Simvastatin Inhibits Endotoxin-Induced Apoptosis in Liver and Spleen Through Up-Regulation of Survivin/NF-κB/p65 Expression

. 2019 ; 10 () : 54. [epub] 20190215

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30828299

Endotoxemia is associated by dysregulated apoptosis of immune and non-immune cells. We investigated whether simvastatin has anti-apoptotic effects, and induces hepatocytes and lymphocytes survival signaling in endotoxin-induced liver and spleen injuries. Wistar rats were divided into the groups pretreated with simvastatin (20 or 40 mg/kg, orally) prior to a non-lethal dose of lipopolysaccharide (LPS), the LPS group, and the control. The severity of tissue inflammatory injuries was expressed as hepatic damage scores (HDS) and spleen damage scores (SDS), respectively. The apoptotic cell was detected by TUNEL (Terminal deoxynucleotidyl transferase dUTP Nick End Labeling) and immunohistochemical staining (expression of cleaved caspase-3, and anti-apoptotic Bcl-xL, survivin and NF-κB/p65). Simvastatin dose-dependently abolished HDS and SDS induced by LPS (p < 0.01), respectively. Simvastatin 40 mg/kg significantly decreased apoptotic index and caspase-3 cleavage in hepatocytes and lymphocytes (p < 0.01 vs. LPS group, respectively), while Bcl-XL markedly increased accordingly with simvastatin doses. In the simvastatin, groups were determined markedly increased cytoplasmic expression of survivin associated with nuclear positivity of NF-κB, in both hepatocytes and lymphocytes (p < 0.01 vs. LPS group). Cell-protective effects of simvastatin against LPS seemed to be mediated by up-regulation of survivin, which leads to reduced caspase-3 activation and inhibition of hepatocytes and lymphocytes apoptosis.

Zobrazit více v PubMed

Altieri D. C. (2010). Survivin and IAP proteins in cell-death mechanisms. Biochem. J. 430 199–205. 10.1042/BJ20100814 PubMed DOI PMC

Andersson K. M., Brisslert M., Cavallini N. F., Svensson M. N., Welin A., Erlandsson M. C., et al. (2015). Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6. Oncotarget 6 20043–20057. PubMed PMC

Bo L., Zhu X. S., Zheng Z., Hu X. P., Chen P. Y. (2017). Research on the function and mechanism of survivin in heart failure mice model. Eur. Rev. Med. Pharmacol. Sci. 21 3699–3704. PubMed

Buerke U., Carter J. M., Schlitt A., Russ M., Schmidt H., Sibelius U., et al. (2008). Apoptosis contributes to septic cardiomyopathy and is improved by simvastatin therapy. Shock 29 497–503. PubMed

Chang K. C., Unsinger J., Davis C. G., Schwulst S. J., Muenzer J. T., Strasser A., et al. (2007). Multiple triggers of cell death in sepsis: death receptor and mitochondrial-mediated apoptosis. FASEB J. 21 708–719. 10.1096/fj.06-6805com PubMed DOI

Choi A. M., Ryter S. W., Levine B. (2013). Autophagy in human health and disease. N. Engl. J. Med. 368 651–662. 10.1056/NEJMra1205406 PubMed DOI

Cohen J., Opal S., Calandra T. (2012). Sepsis studies need a new direction. Lancet Infect. Dis. 12 503–505. 10.1016/S1473-3099(12)70136-6 PubMed DOI

Cui X., Shen D., Kong C., Zhang Z., Zeng Y., Lin X., et al. (2017). NF-κB suppresses apoptosis, and promotes bladder cancer cell proliferation by upregulating survivin expression in vitro, and in vivo. Sci. Rep. 7:40723. 10.1038/srep40723 PubMed DOI PMC

Gravina G., Wasén C., Garcia-Bonete M. J., Turkkila M., Erlandsson M. C., Silversward S. T., et al. (2017). Survivinin autoimmune diseases. Autoimmun. Rev. 16 845–855. 10.1016/j.autrev.2017.05.016 PubMed DOI

Hattori Y., Takano K., Teramae H., Yamamoto S., Yokoo H., Matsuda N. (2010). Insights into sepsis therapeutic design based on the apoptotic death pathway. J. Pharmacol. Sci. 114 354–365. 10.1254/jphs.10R04CR PubMed DOI

Hotchkiss R. S., Monneret G., Payen D. (2013). Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 13 862–874. 10.1038/nri3552 PubMed DOI PMC

Huang N., Wang F., Wang Y., Hou J., Li J., Deng X. (2013). Ulinastatin improves survival of septic mice by suppressing the inflammatory response and lymphocyte apoptosis. J. Surg. Res. 182 296–302. 10.1016/j.jss.2012.10.043 PubMed DOI

Jaćević V., Djordjevic A., Srdjenovic B., Milic-Tores V., Segrt Z., Dragojevic-Simic V., et al. (2017). Fullerenol nanoparticles prevent doxorubicin-induced acute hepatotoxicity in rats. Exp. Mol. Path. 102 360–369. 10.1016/j.yexmp.2017.03.005 PubMed DOI

Jaćević V., Dragojević-Simić V., Tatomirović Ž, Dobrić S., Bokonjić D., Kovačević A., et al. (2018). The efficacy of amifostine against multiple-dose doxorubicin-induced toxicity in rats. Int. J. Mol. Sci. 19:E2370. 10.3390/ijms19082370 PubMed DOI PMC

Jaćević V., Jovic D., Kuca K., Dragojevic-Simic V., Dobric S., Trajkovic S., et al. (2016). Effects of fullerenol nanoparticles and amifostine on radiation-induced tissue damages: histopathological analysis. J. Appl. Biomed. 14 285–297. 10.1016/j.jab.2016.05.004 DOI

Koçkara A., Kayataş M. (2013). Renal cell apoptosis and new treatment options in sepsis-induced acute kidney injury. Ren. Fail. 35 291–294. 10.3109/0886022X.2012.744040 PubMed DOI

La Mura V., Pasarín M., Meireles C. Z., Miquel R., Rodríguez-Vilarrupla A., Hide D., et al. (2013). Effects of simvastatin administration on rodents with lipopolysaccharide-induced liver microvascular dysfunction. Hepatology 57 1172–1181. 10.1002/hep.26127 PubMed DOI

Lee B. S., Oh J., Kang S. K., Park S., Lee S. H., Choi D., et al. (2015). Insulin protects cardiac myocytes from doxorubicin toxicity by sp1-mediated transactivation of survivin. PLoS One 10:e0135438. 10.1371/journal.pone.0135438 PubMed DOI PMC

Liu X., Li B., Wang W., Zhang C., Zhang M., Zhang Y., et al. (2012). Effects of HMG-CoA reductase inhibitor on experimental autoimmune myocarditis. Cardiovasc. Drugs Ther. 26 121–130. 10.1007/s10557-012-6372-6 PubMed DOI

Marconi G. D., Zara S., De Colli M, Di Valerio V, Rapino M., Zaramella P., et al. (2014). Postnatal hyperoxia exposure differentially affects hepatocytes and liver haemopoietic cells in newborn rats. PLoS One 9:e105005. 10.1371/journal.pone.0105005 PubMed DOI PMC

Marshall J. C. (2014). Why have clinical trials in sepsis failed? Trends Mol. Med. 20 195–203. 10.1016/j.molmed.2014.01.007 PubMed DOI

Merx M. W., Liehn E. A., Janssens U., Lutticken R., Schrader J., Hanrath P., et al. (2004). HMG-CoA reductase inhibitor simvastatin profoundly improves survival in a murine model of sepsis. Circulation 109 2560–2565. 10.1161/01.CIR.0000129774.09737.5B PubMed DOI

Morel J., Hargreaves I., Brealey D., Neergheen V., Backman J. T., Lindig S., et al. (2017). Simvastatin pre-treatment improves survival and mitochondrial function in a 3-day fluid-resuscitated rat model of sepsis. Clin. Sci. 131 747–758. 10.1042/CS20160802 PubMed DOI

Nežić L., Škrbić R., Amidžić L., Gajanin R., Kuča K., Jaćević V. (2018). Simvastatin protects cardiomyocytes against endotoxin-induced apoptosis and up-regulates survivin/NF-κB/p65 expression. Sci. Rep. 8:14652. 10.1038/s41598-018-32376-4 PubMed DOI PMC

Nežić L., Skrbić R., Dobrić S., Stojiljković M. P., Jaćević V., Satara S. S., et al. (2009a). Simvastatin and indomethacin have similar anti-inflammatory activity in a rat model of acute local inflammation. Basic Clin. Pharmacol. Toxicol. 104 185–191. 10.1111/j.1742-7843.2008.00302.x PubMed DOI

Nežić L., Skrbic R., Dobric S., Stojiljkovic M. P., Satara S. S., Milovanovic Z. A., et al. (2009b). Effect of simvastatin on proinflammatory cytokines production during lipopolysaccharide-induced inflammation in rats. Gen. Physiol. Biophys. 28 119–126. PubMed

Oami T., Watanabe E., Hatano M., Teratake Y., Fujimura L., Sakamoto A., et al. (2018). Blocking liver autophagy accelerates apoptosis and mitochondrial injury in hepatocytes and reduces time to mortality in a murine sepsis model. Shock 50 427–434. 10.1097/SHK.0000000000001040 PubMed DOI

Scheer A., Knauer S. K., Verhaegh R. (2017). Survivin expression pattern in the intestine of normoxic and ischemic rats. BMC Gastroenterol. 17:76. 10.1186/s12876-017-0625-6 PubMed DOI PMC

Seemann S., Zohles F., Lupp A. (2017). A comprehensive comparison of three different animal models for systemic inflammation. J. Biomed. Sci. 24:60. 10.1186/s12929-017-0370-8 PubMed DOI PMC

Shinozaki S., Inoue Y., Yang W., Fukaya M., Carter E. A., Yu Y. M., et al. (2010). Farnesyltransferase inhibitor improved survival following endotoxin challenge in mice. Biochem. Biophys. Res. Commun. 391 1459–1464. 10.1016/j.bbrc.2009.12.094 PubMed DOI PMC

Singer M., Deutschman C. S., Seymour C. W., Shankar-Hari M., Annane D., Bauer M., et al. (2016). The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315 801–810. 10.1001/jama.2016.0287 PubMed DOI PMC

Slotta J. E., Laschke M. W., Schilling M. K., Menger M. D., Jeppsson B., Thorlacius H. (2010). Simvastatin attenuate hepatic sensitization to lipopolysaccharide after partial hepatectomy. J. Surg. Res. 162 184–192. 10.1016/j.jss.2009.03.057 PubMed DOI

Smeding L., Plötz F. B., Groeneveld A. J., Kneyber M. C. (2012). Structural changes of the heart during severe sepsis or septic shock. Shock 37 449–456. 10.1097/SHK.0b013e31824c3238 PubMed DOI

Vincent J. L., Opal S. M., Marshall J. C., Tracey K. J. (2013). Sepsis definitions: time for a change. Lancet 381 774–775. 10.1016/S0140-6736(12)61815-7 PubMed DOI PMC

Wang K. (2015). Molecular mechanisms of hepatic apoptosis regulated by nuclear factors. Cell. Signal. 27 729–738. 10.1016/j.cellsig.2014.11.038 PubMed DOI

Wang K., Brems J. J., Gamelli R. L., Holterman A. X. (2010). Survivin signalling is regulated through the nuclear factor-kappa B pathway during glycochenodeoxycholate-induced hepatocyte apoptosis. Biochim. Biophys. Acta 1803 1368–1375. 10.1016/j.bbamcr.2010.08.008 PubMed DOI

Wang Y., Yang W., Zhao X., Zhang R. (2018). Experimental study of the protective effect of simvastatin on lung injury in rats with sepsis. Inflammation 41 104–113. 10.1007/s10753-017-0668-4 PubMed DOI

Wilson R. L., Selvaraju V., Lakshmanan R., Thirunavukkarasu M., Campbell J., McFadden D. W., et al. (2017). Thioredoxin-1 attenuates sepsis-induced cardiomyopathy after cecal ligation and puncture in mice. J. Surg. Res. 220 68–78. 10.1016/j.jss.2017.06.062 PubMed DOI PMC

Yan J., Li S., Li S. (2014). The role of the liver in sepsis. Int. Rev. Immunol. 33 498–510. 10.3109/08830185.2014.889129 PubMed DOI PMC

Zeng W., Li H., Chen Y., Lv H., Liu L., Ran J., et al. (2016). Survivin activates NF-κB p65 via the IKKβ promoter in esophageal squamous cell carcinoma. Mol. Med. Rep. 13 1869–1880. 10.3892/mmr.2015.4737 PubMed DOI

Zhang S., Luo L., Wang Y., Rahman M., Lepsenyi M., Syk L., et al. (2012). Simvastatin protects against T cell immune dysfunction in abdominal sepsis. Shock 38 524–531. 10.1097/SHK.0b013e31826fb073 PubMed DOI

Zhao G., Yu Y. M., Kaneki M., Bonab A. A., Tompkins R. G., Fischman A. J. (2015). Simvastatin reduces burn injury-induced splenic apoptosis via down-regulation of the TNF-α/ NF-κB pathway. Ann. Surg. 261 1006–1012. 10.1097/SLA.0000000000000764 PubMed DOI PMC

Zhao G., Yu Y. M., Kaneki M., Tompkins R. G., Fischman A. J. (2013). Simvastatin protects hepatocytes from apoptosis by suppressing the TNF-α/caspase-3 signalling pathway in mice with burn injury. Ann. Surg. 257 1129–1136. 10.1097/SLA.0000000000000764 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...