Dopamine and Dopamine-Related Ligands Can Bind Not Only to Dopamine Receptors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Cooperatio Program in Pharmaceutical Sciences.
Charles University
PubMed
35629274
PubMed Central
PMC9147915
DOI
10.3390/life12050606
PII: life12050606
Knihovny.cz E-zdroje
- Klíčová slova
- 5-HT receptors, alpha-adrenoceptors, antipsychotic drugs, dopamine receptors, subtype selectivity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The dopaminergic system is one of the most important neurotransmitter systems in the central nervous system (CNS). It acts mainly by activation of the D1-like receptor family at the target cell. Additionally, fine-tuning of the signal is achieved via pre-synaptic modulation by the D2-like receptor family. Some dopamine drugs (both agonists and antagonists) bind in addition to DRs also to α2-ARs and 5-HT receptors. Unfortunately, these compounds are often considered subtype(s) specific. Thus, it is important to consider the presence of these receptor subtypes in specific CNS areas as the function virtually elicited by one receptor type could be an effect of other-or the co-effect of multiple receptors. However, there are enough molecules with adequate specificity. In this review, we want to give an overview of the most common off-targets for established dopamine receptor ligands. To give an overall picture, we included a discussion on subtype selectivity. Molecules used as antipsychotic drugs are reviewed too. Therefore, we will summarize reported affinities and give an outline of molecules sufficiently specific for one or more subtypes (i.e., for subfamily), the presence of DR, α2-ARs, and 5-HT receptors in CNS areas, which could help avoid ambiguous results.
Zobrazit více v PubMed
Emilien G., Maloteaux J.-M., Geurts M., Hoogenberg K., Cragg S. Dopamine receptors—Physiological understanding to therapeutic intervention potential. Pharmacol. Ther. 1999;84:133–156. doi: 10.1016/S0163-7258(99)00029-7. PubMed DOI
Undieh A.S. Pharmacology of signaling induced by dopamine D1-like receptor activation. Pharmacol. Ther. 2010;128:37–60. doi: 10.1016/j.pharmthera.2010.05.003. PubMed DOI PMC
Civelli O., Bunzow J.K., Grandy D.K. Molecular Diversity of the Dopamine Receptors. Annu. Rev. Pharmacol. Toxicol. 1993;33:281–307. doi: 10.1146/annurev.pa.33.040193.001433. PubMed DOI
O’Dowd B.F. Structures of Dopamine Receptors. J. Neurochem. 1993;60:804–816. doi: 10.1111/j.1471-4159.1993.tb03224.x. PubMed DOI
Giros B., Sokoloff P., Martres M.P., Riou J.F., Emorine L.J., Schwartz J.C. Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature. 1989;342:923–926. doi: 10.1038/342923a0. PubMed DOI
Grandy D.K., Litt M., Allen L., Bunzow J.R., Marchionni M., Makam H., Reed L., Magenis R.E., Civelli O. The human dopamine D2 receptor gene is located on chromosome 11 at q22–q23 and identifies a TaqI RFLP. Am. J. Hum. Genet. 1989;45:778–785. PubMed PMC
Sokoloff P., Giros B., Martres M.P., Bouthenet M.L., Schwartz J.C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature. 1990;347:146–151. doi: 10.1038/347146a0. PubMed DOI
Van Tol H.H., Bunzow J.R., Guan H.C., Sunahara R.K., Seeman P., Niznik H.B., Civelli O. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature. 1991;350:610–614. doi: 10.1038/350610a0. PubMed DOI
Liu L.X., Monsma F.J., Jr., Sibley D.R., Chiodo L.A. D2L, D2S, and D3 dopamine receptors stably transfected into NG108-15 cells couple to a voltage-dependent potassium current via distinct G protein mechanisms. Synapse. 1996;24:156–164. doi: 10.1002/(SICI)1098-2396(199610)24:2<156::AID-SYN7>3.0.CO;2-E. PubMed DOI
Picetti R., Saiardi A., Abdel Samad T., Bozzi Y., Baik J.H., Borrelli E. Dopamine D2 receptors in signal transduction and behavior. Crit. Rev. Neurobiol. 1997;11:121–142. doi: 10.1615/CritRevNeurobiol.v11.i2-3.20. PubMed DOI
Weinshank R.L., Adham N., Macchi M., Olsen M.A., Branchek T.A., Hartig P.R. Molecular cloning and characterization of a high affinity dopamine receptor (D1 beta) and its pseudogene. J. Biol. Chem. 1991;266:22427–22435. doi: 10.1016/S0021-9258(18)54590-7. PubMed DOI
Centonze D., Grande C., Saulle E., Martin A.B., Gubellini P., Pavón N., Pisani A., Bernardi G., Moratalla R., Calabresi P. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J. Neurosci. 2003;23:8506–8512. doi: 10.1523/JNEUROSCI.23-24-08506.2003. PubMed DOI PMC
Tiberi M., Caron M.G. High agonist-independent activity is a distinguishing feature of the dopamine D1B receptor subtype. J. Biol. Chem. 1994;269:27925–27931. doi: 10.1016/S0021-9258(18)46876-7. PubMed DOI
Wang Q., Jolly J.P., Surmeier J.D., Mullah B.M., Lidow M.S., Bergson C.M., Robishaw J.D. Differential dependence of the D1 and D5 dopamine receptors on the G protein gamma 7 subunit for activation of adenylylcyclase. J. Biol. Chem. 2001;276:39386–39393. doi: 10.1074/jbc.M104981200. PubMed DOI
Herve D., Levi-Strauss M., Marey-Semper I., Verney C., Tassin J.P., Glowinski J., Girault J.A. G(olf) and Gs in rat basal ganglia: Possible involvement of G(olf) in the coupling of dopamine D1 receptor with adenylyl cyclase. J. Neurosci. 1993;13:2237–2248. doi: 10.1523/JNEUROSCI.13-05-02237.1993. PubMed DOI PMC
Hollon T.R., Bek M.J., Lachowicz J.E., Ariano M.A., Mezey E., Ramachandran R., Wersinger S.R., Soares-da-Silva P., Liu Z.F., Grinberg A., et al. Mice lacking D5 dopamine receptors have increased sympathetic tone and are hypertensive. J. Neurosci. Off. J. Soc. Neurosci. 2002;22:10801–10810. doi: 10.1523/JNEUROSCI.22-24-10801.2002. PubMed DOI PMC
Weiner D.M., Levey A.I., Sunahara R.K., Niznik H.B., O´Dowd B.F., Seeman P., Brann M.R. D1 and D2 dopamine receptor mRNA in rat brain. Proc. Natl. Acad. Sci. USA. 1991;88:1859–1863. doi: 10.1073/pnas.88.5.1859. PubMed DOI PMC
Khan Z.U., Mrzljak L., Gutierrez A., de la Calle A., Goldman-Rakic P.S. Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc. Natl. Acad. Sci. USA. 1998;95:7731–7736. doi: 10.1073/pnas.95.13.7731. PubMed DOI PMC
Saiardi A., Abdel Samad T., Picetti R., Bozzi Y., Baik J.H., Borrelli E. The physiological role of dopamine D2 receptors. Adv. Pharmacol. 1998;42:521–524. doi: 10.1016/s1054-3589(08)60804-2. PubMed DOI
Schwartz J.C., Levesque D., Martres M.P., Sokoloff P. Dopamine D3 receptor: Basic and clinical aspects. Clin. Neuropharmacol. 1993;16:295–314. doi: 10.1097/00002826-199308000-00002. PubMed DOI
Dziedzicka-Wasylewska M. Brain dopamine receptors—Research perspectives and potential sites of regulation. Pol. J. Pharmacol. 2004;56:659–671. PubMed
Patel S., Patel S., Marwood R., Emms F., Marston D., Leeson P.D., Curtis N.R., Kulagowski J.J., Freedman S.B. Identification and pharmacological characterization of [125I]L-750,667, a novel radioligand for the dopamine D4 receptor. Mol. Pharmacol. 1996;50:1658–1664. PubMed
Sunahara R.K., Guan H.C., O´Dowd B.F., Seeman P., Laurier L.G., Ng G., George S.R., Torchia J., Van Tol H.H., Niznik H.B. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature. 1991;350:614–619. doi: 10.1038/350614a0. PubMed DOI
Goodman M.M., Kung M.-P., Kabalka G.W., Kung H.F., Switzer R. Synthesis and Characterization of Radioiodinated N-(3-Iodopropen-1-yl)-2 β-carbomethoxy-3 β-(4-chlorophenyl)tropanes: Potential Dopamine Reuptake Site Imaging Agents. J. Med. Chem. 1994;37:1535–1542. doi: 10.1021/jm00036a020. PubMed DOI
Meltzer P.C., McPhee M., Madras B.K. Synthesis and biological activity of 2-Carbomethoxy-3-catechol-8-azabicyclo[3.2.1]octanes. Bioorg. Med. Chem. Lett. 2003;13:4133–4137. doi: 10.1016/j.bmcl.2003.07.014. PubMed DOI
Fisher L.E., Rosenkranz R.P., Clark R.D., Muchowski J.M., McClelland D.L., Michel A., Caroon J.M., Galeazzi E., Eglen R., Whiting R.L. N,N-6-bis-[2-(3,4-dihydroxybenzyl)pyrrolidinyl]hexane, a potent, selective, orally active dopamine analog with hypotensive and diuretic activity. Bioorg. Med. Chem. Lett. 1995;5:2371–2376. doi: 10.1016/0960-894X(95)00413-N. DOI
Lu S.-F., Herbert B., Haufe G., Laue K.W., Padgett W.L., Oshunleti O., Daly J.W., Kirk K.L. Syntheses of (R)-and (S)-2- and 6-Fluoronorepinephrine and (R)- and (S)-2- and 6-Fluoroepinephrine: Effect of Stereochemistry on Fluorine-Induced Adrenergic Selectivities. J. Med. Chem. 2000;43:1611–1619. doi: 10.1021/jm990599h. PubMed DOI
Kenakin T. What is pharmacological ‘affinity’? Relevance to biased agonism and antagonism. Trends Pharmacol. Sci. 2014;35:434–441. doi: 10.1016/j.tips.2014.06.003. PubMed DOI
Rupniak N.M.J., Perdona E., Griffante C., Cavallini P., Sava A., Ricca D.J., Thor K.B., Burgard E.C., Corsi M. Affinity, potency, efficacy, and selectivity of neurokinin A analogs at human recombinant NK2 and NK1 receptors. PLoS ONE. 2018;13:e0205894. doi: 10.1371/journal.pone.0205894. PubMed DOI PMC
Zhang J., Zhang H., Cai W., Yu L., Zhen X., Zhang A. ‘Click’ D1 receptor agonists with a 5-HT1A receptor pharmacophore producing D2 receptor activity. Bioorg. Med. Chem. 2009;17:4873–4880. doi: 10.1016/j.bmc.2009.06.019. PubMed DOI
DeNinno M.P., Schoenleber R., Asin K.E., MacKenzie R., Kebabian J.W. (1R,3S)-1-(Aminomethyl)-3,4-dihydro-5,6-dihydroxy-3-phenyl-1H-2-benzopyran: A potent and selective D1 agonist. J. Med. Chem. 1990;33:2948–2950. doi: 10.1021/jm00173a005. PubMed DOI
Ge H., Zhang Y., Yang Z., Qiang K., Chen C., Sun L., Chen M., Zhang J. Chemical synthesis, microbial transformation and biological evaluation of tetrahydroprotoberberines as dopamine D1/D2 receptor ligands. Bioorg. Med. Chem. 2019;27:2100–2111. doi: 10.1016/j.bmc.2019.04.014. PubMed DOI
Lebar M.D., Hahn K.N., Mutka T., Maignan P., McClintock J.B., Amsler C.D., van Olphen A., Kyle D.E., Baker B.J. CNS and antimalarial activity of synthetic meridianin and psammopemmin analogs. Bioorg. Med. Chem. 2011;19:5756–5762. doi: 10.1016/j.bmc.2011.08.033. PubMed DOI
Tan L., Yan W., McCorvy J.D., Cheng J. Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure-Functional Selectivity Relationships (SFSRs) and Therapeutic Potential. J. Med. Chem. 2018;61:9841–9878. doi: 10.1021/acs.jmedchem.8b00435. PubMed DOI
Kopinathan A., Scammells P.J., Lane J.R., Capuano B. Multivalent approaches and beyond: Novel tools for the investigation of dopamine D2 receptor pharmacology. Future Med. Chem. 2016;8:1349–1372. doi: 10.4155/fmc-2016-0010. PubMed DOI
Żuk J., Bartuzi D., Miszta P., Kaczor A.A. The Role of Lipids in Allosteric Modulation of Dopamine D(2) Receptor-In Silico Study. Molecules. 2022;27:1335. doi: 10.3390/molecules27041335. PubMed DOI PMC
Jones-Tabah J., Mohammad H., Paulus E.G., Clarke P.B.S., Hébert T.E. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front. Cell. Neurosci. 2021;15:806618. doi: 10.3389/fncel.2021.806618. PubMed DOI PMC
Free R.B., Chun L.S., Moritz A.E., Miller B.N., Doyle T.B., Conroy J.L., Padron A., Meade J.A., Xiao J., Hu X., et al. Discovery and characterization of a G protein-biased agonist that inhibits β-arrestin recruitment to the D2 dopamine receptor. Mol. Pharmacol. 2014;86:96–105. doi: 10.1124/mol.113.090563. PubMed DOI PMC
Bouthenet M.L., Ruat M., Sales N., Garbarg M., Schwartz J.C. A detailed mapping of hist amine H1-receptors in guinea-pig central nervous system established by autoradiography with [125I]iodobolpyramine. Neuroscience. 1988;26:553–600. doi: 10.1016/0306-4522(88)90167-4. PubMed DOI
Vallone D., Picetti R., Borrelli E. Structure and function of dopamine receptors. Neurosci. Biobehav. Rev. 2000;24:125–132. doi: 10.1016/S0149-7634(99)00063-9. PubMed DOI
Saunders C., Limbird L.E. Localization and trafficking of α2-adrenergic receptor subtypes in cells and tissues. Pharmacol. Ther. 1999;84:193–205. doi: 10.1016/S0163-7258(99)00032-7. PubMed DOI
Nichols D.E., Nichols C.D. Serotonin Receptors. Chem. Rev. 2008;108:1614–1641. doi: 10.1021/cr078224o. PubMed DOI
Stark A.J., Smith C.T., Petersen K.J., Trujillo P., van Wouwe N.C., Donahue M.J., Kessler R.M., Deutch A.Y., Zald D.H., Claassen D.O. [(18)F]fallypride characterization of striatal and extrastriatal D(2/3) receptors in Parkinson’s disease. Neuroimage Clin. 2018;18:433–442. doi: 10.1016/j.nicl.2018.02.010. PubMed DOI PMC
Amenta F., Mignini F., Ricci A., Sabbatini M., Tomassoni D., Tayebati S.K. Age-related changes of dopamine receptors in the rat hippocampus: A light microscope autoradiography study. Mech. Ageing Dev. 2001;122:2071–2083. doi: 10.1016/S0047-6374(01)00317-7. PubMed DOI
Szőllősi E., Bobok A., Kiss L., Vass M., Kurkó D., Kolok S., Visegrády A., Keserű G.M. Cell-based and virtual fragment screening for adrenergic α2C receptor agonists. Bioorg. Med. Chem. 2015;23:3991–3999. doi: 10.1016/j.bmc.2015.01.013. PubMed DOI
Nergårdh R., Oerther S., Fredholm B.B. Differences between A 68930 and SKF 82958 could suggest synergistic roles of D1 and D5 receptors. Pharmacol. Biochem. Behav. 2005;82:495–505. doi: 10.1016/j.pbb.2005.09.017. PubMed DOI
DeNinno M.P., Schoenleber R., Perner R.J., Lijewski L., Asin K.E., Britton D.R., MacKenzie R., Kebabian J.W. Synthesis and dopaminergic activity of 3-substituted 1-(aminomethyl)-3,4-dihydro-5,6-dihydroxy-1H-2-benzopyrans: Characterization of an auxiliary binding region in the D1 receptor. J. Med. Chem. 1991;34:2561–2569. doi: 10.1021/jm00112a034. PubMed DOI
Stuchlik A., Radostová D., Hatalova H., Vales K., Nekovarova T., Koprivova J., Svoboda J., Horacek J. Validity of Quinpirole Sensitization Rat Model of OCD: Linking Evidence from Animal and Clinical Studies. Front. Behav. Neurosci. 2016;10:209. doi: 10.3389/fnbeh.2016.00209. PubMed DOI PMC
Burris K.D., Pacheco M.A., Filtz T.M., Kung M.P., Kung H.F., Molinoff P.B. Lack of discrimination by agonists for D2 and D3 dopamine receptors. Neuropsychopharmacology. 1995;12:335–345. doi: 10.1016/0893-133X(94)00099-L. PubMed DOI
Millan M.J., Maiofiss L., Cussac D., Audinot V., Boutin J.A., Newman-Tancredi A. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J. Pharmacol. Exp. Ther. 2002;303:791–804. doi: 10.1124/jpet.102.039867. PubMed DOI
Möller D., Kling R.C., Skultety M., Leuner K., Hübner H., Gmeiner P. Functionally selective dopamine D2, D3 receptor partial agonists. J. Med. Chem. 2014;57:4861–4875. doi: 10.1021/jm5004039. PubMed DOI
Elsner J., Boeckler F., Heinemann F.W., Hübner H., Gmeiner P. Pharmacophore-guided drug discovery investigations leading to bioactive 5-aminotetrahydropyrazolopyridines. Implications for the binding mode of heterocyclic dopamine D3 receptor agonists. J. Med. Chem. 2005;48:5771–5779. doi: 10.1021/jm0503805. PubMed DOI
Newman-Tancredi A., Cussac D., Audinot V., Millan M.J. Actions of roxindole at recombinant human dopamine D2, D3 and D4 and serotonin 5-HT1A, 5-HT1B and 5-HT1D receptors. Naunyn Schmiedebergs Arch. Pharmacol. 1999;359:447–453. doi: 10.1007/PL00005374. PubMed DOI
Solinas M., Tanda G., Wertheim C.E., Goldberg S.R. Dopaminergic augmentation of delta-9-tetrahydrocannabinol (THC) discrimination: Possible involvement of D(2)-induced formation of anandamide. Psychopharmacology. 2010;209:191–202. doi: 10.1007/s00213-010-1789-8. PubMed DOI PMC
Romero A.G., Darlington W.H., McMillan M.W. Synthesis of the Selective D2 Receptor Agonist PNU-95666E from d-Phenylalanine Using a Sequential Oxidative Cyclization Strategy. J. Org. Chem. 1997;62:6582–6587. doi: 10.1021/jo970526a. DOI
McCall R.B., Lookingland K.J., Bédard P.J., Huff R.M. Sumanirole, a highly dopamine D2-selective receptor agonist: In vitro and in vivo pharmacological characterization and efficacy in animal models of Parkinson’s disease. J. Pharmacol. Exp. Ther. 2005;314:1248–1256. doi: 10.1124/jpet.105.084202. PubMed DOI
Heier R.F., Dolak L.A., Duncan J.N., Hyslop D.K., Lipton M.F., Martin I.J., Mauragis M.A., Piercey M.F., Nichols N.F., Schreur P.J., et al. Synthesis and biological activities of (R)-5,6-dihydro-N,N-dimethyl-4H-imidazo[4,5,1-ij]quinolin-5-amine and its metabolites. J. Med. Chem. 1997;40:639–646. doi: 10.1021/jm960360q. PubMed DOI
Zou M.F., Keck T.M., Kumar V., Donthamsetti P., Michino M., Burzynski C., Schweppe C., Bonifazi A., Free R.B., Sibley D.R., et al. Novel Analogues of (R)-5-(Methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (Sumanirole) Provide Clues to Dopamine D2/D3 Receptor Agonist Selectivity. J. Med. Chem. 2016;59:2973–2988. doi: 10.1021/acs.jmedchem.5b01612. PubMed DOI PMC
Villalón C.M., Ramírez-San Juan E., Sánchez-López A., Bravo G., Willems E.W., Saxena P.R., Centurión D. Pharmacological profile of the vascular responses to dopamine in the canine external carotid circulation. Pharmacol. Toxicol. 2003;92:165–172. doi: 10.1034/j.1600-0773.2003.920406.x. PubMed DOI
Wilcox R.E., Huang W.-H., Brusniak M.-Y.K., Wilcox D.M., Pearlman R.S., Teeter M.M., DuRand C.J., Wiens B.L., Neve K.A. CoMFA-Based Prediction of Agonist Affinities at Recombinant Wild Type versus Serine to Alanine Point Mutated D2 Dopamine Receptors. J. Med. Chem. 2000;43:3005–3019. doi: 10.1021/jm990526y. PubMed DOI
Martin S.W., Broadley K.J. Renal vasodilatation by dopexamine and fenoldopam due to α1-adrenoceptor blockade. Br. J. Pharmacol. 1995;115:349–355. doi: 10.1111/j.1476-5381.1995.tb15884.x. PubMed DOI PMC
Ohlstein E.H., Zabko-Potapovich B., Berkowitz B.A. The DA1 receptor agonist fenoldopam (SK & F 82526) is also an α2-adrenoceptor antagonist. Eur. J. Pharmacol. 1985;118:321–329. doi: 10.1016/0014-2999(85)90143-8. PubMed DOI
Nichols A.J., Ruffolo R.R., Jr., Brooks D.P. The pharmacology of fenoldopam. Am. J. Hypertens. 1990;3:116S–119S. doi: 10.1093/ajh/3.6.116S. PubMed DOI
Schetz J.A., Benjamin P.S., Sibley D.R. Nonconserved residues in the second transmembrane-spanning domain of the D(4) dopamine receptor are molecular determinants of D(4)-selective pharmacology. Mol. Pharmacol. 2000;57:144–152. PubMed
Shapiro D.A., Renock S., Arrington E., Chiodo L.A., Liu L.X., Sibley D.R., Roth B.L., Mailman R. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology. 2003;28:1400–1411. doi: 10.1038/sj.npp.1300203. PubMed DOI
Lawler C.P., Prioleau C., Lewis M.M., Mak C., Jiang D., Schetz J.A., Gonzalez A.M., Sibley D.R., Mailman R.B. Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology. 1999;20:612–627. doi: 10.1016/S0893-133X(98)00099-2. PubMed DOI
Kroeze W.K., Hufeisen S.J., Popadak B.A., Renock S.M., Steinberg S., Ernsberger P., Jayathilake K., Meltzer H.Y., Roth B.L. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology. 2003;28:519–526. doi: 10.1038/sj.npp.1300027. PubMed DOI
Shen Y., Monsma F.J., Jr., Metcalf M.A., Jose P.A., Hamblin M.W., Sibley D.R. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J. Biol. Chem. 1993;268:18200–18204. doi: 10.1016/S0021-9258(17)46830-X. PubMed DOI
Kohen R., Metcalf M.A., Khan N., Druck T., Huebner K., Lachowicz J.E., Meltzer H.Y., Sibley D.R., Roth B.L., Hamblin M.W. Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin receptor. J. Neurochem. 1996;66:47–56. doi: 10.1046/j.1471-4159.1996.66010047.x. PubMed DOI
Boess F.G., Monsma F.J., Jr., Sleight A.J. Identification of residues in transmembrane regions III and VI that contribute to the ligand binding site of the serotonin 5-HT6 receptor. J. Neurochem. 1998;71:2169–2177. doi: 10.1046/j.1471-4159.1998.71052169.x. PubMed DOI
Gregori-Puigjané E., Setola V., Hert J., Crews B.A., Irwin J.J., Lounkine E., Marnett L., Roth B.L., Shoichet B.K. Identifying mechanism-of-action targets for drugs and probes. Proc. Natl. Acad. Sci. USA. 2012;109:11178–11183. doi: 10.1073/pnas.1204524109. PubMed DOI PMC
Myers A.M., Charifson P.S., Owens C.E., Kula N.S., McPhail A.T., Baldessarini R.J., Booth R.G., Wyrick S.D. Conformational Analysis, Pharmacophore Identification, and Comparative Molecular Field Analysis of Ligands for the Neuromodulatory ς 3 Receptor. J. Med. Chem. 1994;37:4109–4117. doi: 10.1021/jm00050a008. PubMed DOI
Freedman S.B., Patel S., Marwood R., Emms F., Seabrook G.R., Knowles M.R., McAllister G. Expression and pharmacological characterization of the human D3 dopamine receptor. J. Pharmacol. Exp. Ther. 1994;268:417–426. PubMed
Grundt P., Husband S.L., Luedtke R.R., Taylor M., Newman A.H. Analogues of the dopamine D2 receptor antagonist L741, 626: Binding, function, and SAR. Bioorg. Med. Chem. Lett. 2007;17:745–749. doi: 10.1016/j.bmcl.2006.10.076. PubMed DOI PMC
Vangveravong S., Taylor M., Xu J., Cui J., Calvin W., Babic S., Luedtke R.R., Mach R.H. Synthesis and characterization of selective dopamine D2 receptor antagonists. 2. Azaindole, benzofuran, and benzothiophene analogs of L-741, 626. Bioorg. Med. Chem. 2010;18:5291–5300. doi: 10.1016/j.bmc.2010.05.052. PubMed DOI PMC
Hirokawa Y., Morie T., Yamazaki H., Yoshida N., Kato S. A novel series of N-(hexahydro-1,4-diazepin-6-yl) and N-(hexahydroazepin-3-yl)benzamides with high affinity for 5-HT3 and dopamine D2 receptors. Bioorg. Med. Chem. Lett. 1998;8:619–624. doi: 10.1016/S0960-894X(98)00078-X. PubMed DOI
Sautel F., Griffon N., Sokoloff P., Schwartz J.C., Launay C., Simon P., Costentin J., Schoenfelder A., Garrido F., Mann A., et al. Nafadotride, a potent preferential dopamine D3 receptor antagonist, activates locomotion in rodents. J. Pharmacol. Exp. Ther. 1995;275:1239–1246. PubMed
Newman-Tancredi A., Gavaudan S., Conte C., Chaput C., Touzard M., Verrièle L., Audinot V., Millan M.J. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: A [35S]GTPgammaS binding study. Eur. J. Pharmacol. 1998;355:245–256. doi: 10.1016/S0014-2999(98)00483-X. PubMed DOI
Grundt P., Prevatt K.M., Cao J., Taylor M., Floresca C.Z., Choi J.K., Jenkins B.G., Luedtke R.R., Newman A.H. Heterocyclic analogues of N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)arylcarboxamides with functionalized linking chains as novel dopamine D3 receptor ligands: Potential substance abuse therapeutic agents. J. Med. Chem. 2007;50:4135–4146. doi: 10.1021/jm0704200. PubMed DOI
Newman A.H., Grundt P., Nader M.A. Dopamine D3 receptor partial agonists and antagonists as potential drug abuse therapeutic agents. J. Med. Chem. 2005;48:3663–3679. doi: 10.1021/jm040190e. PubMed DOI
Keck T.M., John W.S., Czoty P.W., Nader M.A., Newman A.H. Identifying Medication Targets for Psychostimulant Addiction: Unraveling the Dopamine D3 Receptor Hypothesis. J. Med. Chem. 2015;58:5361–5380. doi: 10.1021/jm501512b. PubMed DOI PMC
Tang L., Todd R.D., Heller A., O´Malley K.L. Pharmacological and functional characterization of D2, D3 and D4 dopamine receptors in fibroblast and dopaminergic cell lines. J. Pharmacol. Exp. Ther. 1994;268:495–502. PubMed
MacKenzie R.G., VanLeeuwen D., Pugsley T.A., Shih Y.H., Demattos S., Tang L., Todd R.D., O´Malley K.L. Characterization of the human dopamine D3 receptor expressed in transfected cell lines. Eur. J. Pharmacol. 1994;266:79–85. doi: 10.1016/0922-4106(94)90212-7. PubMed DOI
Sleight A.J., Stam N.J., Mutel V., Vanderheyden P.M. Radiolabelling of the human 5-HT2A receptor with an agonist, a partial agonist and an antagonist: Effects on apparent agonist affinities. Biochem. Pharmacol. 1996;51:71–76. doi: 10.1016/0006-2952(95)02122-1. PubMed DOI
Maroteaux L., Saudou F., Amlaiky N., Boschert U., Plassat J.L., Hen R. Mouse 5HT1B serotonin receptor: Cloning, functional expression, and localization in motor control centers. Proc. Natl. Acad. Sci. USA. 1992;89:3020–3024. doi: 10.1073/pnas.89.7.3020. PubMed DOI PMC
Yoshio R., Taniguchi T., Itoh H., Muramatsu I. Affinity of serotonin receptor antagonists and agonists to recombinant and native alpha1-adrenoceptor subtypes. Jpn. J. Pharmacol. 2001;86:189–195. doi: 10.1254/jjp.86.189. PubMed DOI
Stark D., Piel M., Hübner H., Gmeiner P., Gründer G., Rösch F. In vitro affinities of various halogenated benzamide derivatives as potential radioligands for non-invasive quantification of D(2)-like dopamine receptors. Bioorg. Med. Chem. 2007;15:6819–6829. doi: 10.1016/j.bmc.2007.07.017. PubMed DOI
Dörfler M., Tschammer N., Hamperl K., Hübner H., Gmeiner P. Novel D3 selective dopaminergics incorporating enyne units as nonaromatic catechol bioisosteres: Synthesis, bioactivity, and mutagenesis studies. J. Med. Chem. 2008;51:6829–6838. doi: 10.1021/jm800895v. PubMed DOI
Ricci A., Veglio F., Amenta F. Radioligand binding characterization of putative dopamine D3 receptor in human peripheral blood lymphocytes with [3H]7-OH-DPAT. J. Neuroimmunol. 1995;58:139–144. doi: 10.1016/0165-5728(95)00004-L. PubMed DOI
Brown D.A., Mishra M., Zhang S., Biswas S., Parrington I., Antonio T., Reith M.E., Dutta A.K. Investigation of various N-heterocyclic substituted piperazine versions of 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol: Effect on affinity and selectivity for dopamine D3 receptor. Bioorg. Med. Chem. 2009;17:3923–3933. doi: 10.1016/j.bmc.2009.04.031. PubMed DOI PMC
Maggio R., Scarselli M., Novi F., Corsini G.U. Heterodimerization of G-Protein-Coupled Receptors Reveals an Unexpected Level of Pharmacological Diversity. Med. Chem. Res. 2004;13:25–33. doi: 10.1007/s00044-004-0006-x. DOI
Stjernlöf P., Lin C.-H., Sonesson C., Svensson K., Smith M.W. (Dipropylamino)-tetrahydronaphthofurans: Centrally acting serotonin agonists and dopamine agonists-antagonists. Bioorg. Med. Chem. Lett. 1997;7:2759–2764. doi: 10.1016/S0960-894X(97)10068-3. DOI
Chumpradit S., Kung M.P., Vessotskie J., Foulon C., Mu M., Kung H.F. Iodinated 2-aminotetralins and 3-amino-1-benzopyrans: Ligands for dopamine D2 and D3 receptors. J. Med. Chem. 1994;37:4245–4250. doi: 10.1021/jm00050a021. PubMed DOI
Deeks E.D., Keating G.M. Blonanserin: A review of its use in the management of schizophrenia. CNS Drugs. 2010;24:65–84. doi: 10.2165/11202620-000000000-00000. PubMed DOI
Ochi T., Sakamoto M., Minamida A., Suzuki K., Ueda T., Une T., Toda H., Matsumoto K., Terauchi Y. Syntheses and properties of the major hydroxy metabolites in humans of blonanserin AD-5423, a novel antipsychotic agent. Bioorg. Med. Chem. Lett. 2005;15:1055–1059. doi: 10.1016/j.bmcl.2004.12.028. PubMed DOI
Hida H., Mouri A., Mori K., Matsumoto Y., Seki T., Taniguchi M., Yamada K., Iwamoto K., Ozaki N., Nabeshima T., et al. Blonanserin ameliorates phencyclidine-induced visual-recognition memory deficits: The complex mechanism of blonanserin action involving D3-5-HT2A and D1-NMDA receptors in the mPFC. Neuropsychopharmacology. 2015;40:601–613. doi: 10.1038/npp.2014.207. PubMed DOI PMC
Tenjin T., Miyamoto S., Ninomiya Y., Kitajima R., Ogino S., Miyake N., Yamaguchi N. Profile of blonanserin for the treatment of schizophrenia. Neuropsychiatr. Dis. Treat. 2013;9:587–594. doi: 10.2147/NDT.S34433. PubMed DOI PMC
Roth B.L., Craigo S.C., Choudhary M.S., Uluer A., Monsma F.J., Jr., Shen Y., Meltzer H.Y., Sibley D.R. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J. Pharmacol. Exp. Ther. 1994;268:1403–1410. PubMed
Arnt J., Skarsfeldt T. Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology. 1998;18:63–101. doi: 10.1016/S0893-133X(97)00112-7. PubMed DOI
Egan C.T., Herrick-Davis K., Teitler M. Creation of a constitutively activated state of the 5-hydroxytryptamine2A receptor by site-directed mutagenesis: Inverse agonist activity of antipsychotic drugs. J. Pharmacol. Exp. Ther. 1998;286:85–90. PubMed
Thomas D.R., Gittins S.A., Collin L.L., Middlemiss D.N., Riley G., Hagan J., Gloger I., Ellis C.E., Forbes I.T., Brown A.M. Functional characterisation of the human cloned 5-HT7 receptor (long form); antagonist profile of SB-258719. Br. J. Pharmacol. 1998;124:1300–1306. doi: 10.1038/sj.bjp.0701946. PubMed DOI PMC
Fernández J., Alonso J.M., Andrés J.I., Cid J.M., Díaz A., Iturrino L., Gil P., Megens A., Sipido V.K., Trabanco A.A. Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents. J. Med. Chem. 2005;48:1709–1712. doi: 10.1021/jm049632c. PubMed DOI
Schotte A., Janssen P.F., Gommeren W., Luyten W.H., Van Gompel P., Lesage A.S., De Loore K., Leysen J.E. Risperidone compared with new and reference antipsychotic drugs: In vitro and in vivo receptor binding. Psychopharmacology. 1996;124:57–73. doi: 10.1007/BF02245606. PubMed DOI
Lange J.H., Reinders J.H., Tolboom J.T., Glennon J.C., Coolen H.K., Kruse C.G. Principal component analysis differentiates the receptor binding profiles of three antipsychotic drug candidates from current antipsychotic drugs. J. Med. Chem. 2007;50:5103–5108. doi: 10.1021/jm070516u. PubMed DOI
Rowley M., Bristow L.J., Hutson P.H. Current and novel approaches to the drug treatment of schizophrenia. J. Med. Chem. 2001;44:477–501. doi: 10.1021/jm0002432. PubMed DOI
Millan M.J., Peglion J.L., Vian J., Rivet J.M., Brocco M., Gobert A., Newman-Tancredi A., Dacquet C., Bervoets K., Girardon S., et al. Functional correlates of dopamine D3 receptor activation in the rat in vivo and their modulation by the selective antagonist, (+)-S 14297: 1. Activation of postsynaptic D3 receptors mediates hypothermia, whereas blockade of D2 receptors elicits prolactin secretion and catalepsy. J. Pharmacol. Exp. Ther. 1995;275:885–898. PubMed
Purohit A., Smith C., Herrick-Davis K., Teitler M. Stable expression of constitutively activated mutant h5HT6 and h5HT7 serotonin receptors: Inverse agonist activity of antipsychotic drugs. Psychopharmacology. 2005;179:461–469. doi: 10.1007/s00213-004-2057-6. PubMed DOI
Seeman P., Corbett R., Van Tol H.H. Atypical neuroleptics have low affinity for dopamine D2 receptors or are selective for D4 receptors. Neuropsychopharmacology. 1997;16:93–110; discussion 111–135. doi: 10.1016/S0893-133X(96)00187-X. PubMed DOI
Bandyopadhyaya A., Rajagopalan D.R., Rath N.P., Herrold A., Rajagopalan R., Napier T.C., Tedford C.E., Rajagopalan P. The synthesis and receptor binding affinities of DDD-016, a novel, potential, atypical antipsychotic. MedChemComm. 2012;3:580–583. doi: 10.1039/c2md00311b. DOI
Ablordeppey S.Y., Altundas R., Bricker B., Zhu X.Y., Kumar E.V., Jackson T., Khan A., Roth B.L. Identification of a butyrophenone analog as a potential atypical antipsychotic agent: 4-[4-(4-chlorophenyl)-1,4-diazepan-1-yl]-1-(4-fluorophenyl)butan-1-one. Bioorg. Med. Chem. 2008;16:7291–7301. doi: 10.1016/j.bmc.2008.06.030. PubMed DOI PMC
Bolós J., Anglada L., Gubert S., Planas J.M., Agut J., Príncep M., De la Fuente N., Sacristán A., Ortiz J.A. 7-[3-(1-piperidinyl)propoxy]chromenones as potential atypical antipsychotics. 2. Pharmacological profile of 7-[3-[4-(6-fluoro-1, 2-benzisoxazol-3-yl)-piperidin-1-yl]propoxy]-3-(hydroxymeth yl)chromen -4-one (abaperidone, FI-8602) J. Med. Chem. 1998;41:5402–5409. doi: 10.1021/jm9810396. PubMed DOI
Li M.Y., Tsai K.C., Xia L. Pharmacophore identification of alpha(1A)-adrenoceptor antagonists. Bioorg. Med. Chem. Lett. 2005;15:657–664. doi: 10.1016/j.bmcl.2004.11.032. PubMed DOI
Jørgensen M., Jørgensen P.N., Christoffersen C.T., Jensen K.G., Balle T., Bang-Andersen B. Discovery of novel α1-adrenoceptor ligands based on the antipsychotic sertindole suitable for labeling as PET ligands. Bioorg. Med. Chem. 2013;21:196–204. doi: 10.1016/j.bmc.2012.10.049. PubMed DOI
Kristensen J.L., Püschl A., Jensen M., Risgaard R., Christoffersen C.T., Bang-Andersen B., Balle T. Exploring the neuroleptic substituent in octoclothepin: Potential ligands for positron emission tomography with subnanomolar affinity for α(1)-adrenoceptors. J. Med. Chem. 2010;53:7021–7034. doi: 10.1021/jm100652h. PubMed DOI
Kołaczkowski M., Marcinkowska M., Bucki A., Pawłowski M., Mitka K., Jaśkowska J., Kowalski P., Kazek G., Siwek A., Wasik A., et al. Novel arylsulfonamide derivatives with 5-HT6/5-HT7 receptor antagonism targeting behavioral and psychological symptoms of dementia. J. Med. Chem. 2014;57:4543–4557. doi: 10.1021/jm401895u. PubMed DOI
Krogsgaard-Larsen N., Jensen A.A., Kehler J. Novel 7-phenylsulfanyl-1,2,3,4,10,10a-hexahydro-pyrazino[1,2-a]indoles as dual serotonin 5-HT2C and 5-HT6 receptor ligands. Bioorg. Med. Chem. Lett. 2010;20:5431–5433. doi: 10.1016/j.bmcl.2010.07.105. PubMed DOI
Balle T., Perregaard J., Ramirez M.T., Larsen A.K., Søby K.K., Liljefors T., Andersen K. Synthesis and structure-affinity relationship investigations of 5-heteroaryl-substituted analogues of the antipsychotic sertindole. A new class of highly selective alpha(1) adrenoceptor antagonists. J. Med. Chem. 2003;46:265–283. doi: 10.1021/jm020938y. PubMed DOI
Seeman P. Antipsychotic drugs, dopamine receptors, and schizophrenia. Clin. Neurosci. Res. 2001;1:53–60. doi: 10.1016/S1566-2772(00)00007-4. DOI
Burstein E.S., Ma J., Wong S., Gao Y., Pham E., Knapp A.E., Nash N.R., Olsson R., Davis R.E., Hacksell U., et al. Intrinsic efficacy of antipsychotics at human D2, D3, and D4 dopamine receptors: Identification of the clozapine metabolite N-desmethylclozapine as a D2/D3 partial agonist. J. Pharmacol. Exp. Ther. 2005;315:1278–1287. doi: 10.1124/jpet.105.092155. PubMed DOI
Vasudevan S.R., Moore J.B., Schymura Y., Churchill G.C. Shape-based reprofiling of FDA-approved drugs for the H1 histamine receptor. J. Med. Chem. 2012;55:7054–7060. doi: 10.1021/jm300671m. PubMed DOI
Sun B., Feng D., Chu M.L.-H., Fish I., Lovera S., Sands Z.A., Kelm S., Valade A., Wood M., Ceska T., et al. Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. Nat. Commun. 2021;12:3305. doi: 10.1038/s41467-021-23519-9. PubMed DOI PMC
Lee B., Taylor M., Griffin S.A., McInnis T., Sumien N., Mach R.H., Luedtke R.R. Evaluation of Substituted N-Phenylpiperazine Analogs as D3 vs. D2 Dopamine Receptor Subtype Selective Ligands. Molecules. 2021;26:3182. doi: 10.3390/molecules26113182. PubMed DOI PMC
Kalani M.Y.S., Vaidehi N., Hall S.E., Trabanino R.J., Freddolino P.L., Kalani M.A., Floriano W.B., Kam V.W.T., Goddard W.A., 3rd The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proc. Natl. Acad. Sci. USA. 2004;101:3815–3820. doi: 10.1073/pnas.0400100101. PubMed DOI PMC
Cover K.K., Mathur B.N. Axo-axonic synapses: Diversity in neural circuit function. J. Comp. Neurol. 2021;529:2391–2401. doi: 10.1002/cne.25087. PubMed DOI PMC
Borroto-Escuela D.O., Ambrogini P., Narvaez M., Di Liberto V., Beggiato S., Ferraro L., Fores-Pons R., Alvarez-Contino J.E., Lopez-Salas A., Mudò G., et al. Serotonin Heteroreceptor Complexes and Their Integration of Signals in Neurons and Astroglia—Relevance for Mental Diseases. Cells. 2021;10:1902. doi: 10.3390/cells10081902. PubMed DOI PMC
Chagraoui A., Boulain M., Juvin L., Anouar Y., Barrière G., Deurwaerdère P.D. L-DOPA in Parkinson’s Disease: Looking at the “False” Neurotransmitters and Their Meaning. Int. J. Mol. Sci. 2020;21:294. doi: 10.3390/ijms21010294. PubMed DOI PMC
Cachope R., Cheer J.F. Local control of striatal dopamine release. Front. Behav. Neurosci. 2014;8:188. doi: 10.3389/fnbeh.2014.00188. PubMed DOI PMC
Fuxe K., Borroto-Escuela D., Romero-Fernandez W., Zhang W.-B., Agnati L. Volume transmission and its different forms in the central nervous system. Chin. J. Integr. Med. 2013;19:323–329. doi: 10.1007/s11655-013-1455-1. PubMed DOI
Zoli M., Torri C., Ferrari R., Jansson A., Zini I., Fuxe K., Agnati L.F. The emergence of the volume transmission concept. Brain Res. Rev. 1998;26:136–147. doi: 10.1016/S0165-0173(97)00048-9. PubMed DOI
Heinrich J.N., Butera J.A., Carrick T., Kramer A., Kowal D., Lock T., Marquis K.L., Pausch M.H., Popiolek M., Sun S.-C., et al. Pharmacological comparison of muscarinic ligands: Historical versus more recent muscarinic M1-preferring receptor agonists. Eur. J. Pharmacol. 2009;605:53–56. doi: 10.1016/j.ejphar.2008.12.044. PubMed DOI
Fujio M., Togo Y., Tomozane H., Kuroita T., Morio Y., Katayama J., Matsumoto Y. N-[[1-(2-phenylethyl)pyrrolidin-2-yl]methyl]cyclohexanecarboxamides as selective 5-HT1A receptor agonists. Bioorg. Med. Chem. Lett. 2000;10:509–512. doi: 10.1016/S0960-894X(00)00030-5. PubMed DOI
Perez M., Jorand-Lebrun C., Pauwels P.J., Pallard I., Halazy S. Dimers of 5HT1 ligands preferentially bind to 5HT1B/1D receptor subtypes. Bioorg. Med. Chem. Lett. 1998;8:1407–1412. doi: 10.1016/S0960-894X(98)00222-4. PubMed DOI
Haadsma-Svensson S.R., Svensson K., Duncan N., Smith M.W., Lin C.H. C-9 and N-substituted analogs of cis-(3aR)-(−)-2,3,3a,4,5,9b-hexahydro-3-propyl-1H-benz[e]indole-9-carboxamide: 5-HT1A receptor agonists with various degrees of metabolic stability. J. Med. Chem. 1995;38:725–734. doi: 10.1021/jm00004a018. PubMed DOI
Kalkman H.O., Subramanian N., Hoyer D. Extended radioligand binding profile of iloperidone: A broad spectrum dopamine/serotonin/norepinephrine receptor antagonist for the management of psychotic disorders. Neuropsychopharmacology. 2001;25:904–914. doi: 10.1016/S0893-133X(01)00285-8. PubMed DOI
Kongsamut S., Roehr J.E., Cai J., Hartman H.B., Weissensee P., Kerman L.L., Tang L., Sandrasagra A. Iloperidone binding to human and rat dopamine and 5-HT receptors. Eur. J. Pharmacol. 1996;317:417–423. doi: 10.1016/S0014-2999(96)00840-0. PubMed DOI
Strupczewski J.T., Bordeau K.J., Chiang Y., Glamkowski E.J., Conway P.G., Corbett R., Hartman H.B., Szewczak M.R., Wilmot C.A., Helsley G.C. 3-[[(Aryloxy)alkyl]piperidinyl]-1,2-benzisoxazoles as D2/5-HT2 antagonists with potential atypical antipsychotic activity: Antipsychotic profile of iloperidone (HP 873) J. Med. Chem. 1995;38:1119–1131. doi: 10.1021/jm00007a009. PubMed DOI