Plasticity-Related Activity in the Hippocampus, Anterior Cingulate, Orbitofrontal, and Prefrontal Cortex Following a Repeated Treatment with D2/D3 Agonist Quinpirole
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NU20-04-00147
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
33440912
PubMed Central
PMC7827652
DOI
10.3390/biom11010084
PII: biom11010084
Knihovny.cz E-zdroje
- Klíčová slova
- Arc, Homer1, hippocampus, obsessive-compulsive disorder, quinpirole, stereotypical checking,
- MeSH
- antagonisté dopaminu D2 farmakologie MeSH
- chinpyrol farmakologie MeSH
- cingulární gyrus účinky léků fyziologie MeSH
- hipokampus účinky léků fyziologie MeSH
- krysa rodu Rattus MeSH
- neurony účinky léků metabolismus MeSH
- neuroplasticita účinky léků fyziologie MeSH
- okamžité časné geny MeSH
- pohybová aktivita účinky léků MeSH
- potkani Long-Evans MeSH
- prefrontální mozková kůra účinky léků fyziologie MeSH
- receptory dopaminu D2 metabolismus MeSH
- receptory dopaminu D3 antagonisté a inhibitory MeSH
- regulace genové exprese účinky léků MeSH
- stereotypní chování účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antagonisté dopaminu D2 MeSH
- chinpyrol MeSH
- receptory dopaminu D2 MeSH
- receptory dopaminu D3 MeSH
Quinpirole (QNP) sensitization is a well-established model of stereotypical checking relevant to obsessive-compulsive disorder. Previously, we found that QNP-treated rats display deficits in hippocampus-dependent tasks. The present study explores the expression of immediate early genes (IEG) during QNP-induced stereotypical checking in the hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and medial prefrontal cortex (mPFC). Adult male rats were injected with QNP (0.5 mg/mL/kg; n = 15) or saline (n = 14) daily for 10 days and exposed to an arena enriched with two objects. Visits to the objects and the corners of the arena were recorded. QNP-treated rats developed an idiosyncratic pattern of visits that persisted across experimental days. On day 11, rats were exposed to the arena twice for 5 min and sacrificed. The expression of IEGs Arc and Homer1a was determined using cellular compartment analysis of temporal activity by fluorescence in situ hybridization. IEG-positive nuclei were counted in the CA1 area of the hippocampus, ACC, OFC, and mPFC. We found significantly fewer IEG-positive nuclei in the CA1 in QNP-treated rats compared to controls. The overlap between IEG expressing neurons was comparable between the groups. We did not observe significant differences in IEG expression between QNP treated and control rats in ACC, OFC, and mPFC. In conclusion, treatment of rats with quinpirole decreases plasticity-related activity in the hippocampus during stereotypical checking.
1st Faculty of Medicine Charles University 142 20 Prague Czech Republic
2nd Faculty of Medicine Charles University 142 20 Prague Czech Republic
3rd Faculty of Medicine Charles University 142 20 Prague Czech Republic
Zobrazit více v PubMed
Murray C.J.L., Lopez A.D. The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries and Risk Factors in 1990 and Projected to 2010. Volume 1. Harvard University Press; Cambridge, MA, USA: 1996. pp. 1–35.
Swain S., Behura S.A. Comparative study of quality of life and disability among schizophrenia and obsessive-compulsive dis-order patients in remission. Ind. Psychiatry J. 2016;25:210. PubMed PMC
Albert U., Marazziti D., Di Salvo G., Solia F., Rosso G., Maina G. A Systematic Review of Evidence-based Treatment Strategies for Obsessive- compulsive Disorder Resistant to first-line Pharmacotherapy. Curr. Med. Chem. 2017;25:5647–5661. doi: 10.2174/0929867325666171222163645. PubMed DOI
Hirschtritt M.E., Bloch M.H., Mathews C.A. Obsessive-compulsive disorder advances in diagnosis and treatment. JAMA J. Am. Med. Assoc. 2017;317:1358–1367. doi: 10.1001/jama.2017.2200. PubMed DOI
Bloch M.H., Green C., Kichuk S.A., Dombrowski P.A., Wasylink S., Billingslea E., Landeros-Weisenberger A., Kelmendi B., Goodman W.K., Leckman J.F., et al. Long-term outcome in adults with obses-sive-compulsive disorder. Depress. Anxiety. 2013;30:716–722. doi: 10.1002/da.22103. PubMed DOI PMC
Baxter L.R., Schwartz J.M., Mazziotta J.C., Phelps M.E., Pahl J.J., Guze B.H., Fairbanks L. Cerebral glucose metabolic rates in nondepressed patients with obsessive-compulsive disorder. Am. J. Psychiatry. 1988;145:1560–1563. doi: 10.1176/ajp.145.12.1560. PubMed DOI
Perani D., Colombo C., Bressi S., Bonfanti A., Grassi F., Scarone S., Bellodi L., Smeraldi E., Fazio F. [18F]FDG PET Study in Obsessive–Compulsive Disorder: A Clinical/Metabolic Correlation Study after Treatment. Br. J. Psychiatry. 1995;166:244–250. doi: 10.1192/bjp.166.2.244. PubMed DOI
Del Casale A., Kotzalidis G.D., Rapinesi C., Serata D., Ambrosi E., Simonetti A., Pompili M., Ferracuti S., Tatarelli R., Girardi P. Functional Neuroimaging in Obsessive-Compulsive Disorder. Neuropsychobiology. 2011;64:61–85. doi: 10.1159/000325223. PubMed DOI
Milad M.R., Rauch S.L. Obsessive-compulsive disorder: Beyond segregated cortico-striatal pathways. Trends Cogn. Sci. 2012;16:43–51. doi: 10.1016/j.tics.2011.11.003. PubMed DOI PMC
Kwon J.S., Shin Y.-W., Kim C.-W., Kim Y.I., Youn T., Han M.H., Chang K.-H., Kim J.-J. Similarity and disparity of obsessive-compulsive disorder and schizophrenia in MR volumetric abnormalities of the hippocampus-amygdala complex. J. Neurol. Neurosurg. Psychiatry. 2003;74:962–964. doi: 10.1136/jnnp.74.7.962. PubMed DOI PMC
Göttlich M., Krämer U.M., Kordon A., Hohagen F., Zurowski B. Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder. Hum. Brain Mapp. 2014;35:5617–5632. doi: 10.1002/hbm.22574. PubMed DOI PMC
Adler C.M., McDonough-Ryan P., Sax K.W., Holland S.K., Arndt S., Strakowski S.M. fMRI of neuronal activation with symptom provocation in unmedicated patients with obsessive compulsive disorder. J. Psychiatr. Res. 2000;34:317–324. doi: 10.1016/S0022-3956(00)00022-4. PubMed DOI
Marsh R., Tau G.Z., Wang Z., Huo Y., Liu G., Hao X., Packard M.G., Peterson B.S., Simpson H.B. Reward-based spatial learning in unmedicated adults with obsessive-compulsive disorder. Am. J. Psychiatry. 2015;172:383–392. doi: 10.1176/appi.ajp.2014.13121700. PubMed DOI PMC
Rauch S.L., Savage C.R., Alpert N.M., Dougherty D., Kendrick A., Curran T., Brown H.D., Manzo P., Fischman A.J., Jenike M.A. Probing striatal function in obsessive-compulsive disorder: A PET study of implicit sequence learning. J. Neuropsychiatry Clin. Neurosci. 1997;9:568–573. PubMed
Kang D.H., Kwon J.S., Kim J.J., Youn T., Park H.J., Kim M.S., Lee D.S., Lee M.C. Brain glucose metabolic changes associated with neuropsy-chological improvements after 4 months of treatment in patients with obsessive-compulsive disorder. Acta Psychiatr. Scand. 2003;107:291–297. doi: 10.1034/j.1600-0447.2003.00070.x. PubMed DOI
Atmaca M., Yildirim H., Ozdemir H., Koc M., Ozler S., Tezcan E. Neurochemistry of the hippocampus in patients with obsessive-compulsive disorder: Regular article. Psychiatry Clin. Neurosci. 2009;63:486–490. doi: 10.1111/j.1440-1819.2009.01993.x. PubMed DOI
Atmaca M., Yildirim H., Ozdemir H., Ozler S., Kara B., Ozler Z., Kanmaz E., Mermi O., Tezcan E. Hippocampus and amygdalar volumes in patients with refractory obsessive–compulsive disorder. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2008;32:1283–1286. doi: 10.1016/j.pnpbp.2008.04.002. PubMed DOI
Reess T.J., Rus O.G., Gürsel D.A., Schmitz-Koep B., Wagner G., Berberich G., Koch K. Association between hippocampus volume and symptom profiles in obsessive-compulsive disorder. NeuroImage Clin. 2018;17:474–480. doi: 10.1016/j.nicl.2017.11.006. PubMed DOI PMC
Heuvel O.A.V.D., Boedhoe P.S., Bertolin S., Bruin W.B., Francks C., Ivanov I., Jahanshad N., Kong X., Kwon J.S., O’Neill J., et al. An overview of the first 5 years of the ENIGMA obsessive–compulsive disorder working group: The power of worldwide collaboration. Hum. Brain Mapp. 2020 doi: 10.1002/hbm.24972. PubMed DOI PMC
Kettl P.A., Marks I.M. Neurological Factors in Obsessive Compulsive Disorder: Two case reports and a review of the literature. Br. J. Psychiatry. 1986;149:315–319. doi: 10.1192/bjp.149.3.315. PubMed DOI
Stern T.A., Murray G.B. Complex Partial Seizures Presenting as a Psychiatric Illness. J. Nerv. Ment. Dis. 1984;172:625–627. doi: 10.1097/00005053-198410000-00006. PubMed DOI
Max J.E., Smith W.L., Lindgren S.D., Robin N.A., Mattheis P., Stierwalt J., Morrisey M. Case Study: Obsessive-Compulsive Disorder after Severe Traumatic Brain Injury in an Adolescent. J. Am. Acad. Child Adolesc. Psychiatry. 1995;34:45–49. doi: 10.1097/00004583-199501000-00012. PubMed DOI
Isaacs K.L., Philbeck J.W., Barr W.B., Devinsky O., Alper K. Obsessive-compulsive symptoms in patients with temporal lobe epi-lepsy. Epilepsy Behav. 2004;5:569–574. doi: 10.1016/j.yebeh.2004.04.009. PubMed DOI
Kaplan P.W. Obsessive–compulsive disorder in chronic epilepsy. Epilepsy Behav. 2011;22:428–432. doi: 10.1016/j.yebeh.2011.07.029. PubMed DOI
Szechtman H., Eckert M.J., Tse W.S., Boersma J.T., Bonura C.A., McClelland J.Z., Culver K.E., Eilam D. Compulsive checking behavior of quinpirole-sensitized rats as an animal model of Obsessive-Compulsive Disorder(OCD): Form and control. BMC Neurosci. 2001;2:4. doi: 10.1186/1471-2202-2-4. PubMed DOI PMC
Hatalova H., Radostová D., Pistikova A., Vales K., Stuchlik A. Spatial Reversal Learning in Chronically Sensitized Rats and in Undrugged Sensitized Rats with Dopamine D2-Like Receptor Agonist Quinpirole. Front. Behav. Neurosci. 2014;8 doi: 10.3389/fnbeh.2014.00122. PubMed DOI PMC
Hatalova H., Radostova D., Pistikova A., Vales K., Stuchlík A. Detrimental effect of clomipramine on hippocampus-dependent learning in an animal model of obsessive-compulsive disorder induced by sensitization with d2/d3 agonist quinpirole. Behav. Brain Res. 2017;317:210–217. doi: 10.1016/j.bbr.2016.09.042. PubMed DOI
Chawla M.K., Guzowski J.F., Ramirez-Amaya V., Lipa P., Hoffman K.L., Marriott L.K., Worley P.F., McNaughton B.L., Barnes C.A. Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial ex-perience. Hippocampus. 2005;15:579–586. doi: 10.1002/hipo.20091. PubMed DOI
Bramham C.R., Worley P.F., Moore M.J., Guzowski J.F. The Immediate Early Gene Arc/Arg3.1: Regulation, Mechanisms, and Function. J. Neurosci. 2008;28:11760–11767. doi: 10.1523/JNEUROSCI.3864-08.2008. PubMed DOI PMC
Ramirez-Amaya V., Angulo-Perkins A., Chawla M.K., Barnes C.A., Rosi S. Sustained Transcription of the Immediate Early Gene Arc in the Dentate Gyrus after Spatial Exploration. J. Neurosci. 2013;33:1631–1639. doi: 10.1523/JNEUROSCI.2916-12.2013. PubMed DOI PMC
Vazdarjanova A., Ramirez-Amaya V., Insel N., Plummer T.K., Rosi S., Chowdhury S., Mikhael D., Worley P.F., Guzowski J.F., Barnes C.A. Spatial exploration inducesARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. J. Comp. Neurol. 2006;498:317–329. doi: 10.1002/cne.21003. PubMed DOI
Kubik S., Miyashita T., Guzowski J.F. Using immediate-early genes to map hippocampal subregional functions. Learn. Mem. 2007;14:758–770. doi: 10.1101/lm.698107. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biologi-cal-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Vazdarjanova A., Guzowski J.F. Differences in Hippocampal Neuronal Population Responses to Modifications of an Envi-ronmental Context: Evidence for Distinct, Yet Complementary, Functions of CA3 and CA1 Ensembles. J. Neurosci. 2004;24:6489–6496. doi: 10.1523/JNEUROSCI.0350-04.2004. PubMed DOI PMC
Swedo S.E., Rapoport J.L., Leonard H., Lenane M., Cheslow D. Obsessive-Compulsive Disorder in Children and Adolescents. Arch. Gen. Psychiatry. 1989;46:335. doi: 10.1001/archpsyc.1989.01810040041007. PubMed DOI
Servaes S., Glorie D., Verhaeghe J., Wyffels L., Stroobants S., Staelens S. [18F]-FDG PET neuroimaging in rats with quinpirole-induced checking behavior as a model for obsessive compulsive disorder. Psychiatry Res. Neuroimaging. 2016;257:31–38. doi: 10.1016/j.pscychresns.2016.10.003. PubMed DOI
Carpenter T.L., Pazdernik T.L., Levant B. Differences in quinpirole-induced local cerebral glucose utilization between naive and sensitized rats. Brain Res. 2003;964:295–301. doi: 10.1016/S0006-8993(02)04115-X. PubMed DOI
Tanaka K.Z., He H., Tomar A., Niisato K., Huang A.J.Y., McHugh T.J. The hippocampal engram maps experience but not place. Science. 2018;361:392–397. doi: 10.1126/science.aat5397. PubMed DOI
Woods C.M., Vevea J.L., Chambless D.L., Bayen U.J. Are Compulsive Checkers Impaired in Memory? A Meta-Analytic Review. Clin. Psychol. Sci. Pract. 2006;9:353–366. doi: 10.1093/clipsy.9.4.353. DOI
Radomsky A.S., Dugas M.J., Alcolado G.M., Lavoie S.L. When more is less: Doubt, repetition, memory, metamemory, and com-pulsive checking in OCD. Behav. Res. Ther. 2014;59:30–39. doi: 10.1016/j.brat.2014.05.008. PubMed DOI
Asaoka N., Nishitani N., Kinoshita H., Nagai Y., Hatakama H., Nagayasu K., Shirakawa H., Nakagawa T., Kaneko S. An Adenosine A2A Receptor Antagonist Improves Multiple Symptoms of Repeated Quinpirole-Induced Psychosis. eNeuro. 2019;6:0366-18.2019.. doi: 10.1523/ENEURO.0366-18.2019. PubMed DOI PMC