CRMP2 mediates Sema3F-dependent axon pruning and dendritic spine remodeling
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NV18-04-00085
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council) - International
17-30833A
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council) - International
16-15915S
Grantová Agentura České Republiky (GACR) - International
19-03016S
Grantová Agentura České Republiky (GACR) - International
682217
Grantová Agentura, Univerzita Karlova (GA UK) - International
524218
Grantová Agentura, Univerzita Karlova (GA UK) - International
1062216
Grantová Agentura, Univerzita Karlova (GA UK) - International
FP/2007-2013
EC | FP7 | FP7 Ideas: European Research Council (FP7 Ideas) - International
616791
EC | FP7 | FP7 Ideas: European Research Council (FP7 Ideas) - International
SFB 870
German-Israeli Foundation for Scientific Research and Development (GIF) - International
EXC2145
DFG, Munich Cluster for Systems Neurology (SyNergy), DFG - International
RVO 68378050
Akademie Věd České Republiky (Akademie věd ČR) - International
LM2015040
Ministerstvo Školství, Mládeže a Tělovýchovy (MEYS) - International
CZ.1.05/2.1.00/19.0395
Ministerstvo Školství, Mládeže a Tělovýchovy (MEYS) - International
LM2015062
Ministerstvo Školství, Mládeže a Tělovýchovy (MEYS) - International
CZ.1.05/1.1.00/02.0109
Ministerstvo Školství, Mládeže a Tělovýchovy (MEYS) - International
CZ.2.16/3.1.00/21547
Ministerstvo Školství, Mládeže a Tělovýchovy (MEYS) - International
LO1419
Ministerstvo Školství, Mládeže a Tělovýchovy (MEYS) - International
CRC870-A11
DFG, Collaborative Research Center - International
PubMed
31919978
PubMed Central
PMC7054682
DOI
10.15252/embr.201948512
Knihovny.cz E-zdroje
- Klíčová slova
- axon guidance, collapsin response mediator protein 2, dendritic spines, semaphorins, synapse pruning,
- MeSH
- dendritické trny MeSH
- membránové proteiny fyziologie MeSH
- mezibuněčné signální peptidy a proteiny genetika MeSH
- myši knockoutované MeSH
- myši MeSH
- neurony MeSH
- neuroplasticita MeSH
- poruchy autistického spektra * MeSH
- proteiny nervové tkáně genetika fyziologie MeSH
- semaforiny * MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- collapsin response mediator protein-2 MeSH Prohlížeč
- membránové proteiny MeSH
- mezibuněčné signální peptidy a proteiny MeSH
- proteiny nervové tkáně MeSH
- Sema3f protein, mouse MeSH Prohlížeč
- semaforiny * MeSH
Regulation of axon guidance and pruning of inappropriate synapses by class 3 semaphorins are key to the development of neural circuits. Collapsin response mediator protein 2 (CRMP2) has been shown to regulate axon guidance by mediating semaphorin 3A (Sema3A) signaling; however, nothing is known about its role in synapse pruning. Here, using newly generated crmp2-/- mice we demonstrate that CRMP2 has a moderate effect on Sema3A-dependent axon guidance in vivo, and its deficiency leads to a mild defect in axon guidance in peripheral nerves and the corpus callosum. Surprisingly, crmp2-/- mice display prominent defects in stereotyped axon pruning in hippocampus and visual cortex and altered dendritic spine remodeling, which is consistent with impaired Sema3F signaling and with models of autism spectrum disorder (ASD). We demonstrate that CRMP2 mediates Sema3F signaling in primary neurons and that crmp2-/- mice display ASD-related social behavior changes in the early postnatal period as well as in adults. Together, we demonstrate that CRMP2 mediates Sema3F-dependent synapse pruning and its dysfunction shares histological and behavioral features of ASD.
Faculty of Science Charles University Prague Prague Czech Republic
German Center for Neurodegenerative Diseases and Munich Cluster for Systems Neurology Munich Germany
Institute of Anatomy and Cell Biology Heidelberg University Heidelberg Germany
Institute of Neuronal Cell Biology Technical University Munich Munich Germany
Zobrazit více v PubMed
Riccomagno MM, Kolodkin AL (2015) Sculpting neural circuits by axon and dendrite pruning. Annu Rev Cell Dev Biol 31: 779–805 PubMed PMC
Johnston MV (2004) Clinical disorders of brain plasticity. Brain Dev 26: 73–80 PubMed
Vanderhaeghen P, Cheng HJ (2010) Guidance molecules in axon pruning and cell death. Cold Spring Harb Perspect Biol 2: a001859 PubMed PMC
Van Battum EY, Brignani S, Pasterkamp RJ (2015) Axon guidance proteins in neurological disorders. Lancet Neurol 14: 532–546 PubMed
Yu F, Schuldiner O (2014) Axon and dendrite pruning in Drosophila . Curr Opin Neurobiol 27: 192–198 PubMed PMC
Bagri A, Cheng HJ, Yaron A, Pleasure SJ, Tessier‐Lavigne M (2003) Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113: 285–299 PubMed
Low LK, Liu XB, Faulkner RL, Coble J, Cheng HJ (2008) Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex. Proc Natl Acad Sci USA 105: 8136–8141 PubMed PMC
Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM (1995) Collapsin‐induced growth cone collapse mediated by an intracellular protein related to UNC‐33. Nature 376: 509–514 PubMed
Byk T, Dobransky T, Cifuentes‐Diaz C, Sobel A (1996) Identification and molecular characterization of Unc‐33‐like phosphoprotein (Ulip), a putative mammalian homolog of the axonal guidance‐associated unc‐33 gene product. J Neurosci 16: 688–701 PubMed PMC
Minturn JE, Fryer HJ, Geschwind DH, Hockfield S (1995) TOAD‐64, a gene expressed early in neuronal differentiation in the rat, is related to unc‐33, a C. elegans gene involved in axon outgrowth. J Neurosci 15: 6757–6766 PubMed PMC
Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, Watanabe H, Inagaki N, Iwamatsu A, Hotani H et al (2002) CRMP‐2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4: 583–591 PubMed
Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, Nakamura F, Takei K, Ihara Y, Mikoshiba K et al (2005) Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease. Genes Cells 10: 165–179 PubMed
Yuasa‐Kawada J, Suzuki R, Kano F, Ohkawara T, Murata M, Noda M (2003) Axonal morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization. Eur J Neurosci 17: 2329–2343 PubMed
Balastik M, Zhou XZ, Alberich‐Jorda M, Weissova R, Ziak J, Pazyra‐Murphy MF, Cosker KE, Machonova O, Kozmikova I, Chen CH et al (2015) Prolyl isomerase Pin1 regulates axon guidance by stabilizing CRMP2A selectively in distal axons. Cell Rep 13: 812–828 PubMed PMC
Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005) GSK‐3beta regulates phosphorylation of CRMP‐2 and neuronal polarity. Cell 120: 137–149 PubMed
Arimura N, Menager C, Kawano Y, Yoshimura T, Kawabata S, Hattori A, Fukata Y, Amano M, Goshima Y, Inagaki M et al (2005) Phosphorylation by Rho kinase regulates CRMP‐2 activity in growth cones. Mol Cell Biol 25: 9973–9984 PubMed PMC
Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, Chen Z, Zhang C, Christian KM, Song H et al (2016) Brain‐specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun 7: 11773 PubMed PMC
Makihara H, Nakai S, Ohkubo W, Yamashita N, Nakamura F, Kiyonari H, Shioi G, Jitsuki‐Takahashi A, Nakamura H, Tanaka F et al (2016) CRMP1 and CRMP2 have synergistic but distinct roles in dendritic development. Genes Cells 21: 994–1005 PubMed
Nakata K, Ujike H, Sakai A, Takaki M, Imamura T, Tanaka Y, Kuroda S (2003) The human dihydropyrimidinase‐related protein 2 gene on chromosome 8p21 is associated with paranoid‐type schizophrenia. Biol Psychiatry 53: 571–576 PubMed
Liu Y, Pham X, Zhang L, Chen PL, Burzynski G, McGaughey DM, He S, McGrath JA, Wolyniec P, Fallin MD et al (2014) Functional variants in DPYSL2 sequence increase risk of schizophrenia and suggest a link to mTOR signaling. G3 (Bethesda) 5: 61–72 PubMed PMC
Clark D, Dedova I, Cordwell S, Matsumoto I (2006) A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry 11: 459–470, 423 PubMed
Quach TT, Honnorat J, Kolattukudy PE, Khanna R, Duchemin AM (2015) CRMPs: critical molecules for neurite morphogenesis and neuropsychiatric diseases. Mol Psychiatry 20: 1037–1045 PubMed
Braunschweig D, Krakowiak P, Duncanson P, Boyce R, Hansen RL, Ashwood P, Hertz‐Picciotto I, Pessah IN, Van de Water J (2013) Autism‐specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry 3: e277. PubMed PMC
De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, Kou Y, Liu L, Fromer M, Walker S et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515: 209–215 PubMed PMC
Lord C, Elsabbagh M, Baird G, Veenstra‐Vanderweele J (2018) Autism spectrum disorder. Lancet 392: 508–520 PubMed PMC
Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16: 551–563 PubMed
Kitsukawa T, Shimizu M, Sanbo M, Hirata T, Taniguchi M, Bekku Y, Yagi T, Fujisawa H (1997) Neuropilin‐semaphorin III/D‐mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19: 995–1005 PubMed
Taniguchi M, Yuasa S, Fujisawa H, Naruse I, Saga S, Mishina M, Yagi T (1997) Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron 19: 519–530 PubMed
Chen H, Bagri A, Zupicich JA, Zou Y, Stoeckli E, Pleasure SJ, Lowenstein DH, Skarnes WC, Chedotal A, Tessier‐Lavigne M (2000) Neuropilin‐2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25: 43–56 PubMed
Cheng HJ, Bagri A, Yaron A, Stein E, Pleasure SJ, Tessier‐Lavigne M (2001) Plexin‐A3 mediates semaphorin signaling and regulates the development of hippocampal axonal projections. Neuron 32: 249–263 PubMed
Maimon R, Ionescu A, Bonnie A, Sweetat S, Wald‐Altman S, Inbar S, Gradus T, Trotti D, Weil M, Behar O et al (2018) miR126‐5p downregulation facilitates axon degeneration and NMJ disruption via a non‐cell‐autonomous mechanism in ALS. J Neurosci 38: 5478–5494 PubMed PMC
Brown M, Jacobs T, Eickholt B, Ferrari G, Teo M, Monfries C, Qi RZ, Leung T, Lim L, Hall C (2004) Alpha2‐chimaerin, cyclin‐dependent Kinase 5/p35, and its target collapsin response mediator protein‐2 are essential components in semaphorin 3A‐induced growth‐cone collapse. J Neurosci 24: 8994–9004 PubMed PMC
Zhou J, Wen Y, She L, Sui YN, Liu L, Richards LJ, Poo MM (2013) Axon position within the corpus callosum determines contralateral cortical projection. Proc Natl Acad Sci USA 110: E2714–E2723 PubMed PMC
Wu KY, He M, Hou QQ, Sheng AL, Yuan L, Liu F, Liu WW, Li G, Jiang XY, Luo ZG (2014) Semaphorin 3A activates the guanosine triphosphatase Rab5 to promote growth cone collapse and organize callosal axon projections. Sci Signal 7: ra81 PubMed PMC
Wang CL, Zhang L, Zhou Y, Zhou J, Yang XJ, Duan SM, Xiong ZQ, Ding YQ (2007) Activity‐dependent development of callosal projections in the somatosensory cortex. J Neurosci 27: 11334–11342 PubMed PMC
Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14: 285–293 PubMed PMC
Garey L (2010) When cortical development goes wrong: schizophrenia as a neurodevelopmental disease of microcircuits. J Anat 217: 324–333 PubMed PMC
Liu XB, Low LK, Jones EG, Cheng HJ (2005) Stereotyped axon pruning via plexin signaling is associated with synaptic complex elimination in the hippocampus. J Neurosci 25: 9124–9134 PubMed PMC
Linke R, Pabst T, Frotscher M (1995) Development of the hippocamposeptal projection in the rat. J Comp Neurol 351: 602–616 PubMed
Sahay A, Molliver ME, Ginty DD, Kolodkin AL (2003) Semaphorin 3F is critical for development of limbic system circuitry and is required in neurons for selective CNS axon guidance events. J Neurosci 23: 6671–6680 PubMed PMC
Basarsky TA, Parpura V, Haydon PG (1994) Hippocampal synaptogenesis in cell culture: developmental time course of synapse formation, calcium influx, and synaptic protein distribution. J Neurosci 14: 6402–6411 PubMed PMC
Tran TS, Rubio ME, Clem RL, Johnson D, Case L, Tessier‐Lavigne M, Huganir RL, Ginty DD, Kolodkin AL (2009) Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462: 1065–1069 PubMed PMC
Yamashita N, Morita A, Uchida Y, Nakamura F, Usui H, Ohshima T, Taniguchi M, Honnorat J, Thomasset N, Takei K et al (2007) Regulation of spine development by semaphorin3A through cyclin‐dependent kinase 5 phosphorylation of collapsin response mediator protein 1. J Neurosci 27: 12546–12554 PubMed PMC
Petanjek Z, Judas M, Simic G, Rasin MR, Uylings HB, Rakic P, Kostovic I (2011) Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA 108: 13281–13286 PubMed PMC
Bian WJ, Miao WY, He SJ, Qiu Z, Yu X (2015) Coordinated spine pruning and maturation mediated by inter‐spine competition for cadherin/catenin complexes. Cell 162: 808–822 PubMed
Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TR, Hirsch SR (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65: 446–453 PubMed PMC
Ey E, Torquet N, Le Sourd AM, Leblond CS, Boeckers TM, Faure P, Bourgeron T (2013) The Autism ProSAP1/Shank2 mouse model displays quantitative and structural abnormalities in ultrasonic vocalisations. Behav Brain Res 256: 677–689 PubMed
Hung AY, Futai K, Sala C, Valtschanoff JG, Ryu J, Woodworth MA, Kidd FL, Sung CC, Miyakawa T, Bear MF et al (2008) Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J Neurosci 28: 1697–1708 PubMed PMC
Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, Janssen AL, Udvardi PT, Shiban E, Spilker C et al (2012) Autistic‐like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486: 256–260 PubMed
Binder MS, Lugo JN (2017) NS‐Pten knockout mice show sex‐ and age‐specific differences in ultrasonic vocalizations. Brain Behav 7: e00857 PubMed PMC
Reynolds CD, Nolan SO, Jefferson T, Lugo JN (2016) Sex‐specific and genotype‐specific differences in vocalization development in FMR1 knockout mice. NeuroReport 27: 1331–1335 PubMed PMC
Nakamura H, Yamashita N, Kimura A, Kimura Y, Hirano H, Makihara H, Kawamoto Y, Jitsuki‐Takahashi A, Yonezaki K, Takase K et al (2016) Comprehensive behavioral study and proteomic analyses of CRMP2‐deficient mice. Genes Cells 21: 1059–1079 PubMed
Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB (2002) Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci USA 99: 10825–10830 PubMed PMC
Luo L, O'Leary DD (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28: 127–156 PubMed
Riccomagno MM, Hurtado A, Wang H, Macopson JG, Griner EM, Betz A, Brose N, Kazanietz MG, Kolodkin AL (2012) The RacGAP beta2‐Chimaerin selectively mediates axonal pruning in the hippocampus. Cell 149: 1594–1606 PubMed PMC
Tapia JC, Wylie JD, Kasthuri N, Hayworth KJ, Schalek R, Berger DR, Guatimosim C, Seung HS, Lichtman JW (2012) Pervasive synaptic branch removal in the mammalian neuromuscular system at birth. Neuron 74: 816–829 PubMed
Brill MS, Kleele T, Ruschkies L, Wang M, Marahori NA, Reuter MS, Hausrat TJ, Weigand E, Fisher M, Ahles A et al (2016) Branch‐specific microtubule destabilization mediates axon branch loss during neuromuscular synapse elimination. Neuron 92: 845–856 PubMed PMC
Xu NJ, Henkemeyer M (2009) Ephrin‐B3 reverse signaling through Grb4 and cytoskeletal regulators mediates axon pruning. Nat Neurosci 12: 268–276 PubMed PMC
Cocchi E, Drago A, Serretti A (2016) Hippocampal pruning as a new theory of schizophrenia etiopathogenesis. Mol Neurobiol 53: 2065–2081 PubMed
Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22: 389–442 PubMed
Venkova K, Christov A, Kamaluddin Z, Kobalka P, Siddiqui S, Hensley K (2014) Semaphorin 3A signaling through neuropilin‐1 is an early trigger for distal axonopathy in the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 73: 702–713 PubMed PMC
De Winter F, Vo T, Stam FJ, Wisman LA, Bar PR, Niclou SP, van Muiswinkel FL, Verhaagen J (2006) The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol Cell Neurosci 32: 102–117 PubMed
Demyanenko GP, Mohan V, Zhang X, Brennaman LH, Dharbal KE, Tran TS, Manis PB, Maness PF (2014) Neural cell adhesion molecule NrCAM regulates Semaphorin 3F‐induced dendritic spine remodeling. J Neurosci 34: 11274–11287 PubMed PMC
Schwarting GA, Kostek C, Ahmad N, Dibble C, Pays L, Puschel AW (2000) Semaphorin 3A is required for guidance of olfactory axons in mice. J Neurosci 20: 7691–7697 PubMed PMC
Friedel RH, Plump A, Lu X, Spilker K, Jolicoeur C, Wong K, Venkatesh TR, Yaron A, Hynes M, Chen B et al (2005) Gene targeting using a promoterless gene trap vector (“targeted trapping”) is an efficient method to mutate a large fraction of genes. Proc Natl Acad Sci USA 102: 13188–13193 PubMed PMC
Pozas E, Pascual M, Nguyen Ba‐Charvet KT, Guijarro P, Sotelo C, Chedotal A, Del Rio JA, Soriano E (2001) Age‐dependent effects of secreted Semaphorins 3A, 3F, and 3E on developing hippocampal axons: in vitro effects and phenotype of Semaphorin 3A (‐/‐) mice. Mol Cell Neurosci 18: 26–43 PubMed
Schwarz Q, Waimey KE, Golding M, Takamatsu H, Kumanogoh A, Fujisawa H, Cheng HJ, Ruhrberg C (2008) Plexin A3 and plexin A4 convey semaphorin signals during facial nerve development. Dev Biol 324: 1–9 PubMed PMC
Bretin S, Reibel S, Charrier E, Maus‐Moatti M, Auvergnon N, Thevenoux A, Glowinski J, Rogemond V, Premont J, Honnorat J et al (2005) Differential expression of CRMP1, CRMP2A, CRMP2B, and CRMP5 in axons or dendrites of distinct neurons in the mouse brain. J Comp Neurol 486: 1–17 PubMed
Niisato E, Nagai J, Yamashita N, Abe T, Kiyonari H, Goshima Y, Ohshima T (2012) CRMP4 suppresses apical dendrite bifurcation of CA1 pyramidal neurons in the mouse hippocampus. Dev Neurobiol 72: 1447–1457 PubMed
Yamane M, Yamashita N, Hida T, Kamiya Y, Nakamura F, Kolattukudy P, Goshima Y (2017) A functional coupling between CRMP1 and Nav1.7 for retrograde propagation of Semaphorin3A signaling. J Cell Sci 130: 1393–1403 PubMed
Giger RJ, Cloutier JF, Sahay A, Prinjha RK, Levengood DV, Moore SE, Pickering S, Simmons D, Rastan S, Walsh FS et al (2000) Neuropilin‐2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron 25: 29–41 PubMed
Ip JP, Fu AK, Ip NY (2014) CRMP2: functional roles in neural development and therapeutic potential in neurological diseases. Neuroscientist 20: 589–598 PubMed
Tobe BTD, Crain AM, Winquist AM, Calabrese B, Makihara H, Zhao WN, Lalonde J, Nakamura H, Konopaske G, Sidor M et al (2017) Probing the lithium‐response pathway in hiPSCs implicates the phosphoregulatory set‐point for a cytoskeletal modulator in bipolar pathogenesis. Proc Natl Acad Sci USA 114: E4462–E4471 PubMed PMC
Dominguez‐Iturza N, Lo AC, Shah D, Armendariz M, Vannelli A, Mercaldo V, Trusel M, Li KW, Gastaldo D, Santos AR et al (2019) The autism‐ and schizophrenia‐associated protein CYFIP1 regulates bilateral brain connectivity and behaviour. Nat Commun 10: 3454 PubMed PMC
Silva AI, Haddon JE, Ahmed Syed Y, Trent S, Lin TE, Patel Y, Carter J, Haan N, Honey RC, Humby T et al (2019) Cyfip1 haploinsufficient rats show white matter changes, myelin thinning, abnormal oligodendrocytes and behavioural inflexibility. Nat Commun 10: 3455 PubMed PMC
Liu X, Malenfant P, Reesor C, Lee A, Hudson ML, Harvard C, Qiao Y, Persico AM, Cohen IL, Chudley AE et al (2011) 2p15‐p16.1 microdeletion syndrome: molecular characterization and association of the OTX1 and XPO1 genes with autism spectrum disorders. Eur J Hum Genet 19: 1264–1270 PubMed PMC
Weimann JM, Zhang YA, Levin ME, Devine WP, Brulet P, McConnell SK (1999) Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24: 819–831 PubMed
Li Z, Jagadapillai R, Gozal E, Barnes G (2019) Deletion of semaphorin 3F in interneurons is associated with decreased GABAergic neurons, autism‐like behavior, and increased oxidative stress cascades. Mol Neurobiol 56: 5520–5538 PubMed PMC
Degano AL, Pasterkamp RJ, Ronnett GV (2009) MeCP2 deficiency disrupts axonal guidance, fasciculation, and targeting by altering Semaphorin 3F function. Mol Cell Neurosci 42: 243–254 PubMed PMC
Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector‐based constructs for DNA targeting. Nucleic Acids Res 39: e82 PubMed PMC
Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ (2012) TAL Effector‐Nucleotide Targeter (TALE‐NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40: W117–W122 PubMed PMC
Kasparek P, Krausova M, Haneckova R, Kriz V, Zbodakova O, Korinek V, Sedlacek R (2014) Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett 588: 3982–3988 PubMed
Magiera MM, Bodakuntla S, Ziak J, Lacomme S, Marques Sousa P, Leboucher S, Hausrat TJ, Bosc C, Andrieux A, Kneussel M et al (2018) Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J 37: e100440 PubMed PMC
Sherazee N, Alvarez VA (2013) DiOlistics: delivery of fluorescent dyes into cells. Methods Mol Biol 940: 391–400 PubMed PMC
Haddad‐Tovolli R, Szabo NE, Zhou X, Alvarez‐Bolado G (2013) Genetic manipulation of the mouse developing hypothalamus through in utero electroporation. J Vis Exp e50412 PubMed PMC
Ionescu A, Zahavi EE, Gradus T, Ben‐Yaakov K, Perlson E (2016) Compartmental microfluidic system for studying muscle‐neuron communication and neuromuscular junction maintenance. Eur J Cell Biol 95: 69–88 PubMed
Kleele T, Marinkovic P, Williams PR, Stern S, Weigand EE, Engerer P, Naumann R, Hartmann J, Karl RM, Bradke F et al (2014) An assay to image neuronal microtubule dynamics in mice. Nat Commun 5: 4827 PubMed PMC
Brill MS, Marinkovic P, Misgeld T (2013) Sequential photo‐bleaching to delineate single Schwann cells at the neuromuscular junction. J Vis Exp e4460 PubMed PMC
Marinkovic P, Godinho L, Misgeld T (2015) Imaging acute neuromuscular explants from Thy1 mouse lines. Cold Spring Harb Protoc 2015: pdb prot087692 PubMed
Kerschensteiner M, Reuter MS, Lichtman JW, Misgeld T (2008) Ex vivo imaging of motor axon dynamics in murine triangularis sterni explants. Nat Protoc 3: 1645–1653 PubMed PMC
Schindelin J, Arganda‐Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open‐source platform for biological‐image analysis. Nat Methods 9: 676–682 PubMed PMC
Bures J, Fenton AA, Kaminsky Y, Zinyuk L (1997) Place cells and place navigation. Proc Natl Acad Sci USA 94: 343–350 PubMed PMC
Burghardt NS, Park EH, Hen R, Fenton AA (2012) Adult‐born hippocampal neurons promote cognitive flexibility in mice. Hippocampus 22: 1795–1808 PubMed PMC
Stuchlik A, Petrasek T, Prokopova I, Holubova K, Hatalova H, Vales K, Kubik S, Dockery C, Wesierska M (2013) Place avoidance tasks as tools in the behavioral neuroscience of learning and memory. Physiol Res 62(Suppl 1): S1–S19 PubMed
D'Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36: 60–90 PubMed
Wesierska M, Dockery C, Fenton AA (2005) Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus‐dependent cognitive coordination in the rat. J Neurosci 25: 2413–2419 PubMed PMC
Bahník Š (2014) Carousel Maze Manager (Version 0.4.0) Software. Retrieved from https://github.com/bahniks/CM_Manager_0_4_0
A CRMP4-dependent retrograde axon-to-soma death signal in amyotrophic lateral sclerosis
Can Maternal Autoantibodies Play an Etiological Role in ASD Development?