Simvastatin Inhibits Endotoxin-Induced Apoptosis in Liver and Spleen Through Up-Regulation of Survivin/NF-κB/p65 Expression
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30828299
PubMed Central
PMC6384256
DOI
10.3389/fphar.2019.00054
Knihovny.cz E-zdroje
- Klíčová slova
- NF-κB/p65, apoptosis, endotoxin, hepatocytes, lymphocytes, simvastatin, survivin,
- Publikační typ
- časopisecké články MeSH
Endotoxemia is associated by dysregulated apoptosis of immune and non-immune cells. We investigated whether simvastatin has anti-apoptotic effects, and induces hepatocytes and lymphocytes survival signaling in endotoxin-induced liver and spleen injuries. Wistar rats were divided into the groups pretreated with simvastatin (20 or 40 mg/kg, orally) prior to a non-lethal dose of lipopolysaccharide (LPS), the LPS group, and the control. The severity of tissue inflammatory injuries was expressed as hepatic damage scores (HDS) and spleen damage scores (SDS), respectively. The apoptotic cell was detected by TUNEL (Terminal deoxynucleotidyl transferase dUTP Nick End Labeling) and immunohistochemical staining (expression of cleaved caspase-3, and anti-apoptotic Bcl-xL, survivin and NF-κB/p65). Simvastatin dose-dependently abolished HDS and SDS induced by LPS (p < 0.01), respectively. Simvastatin 40 mg/kg significantly decreased apoptotic index and caspase-3 cleavage in hepatocytes and lymphocytes (p < 0.01 vs. LPS group, respectively), while Bcl-XL markedly increased accordingly with simvastatin doses. In the simvastatin, groups were determined markedly increased cytoplasmic expression of survivin associated with nuclear positivity of NF-κB, in both hepatocytes and lymphocytes (p < 0.01 vs. LPS group). Cell-protective effects of simvastatin against LPS seemed to be mediated by up-regulation of survivin, which leads to reduced caspase-3 activation and inhibition of hepatocytes and lymphocytes apoptosis.
Department of Chemistry Faculty of Science University of Hradec Králové Hradec Králové Czechia
Medical Faculty of the Military Medical Academy University of Defense in Belgrade Belgrade Serbia
Zobrazit více v PubMed
Altieri D. C. (2010). Survivin and IAP proteins in cell-death mechanisms. Biochem. J. 430 199–205. 10.1042/BJ20100814 PubMed DOI PMC
Andersson K. M., Brisslert M., Cavallini N. F., Svensson M. N., Welin A., Erlandsson M. C., et al. (2015). Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6. Oncotarget 6 20043–20057. PubMed PMC
Bo L., Zhu X. S., Zheng Z., Hu X. P., Chen P. Y. (2017). Research on the function and mechanism of survivin in heart failure mice model. Eur. Rev. Med. Pharmacol. Sci. 21 3699–3704. PubMed
Buerke U., Carter J. M., Schlitt A., Russ M., Schmidt H., Sibelius U., et al. (2008). Apoptosis contributes to septic cardiomyopathy and is improved by simvastatin therapy. Shock 29 497–503. PubMed
Chang K. C., Unsinger J., Davis C. G., Schwulst S. J., Muenzer J. T., Strasser A., et al. (2007). Multiple triggers of cell death in sepsis: death receptor and mitochondrial-mediated apoptosis. FASEB J. 21 708–719. 10.1096/fj.06-6805com PubMed DOI
Choi A. M., Ryter S. W., Levine B. (2013). Autophagy in human health and disease. N. Engl. J. Med. 368 651–662. 10.1056/NEJMra1205406 PubMed DOI
Cohen J., Opal S., Calandra T. (2012). Sepsis studies need a new direction. Lancet Infect. Dis. 12 503–505. 10.1016/S1473-3099(12)70136-6 PubMed DOI
Cui X., Shen D., Kong C., Zhang Z., Zeng Y., Lin X., et al. (2017). NF-κB suppresses apoptosis, and promotes bladder cancer cell proliferation by upregulating survivin expression in vitro, and in vivo. Sci. Rep. 7:40723. 10.1038/srep40723 PubMed DOI PMC
Gravina G., Wasén C., Garcia-Bonete M. J., Turkkila M., Erlandsson M. C., Silversward S. T., et al. (2017). Survivinin autoimmune diseases. Autoimmun. Rev. 16 845–855. 10.1016/j.autrev.2017.05.016 PubMed DOI
Hattori Y., Takano K., Teramae H., Yamamoto S., Yokoo H., Matsuda N. (2010). Insights into sepsis therapeutic design based on the apoptotic death pathway. J. Pharmacol. Sci. 114 354–365. 10.1254/jphs.10R04CR PubMed DOI
Hotchkiss R. S., Monneret G., Payen D. (2013). Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 13 862–874. 10.1038/nri3552 PubMed DOI PMC
Huang N., Wang F., Wang Y., Hou J., Li J., Deng X. (2013). Ulinastatin improves survival of septic mice by suppressing the inflammatory response and lymphocyte apoptosis. J. Surg. Res. 182 296–302. 10.1016/j.jss.2012.10.043 PubMed DOI
Jaćević V., Djordjevic A., Srdjenovic B., Milic-Tores V., Segrt Z., Dragojevic-Simic V., et al. (2017). Fullerenol nanoparticles prevent doxorubicin-induced acute hepatotoxicity in rats. Exp. Mol. Path. 102 360–369. 10.1016/j.yexmp.2017.03.005 PubMed DOI
Jaćević V., Dragojević-Simić V., Tatomirović Ž, Dobrić S., Bokonjić D., Kovačević A., et al. (2018). The efficacy of amifostine against multiple-dose doxorubicin-induced toxicity in rats. Int. J. Mol. Sci. 19:E2370. 10.3390/ijms19082370 PubMed DOI PMC
Jaćević V., Jovic D., Kuca K., Dragojevic-Simic V., Dobric S., Trajkovic S., et al. (2016). Effects of fullerenol nanoparticles and amifostine on radiation-induced tissue damages: histopathological analysis. J. Appl. Biomed. 14 285–297. 10.1016/j.jab.2016.05.004 DOI
Koçkara A., Kayataş M. (2013). Renal cell apoptosis and new treatment options in sepsis-induced acute kidney injury. Ren. Fail. 35 291–294. 10.3109/0886022X.2012.744040 PubMed DOI
La Mura V., Pasarín M., Meireles C. Z., Miquel R., Rodríguez-Vilarrupla A., Hide D., et al. (2013). Effects of simvastatin administration on rodents with lipopolysaccharide-induced liver microvascular dysfunction. Hepatology 57 1172–1181. 10.1002/hep.26127 PubMed DOI
Lee B. S., Oh J., Kang S. K., Park S., Lee S. H., Choi D., et al. (2015). Insulin protects cardiac myocytes from doxorubicin toxicity by sp1-mediated transactivation of survivin. PLoS One 10:e0135438. 10.1371/journal.pone.0135438 PubMed DOI PMC
Liu X., Li B., Wang W., Zhang C., Zhang M., Zhang Y., et al. (2012). Effects of HMG-CoA reductase inhibitor on experimental autoimmune myocarditis. Cardiovasc. Drugs Ther. 26 121–130. 10.1007/s10557-012-6372-6 PubMed DOI
Marconi G. D., Zara S., De Colli M, Di Valerio V, Rapino M., Zaramella P., et al. (2014). Postnatal hyperoxia exposure differentially affects hepatocytes and liver haemopoietic cells in newborn rats. PLoS One 9:e105005. 10.1371/journal.pone.0105005 PubMed DOI PMC
Marshall J. C. (2014). Why have clinical trials in sepsis failed? Trends Mol. Med. 20 195–203. 10.1016/j.molmed.2014.01.007 PubMed DOI
Merx M. W., Liehn E. A., Janssens U., Lutticken R., Schrader J., Hanrath P., et al. (2004). HMG-CoA reductase inhibitor simvastatin profoundly improves survival in a murine model of sepsis. Circulation 109 2560–2565. 10.1161/01.CIR.0000129774.09737.5B PubMed DOI
Morel J., Hargreaves I., Brealey D., Neergheen V., Backman J. T., Lindig S., et al. (2017). Simvastatin pre-treatment improves survival and mitochondrial function in a 3-day fluid-resuscitated rat model of sepsis. Clin. Sci. 131 747–758. 10.1042/CS20160802 PubMed DOI
Nežić L., Škrbić R., Amidžić L., Gajanin R., Kuča K., Jaćević V. (2018). Simvastatin protects cardiomyocytes against endotoxin-induced apoptosis and up-regulates survivin/NF-κB/p65 expression. Sci. Rep. 8:14652. 10.1038/s41598-018-32376-4 PubMed DOI PMC
Nežić L., Skrbić R., Dobrić S., Stojiljković M. P., Jaćević V., Satara S. S., et al. (2009a). Simvastatin and indomethacin have similar anti-inflammatory activity in a rat model of acute local inflammation. Basic Clin. Pharmacol. Toxicol. 104 185–191. 10.1111/j.1742-7843.2008.00302.x PubMed DOI
Nežić L., Skrbic R., Dobric S., Stojiljkovic M. P., Satara S. S., Milovanovic Z. A., et al. (2009b). Effect of simvastatin on proinflammatory cytokines production during lipopolysaccharide-induced inflammation in rats. Gen. Physiol. Biophys. 28 119–126. PubMed
Oami T., Watanabe E., Hatano M., Teratake Y., Fujimura L., Sakamoto A., et al. (2018). Blocking liver autophagy accelerates apoptosis and mitochondrial injury in hepatocytes and reduces time to mortality in a murine sepsis model. Shock 50 427–434. 10.1097/SHK.0000000000001040 PubMed DOI
Scheer A., Knauer S. K., Verhaegh R. (2017). Survivin expression pattern in the intestine of normoxic and ischemic rats. BMC Gastroenterol. 17:76. 10.1186/s12876-017-0625-6 PubMed DOI PMC
Seemann S., Zohles F., Lupp A. (2017). A comprehensive comparison of three different animal models for systemic inflammation. J. Biomed. Sci. 24:60. 10.1186/s12929-017-0370-8 PubMed DOI PMC
Shinozaki S., Inoue Y., Yang W., Fukaya M., Carter E. A., Yu Y. M., et al. (2010). Farnesyltransferase inhibitor improved survival following endotoxin challenge in mice. Biochem. Biophys. Res. Commun. 391 1459–1464. 10.1016/j.bbrc.2009.12.094 PubMed DOI PMC
Singer M., Deutschman C. S., Seymour C. W., Shankar-Hari M., Annane D., Bauer M., et al. (2016). The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315 801–810. 10.1001/jama.2016.0287 PubMed DOI PMC
Slotta J. E., Laschke M. W., Schilling M. K., Menger M. D., Jeppsson B., Thorlacius H. (2010). Simvastatin attenuate hepatic sensitization to lipopolysaccharide after partial hepatectomy. J. Surg. Res. 162 184–192. 10.1016/j.jss.2009.03.057 PubMed DOI
Smeding L., Plötz F. B., Groeneveld A. J., Kneyber M. C. (2012). Structural changes of the heart during severe sepsis or septic shock. Shock 37 449–456. 10.1097/SHK.0b013e31824c3238 PubMed DOI
Vincent J. L., Opal S. M., Marshall J. C., Tracey K. J. (2013). Sepsis definitions: time for a change. Lancet 381 774–775. 10.1016/S0140-6736(12)61815-7 PubMed DOI PMC
Wang K. (2015). Molecular mechanisms of hepatic apoptosis regulated by nuclear factors. Cell. Signal. 27 729–738. 10.1016/j.cellsig.2014.11.038 PubMed DOI
Wang K., Brems J. J., Gamelli R. L., Holterman A. X. (2010). Survivin signalling is regulated through the nuclear factor-kappa B pathway during glycochenodeoxycholate-induced hepatocyte apoptosis. Biochim. Biophys. Acta 1803 1368–1375. 10.1016/j.bbamcr.2010.08.008 PubMed DOI
Wang Y., Yang W., Zhao X., Zhang R. (2018). Experimental study of the protective effect of simvastatin on lung injury in rats with sepsis. Inflammation 41 104–113. 10.1007/s10753-017-0668-4 PubMed DOI
Wilson R. L., Selvaraju V., Lakshmanan R., Thirunavukkarasu M., Campbell J., McFadden D. W., et al. (2017). Thioredoxin-1 attenuates sepsis-induced cardiomyopathy after cecal ligation and puncture in mice. J. Surg. Res. 220 68–78. 10.1016/j.jss.2017.06.062 PubMed DOI PMC
Yan J., Li S., Li S. (2014). The role of the liver in sepsis. Int. Rev. Immunol. 33 498–510. 10.3109/08830185.2014.889129 PubMed DOI PMC
Zeng W., Li H., Chen Y., Lv H., Liu L., Ran J., et al. (2016). Survivin activates NF-κB p65 via the IKKβ promoter in esophageal squamous cell carcinoma. Mol. Med. Rep. 13 1869–1880. 10.3892/mmr.2015.4737 PubMed DOI
Zhang S., Luo L., Wang Y., Rahman M., Lepsenyi M., Syk L., et al. (2012). Simvastatin protects against T cell immune dysfunction in abdominal sepsis. Shock 38 524–531. 10.1097/SHK.0b013e31826fb073 PubMed DOI
Zhao G., Yu Y. M., Kaneki M., Bonab A. A., Tompkins R. G., Fischman A. J. (2015). Simvastatin reduces burn injury-induced splenic apoptosis via down-regulation of the TNF-α/ NF-κB pathway. Ann. Surg. 261 1006–1012. 10.1097/SLA.0000000000000764 PubMed DOI PMC
Zhao G., Yu Y. M., Kaneki M., Tompkins R. G., Fischman A. J. (2013). Simvastatin protects hepatocytes from apoptosis by suppressing the TNF-α/caspase-3 signalling pathway in mice with burn injury. Ann. Surg. 257 1129–1136. 10.1097/SLA.0000000000000764 PubMed DOI PMC
Acute Toxic Injuries of Rat's Visceral Tissues Induced by Different Oximes