat. 2017, 27 (9), 971–985. 10.1080/13543776.2017.1338275. PubMed DOI

Kohoutova Z.; Malinak D.; Andrys R.; Svobodova J.; Psotka M.; Schmidt M.; Prchal L.; Musilek K. Charged pyridinium oximes with thiocarboxamide moiety are equally or less effective reactivators of organophosphate-inhibited cholinesterases compared to analogous carboxamides. J. Enzyme Inhib. Med. Chem. 2022, 37 (1), 760–767. 10.1080/14756366.2022.2041628. PubMed DOI PMC

Kobrlova T.; Korabecny J.; Soukup O. Current approaches to enhancing oxime reactivator delivery into the brain. Toxicology 2019, 423, 75–83. 10.1016/j.tox.2019.05.006. PubMed DOI

Musilek K.; Dolezal M.; Gunn-Moore F.; Kuca K. Design, evaluation and structure-activity relationship studies of the AChE reactivators against organophosphorus pesticides. Med. Res. Rev. 2011, 31 (4), 548–575. 10.1002/med.20192. PubMed DOI

Bartosova L.; Kuca K.; Kunesova G.; Jun D. The Acute Toxicity of Acetylcholinesterase Reactivators in Mice in Relation to Their Structure. Neurotoxic. Res. 2006, 9, 291–296. 10.1007/BF03033319. PubMed DOI

Handl J.; Malinak D.; Capek J.; Andrys R.; Rousarova E.; Hauschke M.; Bruckova L.; Cesla P.; Rousar T.; Musilek K. Effects of Charged Oxime Reactivators on the HK-2 Cell Line in Renal Toxicity Screening. Chem. Res. Toxicol. 2021, 34 (3), 699–703. 10.1021/acs.chemrestox.0c00489. PubMed DOI

Zandona A.; Madunić J.; Miš K.; Maraković N.; Dubois-Geoffroy P.; Cavaco M.; Mišetić P.; Padovan J.; Castanho M.; Jean L.; Renard P. Y.; Pirkmajer S.; Neves V.; Katalinić M. Biological response and cell death signaling pathways modulated by tetrahydroisoquinoline-based aldoximes in human cells. Toxicology 2023, 494, 15358810.1016/j.tox.2023.153588. PubMed DOI

Lorke D. E.; Petroianu G. A. Minireview: Does in-vitro testing of oximes help predict their in-vivo action after paraoxon exposure?. J. Appl. Toxicol. 2009, 29 (6), 459–469. 10.1002/jat.1457. PubMed DOI

Zandona A.; Maraković N.; Mišetić P.; Madunić J.; Miš K.; Padovan J.; Pirkmajer S.; Katalinić M. Activation of (un)regulated cell death as a new perspective for bispyridinium and imidazolium oximes. Arch. Toxicol. 2021, 95 (8), 2737–2754. 10.1007/s00204-021-03098-w. PubMed DOI

Zuo Y.; Xiang B.; Yang J.; Sun X.; Wang Y.; Cang H.; Yi J. Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1 (2009). Cell Res. 2009, 19 (4), 449–457. 10.1038/cr.2009.19. PubMed DOI

Wang B.; Wang Y.; Zhang J.; Hu C.; Jiang J.; Li Y.; Peng Z. ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis. Arch. Toxicol. 2023, 97, 1439–1451. 10.1007/s00204-023-03476-6. PubMed DOI

Sinha K.; Das J.; Pal P. B.; Sil P. C. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol. 2013, 87, 1157–1180. 10.1007/s00204-013-1034-4. PubMed DOI

Sakurada K.; Ikegaya H.; Ohta H.; Fukushima H.; Akutsu T.; Watanabe K. Effects of oximes on mitochondrial oxidase aktivity. Toxicol. Lett. 2009, 189 (2), 110–114. 10.1016/j.toxlet.2009.05.007. PubMed DOI

Hrouová J.; Fišar Z.; Korábečný J.; Kuča K. In vitro effects of acetylcholinesterase inhibitors and reactivators on Complex I of electron transport chain. Neuroendocrinol. Lett. 2011, 32 (3), 259–263. PubMed

Pohanka M.; Karasova J. Z.; Musilek K.; Kuca K.; Jung Y. S.; Kassa J. Changes of rat plasma total low molecular weight antioxidant level after tabun exposure and consequent treatment by acetylcholinesterase reactivators. J. Enzyme Inhib. Med. Chem. 2011, 26, 93–97. 10.3109/14756361003733613. PubMed DOI

Berend S.; Vrdoljak A. L.; Musilek K.; Kuča K.; Radić B. Effects of Oxime K203 and Oxidative Stress in Plasma of Tabun Poisoned Rats. Croat. Chem. Acta 2012, 85 (2), 193–199. 10.5562/cca1811. DOI

Jaćević V.; Nepovimova E.; Kuča K. Acute Toxic Injuries of Rat’s Visceral Tissues Induced by Different Oximes. Sci. Rep. 2019, 9, 1642510.1038/s41598-019-52768-4. PubMed DOI PMC

Nagiah S.; Phulukdaree A.; Chuturgoon A. Mitochondrial and Oxidative Stress Response in HepG2 Cells Following Acute and Prolonged Exposure to Antiretroviral Drugs. J. Cell. Biochem. 2015, 116 (9), 1939–1946. 10.1002/jcb.25149. PubMed DOI

Sarkar M. K.; Sil P. C. Prevention of tertiary butyl hydroperoxide induced oxidative impairment and cell death by a novel antioxidant protein molecule isolated from the herb, Phyllanthus niruri. Toxicol. In Vitro 2010, 24 (6), 1711–1719. 10.1016/j.tiv.2010.05.014. PubMed DOI

Muckova L.In vitro charakterizácia látok modulujúcich aktivitu acetylcholinesterasy; Faculty of Military Health Sciences, University of Defense, 2020.

Karasová J. Ž.; Hnídková D.; Pohanka M.; Musílek K.; Chilcott R. P.; Kuča K. Pharmacokinetics of acetylcholinesterase reactivator K203 and consequent evaluation of low molecular weight antioxidants/markers of oxidative stress. J. Appl. Biomed. 2012, 10, 71–78. 10.2478/v10136-011-0015-2. DOI

Žunec S.; Kopjar N.; Želježić D.; Kuča K.; Musílek K.; Vrdoljak A. L. In Vivo Evaluation of Cholinesterase Activity, Oxidative Stress Markers, Cyto- and Genotoxicity of K048 Oxime - a Promising Antidote against Organophosphate Poisoning. Basic Clin. Pharmacol. Toxicol. 2014, 114 (4), 344–351. 10.1111/bcpt.12158. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...