Plasticity-Related Activity in the Hippocampus, Anterior Cingulate, Orbitofrontal, and Prefrontal Cortex Following a Repeated Treatment with D2/D3 Agonist Quinpirole

. 2021 Jan 11 ; 11 (1) : . [epub] 20210111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33440912

Grantová podpora
NU20-04-00147 Agentura Pro Zdravotnický Výzkum České Republiky

Quinpirole (QNP) sensitization is a well-established model of stereotypical checking relevant to obsessive-compulsive disorder. Previously, we found that QNP-treated rats display deficits in hippocampus-dependent tasks. The present study explores the expression of immediate early genes (IEG) during QNP-induced stereotypical checking in the hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and medial prefrontal cortex (mPFC). Adult male rats were injected with QNP (0.5 mg/mL/kg; n = 15) or saline (n = 14) daily for 10 days and exposed to an arena enriched with two objects. Visits to the objects and the corners of the arena were recorded. QNP-treated rats developed an idiosyncratic pattern of visits that persisted across experimental days. On day 11, rats were exposed to the arena twice for 5 min and sacrificed. The expression of IEGs Arc and Homer1a was determined using cellular compartment analysis of temporal activity by fluorescence in situ hybridization. IEG-positive nuclei were counted in the CA1 area of the hippocampus, ACC, OFC, and mPFC. We found significantly fewer IEG-positive nuclei in the CA1 in QNP-treated rats compared to controls. The overlap between IEG expressing neurons was comparable between the groups. We did not observe significant differences in IEG expression between QNP treated and control rats in ACC, OFC, and mPFC. In conclusion, treatment of rats with quinpirole decreases plasticity-related activity in the hippocampus during stereotypical checking.

Zobrazit více v PubMed

Murray C.J.L., Lopez A.D. The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries and Risk Factors in 1990 and Projected to 2010. Volume 1. Harvard University Press; Cambridge, MA, USA: 1996. pp. 1–35.

Swain S., Behura S.A. Comparative study of quality of life and disability among schizophrenia and obsessive-compulsive dis-order patients in remission. Ind. Psychiatry J. 2016;25:210. PubMed PMC

Albert U., Marazziti D., Di Salvo G., Solia F., Rosso G., Maina G. A Systematic Review of Evidence-based Treatment Strategies for Obsessive- compulsive Disorder Resistant to first-line Pharmacotherapy. Curr. Med. Chem. 2017;25:5647–5661. doi: 10.2174/0929867325666171222163645. PubMed DOI

Hirschtritt M.E., Bloch M.H., Mathews C.A. Obsessive-compulsive disorder advances in diagnosis and treatment. JAMA J. Am. Med. Assoc. 2017;317:1358–1367. doi: 10.1001/jama.2017.2200. PubMed DOI

Bloch M.H., Green C., Kichuk S.A., Dombrowski P.A., Wasylink S., Billingslea E., Landeros-Weisenberger A., Kelmendi B., Goodman W.K., Leckman J.F., et al. Long-term outcome in adults with obses-sive-compulsive disorder. Depress. Anxiety. 2013;30:716–722. doi: 10.1002/da.22103. PubMed DOI PMC

Baxter L.R., Schwartz J.M., Mazziotta J.C., Phelps M.E., Pahl J.J., Guze B.H., Fairbanks L. Cerebral glucose metabolic rates in nondepressed patients with obsessive-compulsive disorder. Am. J. Psychiatry. 1988;145:1560–1563. doi: 10.1176/ajp.145.12.1560. PubMed DOI

Perani D., Colombo C., Bressi S., Bonfanti A., Grassi F., Scarone S., Bellodi L., Smeraldi E., Fazio F. [18F]FDG PET Study in Obsessive–Compulsive Disorder: A Clinical/Metabolic Correlation Study after Treatment. Br. J. Psychiatry. 1995;166:244–250. doi: 10.1192/bjp.166.2.244. PubMed DOI

Del Casale A., Kotzalidis G.D., Rapinesi C., Serata D., Ambrosi E., Simonetti A., Pompili M., Ferracuti S., Tatarelli R., Girardi P. Functional Neuroimaging in Obsessive-Compulsive Disorder. Neuropsychobiology. 2011;64:61–85. doi: 10.1159/000325223. PubMed DOI

Milad M.R., Rauch S.L. Obsessive-compulsive disorder: Beyond segregated cortico-striatal pathways. Trends Cogn. Sci. 2012;16:43–51. doi: 10.1016/j.tics.2011.11.003. PubMed DOI PMC

Kwon J.S., Shin Y.-W., Kim C.-W., Kim Y.I., Youn T., Han M.H., Chang K.-H., Kim J.-J. Similarity and disparity of obsessive-compulsive disorder and schizophrenia in MR volumetric abnormalities of the hippocampus-amygdala complex. J. Neurol. Neurosurg. Psychiatry. 2003;74:962–964. doi: 10.1136/jnnp.74.7.962. PubMed DOI PMC

Göttlich M., Krämer U.M., Kordon A., Hohagen F., Zurowski B. Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder. Hum. Brain Mapp. 2014;35:5617–5632. doi: 10.1002/hbm.22574. PubMed DOI PMC

Adler C.M., McDonough-Ryan P., Sax K.W., Holland S.K., Arndt S., Strakowski S.M. fMRI of neuronal activation with symptom provocation in unmedicated patients with obsessive compulsive disorder. J. Psychiatr. Res. 2000;34:317–324. doi: 10.1016/S0022-3956(00)00022-4. PubMed DOI

Marsh R., Tau G.Z., Wang Z., Huo Y., Liu G., Hao X., Packard M.G., Peterson B.S., Simpson H.B. Reward-based spatial learning in unmedicated adults with obsessive-compulsive disorder. Am. J. Psychiatry. 2015;172:383–392. doi: 10.1176/appi.ajp.2014.13121700. PubMed DOI PMC

Rauch S.L., Savage C.R., Alpert N.M., Dougherty D., Kendrick A., Curran T., Brown H.D., Manzo P., Fischman A.J., Jenike M.A. Probing striatal function in obsessive-compulsive disorder: A PET study of implicit sequence learning. J. Neuropsychiatry Clin. Neurosci. 1997;9:568–573. PubMed

Kang D.H., Kwon J.S., Kim J.J., Youn T., Park H.J., Kim M.S., Lee D.S., Lee M.C. Brain glucose metabolic changes associated with neuropsy-chological improvements after 4 months of treatment in patients with obsessive-compulsive disorder. Acta Psychiatr. Scand. 2003;107:291–297. doi: 10.1034/j.1600-0447.2003.00070.x. PubMed DOI

Atmaca M., Yildirim H., Ozdemir H., Koc M., Ozler S., Tezcan E. Neurochemistry of the hippocampus in patients with obsessive-compulsive disorder: Regular article. Psychiatry Clin. Neurosci. 2009;63:486–490. doi: 10.1111/j.1440-1819.2009.01993.x. PubMed DOI

Atmaca M., Yildirim H., Ozdemir H., Ozler S., Kara B., Ozler Z., Kanmaz E., Mermi O., Tezcan E. Hippocampus and amygdalar volumes in patients with refractory obsessive–compulsive disorder. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2008;32:1283–1286. doi: 10.1016/j.pnpbp.2008.04.002. PubMed DOI

Reess T.J., Rus O.G., Gürsel D.A., Schmitz-Koep B., Wagner G., Berberich G., Koch K. Association between hippocampus volume and symptom profiles in obsessive-compulsive disorder. NeuroImage Clin. 2018;17:474–480. doi: 10.1016/j.nicl.2017.11.006. PubMed DOI PMC

Heuvel O.A.V.D., Boedhoe P.S., Bertolin S., Bruin W.B., Francks C., Ivanov I., Jahanshad N., Kong X., Kwon J.S., O’Neill J., et al. An overview of the first 5 years of the ENIGMA obsessive–compulsive disorder working group: The power of worldwide collaboration. Hum. Brain Mapp. 2020 doi: 10.1002/hbm.24972. PubMed DOI PMC

Kettl P.A., Marks I.M. Neurological Factors in Obsessive Compulsive Disorder: Two case reports and a review of the literature. Br. J. Psychiatry. 1986;149:315–319. doi: 10.1192/bjp.149.3.315. PubMed DOI

Stern T.A., Murray G.B. Complex Partial Seizures Presenting as a Psychiatric Illness. J. Nerv. Ment. Dis. 1984;172:625–627. doi: 10.1097/00005053-198410000-00006. PubMed DOI

Max J.E., Smith W.L., Lindgren S.D., Robin N.A., Mattheis P., Stierwalt J., Morrisey M. Case Study: Obsessive-Compulsive Disorder after Severe Traumatic Brain Injury in an Adolescent. J. Am. Acad. Child Adolesc. Psychiatry. 1995;34:45–49. doi: 10.1097/00004583-199501000-00012. PubMed DOI

Isaacs K.L., Philbeck J.W., Barr W.B., Devinsky O., Alper K. Obsessive-compulsive symptoms in patients with temporal lobe epi-lepsy. Epilepsy Behav. 2004;5:569–574. doi: 10.1016/j.yebeh.2004.04.009. PubMed DOI

Kaplan P.W. Obsessive–compulsive disorder in chronic epilepsy. Epilepsy Behav. 2011;22:428–432. doi: 10.1016/j.yebeh.2011.07.029. PubMed DOI

Szechtman H., Eckert M.J., Tse W.S., Boersma J.T., Bonura C.A., McClelland J.Z., Culver K.E., Eilam D. Compulsive checking behavior of quinpirole-sensitized rats as an animal model of Obsessive-Compulsive Disorder(OCD): Form and control. BMC Neurosci. 2001;2:4. doi: 10.1186/1471-2202-2-4. PubMed DOI PMC

Hatalova H., Radostová D., Pistikova A., Vales K., Stuchlik A. Spatial Reversal Learning in Chronically Sensitized Rats and in Undrugged Sensitized Rats with Dopamine D2-Like Receptor Agonist Quinpirole. Front. Behav. Neurosci. 2014;8 doi: 10.3389/fnbeh.2014.00122. PubMed DOI PMC

Hatalova H., Radostova D., Pistikova A., Vales K., Stuchlík A. Detrimental effect of clomipramine on hippocampus-dependent learning in an animal model of obsessive-compulsive disorder induced by sensitization with d2/d3 agonist quinpirole. Behav. Brain Res. 2017;317:210–217. doi: 10.1016/j.bbr.2016.09.042. PubMed DOI

Chawla M.K., Guzowski J.F., Ramirez-Amaya V., Lipa P., Hoffman K.L., Marriott L.K., Worley P.F., McNaughton B.L., Barnes C.A. Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial ex-perience. Hippocampus. 2005;15:579–586. doi: 10.1002/hipo.20091. PubMed DOI

Bramham C.R., Worley P.F., Moore M.J., Guzowski J.F. The Immediate Early Gene Arc/Arg3.1: Regulation, Mechanisms, and Function. J. Neurosci. 2008;28:11760–11767. doi: 10.1523/JNEUROSCI.3864-08.2008. PubMed DOI PMC

Ramirez-Amaya V., Angulo-Perkins A., Chawla M.K., Barnes C.A., Rosi S. Sustained Transcription of the Immediate Early Gene Arc in the Dentate Gyrus after Spatial Exploration. J. Neurosci. 2013;33:1631–1639. doi: 10.1523/JNEUROSCI.2916-12.2013. PubMed DOI PMC

Vazdarjanova A., Ramirez-Amaya V., Insel N., Plummer T.K., Rosi S., Chowdhury S., Mikhael D., Worley P.F., Guzowski J.F., Barnes C.A. Spatial exploration inducesARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. J. Comp. Neurol. 2006;498:317–329. doi: 10.1002/cne.21003. PubMed DOI

Kubik S., Miyashita T., Guzowski J.F. Using immediate-early genes to map hippocampal subregional functions. Learn. Mem. 2007;14:758–770. doi: 10.1101/lm.698107. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biologi-cal-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Vazdarjanova A., Guzowski J.F. Differences in Hippocampal Neuronal Population Responses to Modifications of an Envi-ronmental Context: Evidence for Distinct, Yet Complementary, Functions of CA3 and CA1 Ensembles. J. Neurosci. 2004;24:6489–6496. doi: 10.1523/JNEUROSCI.0350-04.2004. PubMed DOI PMC

Swedo S.E., Rapoport J.L., Leonard H., Lenane M., Cheslow D. Obsessive-Compulsive Disorder in Children and Adolescents. Arch. Gen. Psychiatry. 1989;46:335. doi: 10.1001/archpsyc.1989.01810040041007. PubMed DOI

Servaes S., Glorie D., Verhaeghe J., Wyffels L., Stroobants S., Staelens S. [18F]-FDG PET neuroimaging in rats with quinpirole-induced checking behavior as a model for obsessive compulsive disorder. Psychiatry Res. Neuroimaging. 2016;257:31–38. doi: 10.1016/j.pscychresns.2016.10.003. PubMed DOI

Carpenter T.L., Pazdernik T.L., Levant B. Differences in quinpirole-induced local cerebral glucose utilization between naive and sensitized rats. Brain Res. 2003;964:295–301. doi: 10.1016/S0006-8993(02)04115-X. PubMed DOI

Tanaka K.Z., He H., Tomar A., Niisato K., Huang A.J.Y., McHugh T.J. The hippocampal engram maps experience but not place. Science. 2018;361:392–397. doi: 10.1126/science.aat5397. PubMed DOI

Woods C.M., Vevea J.L., Chambless D.L., Bayen U.J. Are Compulsive Checkers Impaired in Memory? A Meta-Analytic Review. Clin. Psychol. Sci. Pract. 2006;9:353–366. doi: 10.1093/clipsy.9.4.353. DOI

Radomsky A.S., Dugas M.J., Alcolado G.M., Lavoie S.L. When more is less: Doubt, repetition, memory, metamemory, and com-pulsive checking in OCD. Behav. Res. Ther. 2014;59:30–39. doi: 10.1016/j.brat.2014.05.008. PubMed DOI

Asaoka N., Nishitani N., Kinoshita H., Nagai Y., Hatakama H., Nagayasu K., Shirakawa H., Nakagawa T., Kaneko S. An Adenosine A2A Receptor Antagonist Improves Multiple Symptoms of Repeated Quinpirole-Induced Psychosis. eNeuro. 2019;6:0366-18.2019.. doi: 10.1523/ENEURO.0366-18.2019. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...