Can Maternal Autoantibodies Play an Etiological Role in ASD Development?
Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32581542
PubMed Central
PMC7276202
DOI
10.2147/ndt.s239504
PII: 239504
Knihovny.cz E-zdroje
- Klíčová slova
- CRMP2, animal models, autism spectrum disorder, maternal autoantibodies, therapy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Autism spectrum disorder (ASD) is a heterogeneous condition with multiple etiologies and risk factors - both genetic and environmental. Recent data demonstrate that the immune system plays an important role in prenatal brain development. Deregulation of the immune system during embryonic development can lead to neurodevelopmental changes resulting in ASD. One of the potential etiologic factors in the development of ASD has been identified as the presence of maternal autoantibodies targeting fetal brain proteins. The type of ASD associated with the presence of maternal autoantibodies has been referred to as maternal antibodies related to ASD (MAR ASD). The link between maternal autoantibodies and ASD has been demonstrated in both clinical studies and animal models, but the exact mechanism of their action in the pathogenesis of ASD has not been clarified yet. Several protein targets of ASD-related maternal autoantibodies have been identified. Here, we discuss the role of microtubule-associated proteins of the collapsin response mediator protein (CRMP) family in neurodevelopment and ASD. CRMPs have been shown to integrate multiple signaling cascades regulating neuron growth, guidance or migration. Their targeting by maternal autoantibodies could change CRMP levels or distribution in the developing nervous system, leading to defects in axon growth/guidance, cortical migration, or dendritic projection, which could play an etiological role in ASD development. In addition, we discuss the future possibilities of MAR ASD treatment.
Department of Child Psychiatry Charles University 2nd Faculty of Medicine Prague Czech Republic
Department of Psychiatry Charles University 1st Faculty of Medicine Prague Czech Republic
Zobrazit více v PubMed
McDougle C, eds. Autism Spectrum Disorder. New York: Oxford University Press; 2016.
APA. Diagnostic and Statistical Manual of Mental Disorders: DSM – 5. Vol. 5th Arlington, VA: American Psychiatric Association; 2013.
Masi A, DeMayo MM, Glozier N, Guastella AJ. An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci Bull. 2017;33(2):183–193. doi:10.1007/s12264-017-0100-y PubMed DOI PMC
Tick B, Bolton P, Happé F, Rutter M, Rijsdijk F. Heritability of autism spectrum disorders: a meta-analysis of twin studies. J Child Psychol Psychiatry. 2016;57:585–595. doi:10.1111/jcpp.12499 PubMed DOI PMC
Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. Lancet. 2018;392:508–520. doi:10.1016/S0140-6736(18)31129-2 PubMed DOI PMC
Fernandez BA, Scherer S. Syndromic autism spectrum disorders: moving form a clinically defined to a molecularly defined approach. Dialogues Clin Neurosci. 2017;19:353–371. PubMed PMC
Solek CM, Farooqi N, Verly M, Lim TK, Ruthazer ES. Maternal immune activation in neurodevelopmental disorders. Dev Dyn. 2018;247:588–619. PubMed
Meltzer A, Van de Water J. The role of the immune system in autism spectrum disorder. Neuropsychopharmacology. 2017;42(1):284–298. doi:10.1038/npp.2016.158 PubMed DOI PMC
Keil A, Daniels JL, Forssen U, et al. Parental autoimmune diseases associated with autism spectrum disorders in offspring. Epidemiology. 2010;21:805–808. doi:10.1097/EDE.0b013e3181f26e3f PubMed DOI PMC
Wu S, Ding Y, Wu F, et al. Family history of autoimmune diseases is associated with an increased risk of autism in children: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2015;55:322–332. doi:10.1016/j.neubiorev.2015.05.004 PubMed DOI
Atlandottir HO, Thorsen P, Ostergaard I, et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2010;40:1423–1430. doi:10.1007/s10803-010-1006-y PubMed DOI
Matelski L, Van de Water J. Risk factors in autism: thinking outside the brain. J Autoimmun. 2016;67:1–7. doi:10.1016/j.jaut.2015.11.003 PubMed DOI PMC
Jones KL, Pride MC, Edmiston E, et al. Autism-specific maternal autoantibodies produce behavioral abnormalities in an endogenous antigen-driven mouse model of autism. Mol Psychiatry. 2018. doi:10.1038/s41380-018-0126.1 PubMed DOI PMC
Fox-Edmiston E, Van de Water J. Maternal anti-fetal brain IgG autoantibodies and autism spectrum disorder: current knowledge and its implications for potential therapeutics. CNS Drugs. 2015;29:715–724. doi:10.1007/s40263-015-0279-2 PubMed DOI PMC
Braunschweig D, Krakowiak P, Duncanson P, et al. Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry. 2013;3:e277. doi:10.1038/tp.2013.50 PubMed DOI PMC
Jones KL, Van de Water J. Maternal autoantibody related autism: mechanisms and pathways. Mol Psychiatry. 2019;24:252–265. doi:10.1038/s41380-018-0099-0 PubMed DOI PMC
Bagasra O, Heggen C. Autism and Environmental Factors. NJ: Wiley; 2018.
Edmiston E, Ashwood P, Van de Water J. Autoimmunity, autoantibodies, and autism spectrum disorders (ASD). Biol Psychiatry. 2017;81(5):383–390. doi:10.1016/j.biopsych.2016.08.031 PubMed DOI PMC
Tzang R-F, Chang C-H, Chang Y-C, Lane H-Y. Autism associated with anti-NDMAR encephalitis: glutamate-related therapy. Front Psychiatry. 2019;10:440. doi:10.3389/fpsyt.2019.00440 PubMed DOI PMC
Connery K, Tippett M, Delhey LM, et al. Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism. Transl Psychiatry. 2018;8:148. doi:10.1038/s41398-018-0214-7 PubMed DOI PMC
Quadros EV, Sequeira JM, Brown WT, et al. Folate receptor autoantibodies are prevalent in children diagnosed with autism spectrum disorder, their normal siblings and parents. Autism Res. 2018;11:707–712. doi:10.1002/aur.1934 PubMed DOI
Zhou J, Liu A, He F, et al. Hogh prevalence of serum folate receptor autoantibodies in children with autism spectrum disorders. Biomarkers. 2018;23(7):622–624.5276. doi:10.1080/1354750X.2018.1458152 PubMed DOI
Gluecksohn-Waelsh S. The effect of maternal immunization against organ tissues on embryonic differentiation in the mouse. Development. 1957;5:83–92.
Karpiak SE, Rapport MM. Behavioral changes 2-month-old rats following prenatal exposure to antibodies against synaptic membranes. Brain Res. 1975;92:405–413. doi:10.1016/0006-8993(75)90325-X PubMed DOI
Rick JT, Gregson AN, Leibowitz S, Adinolfi M. Behavioural changes in adult rats following administration of antibodies again brain gangliosides. Dev Med Child Neurol. 1980;22:719–724. doi:10.1111/j.1469-8749.1980.tb03738.x PubMed DOI
Martin LA, Ashwood P, Braunschweig D, et al. Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain Behav Immune. 2008;22(6):806–816. doi:10.1016/j.bbi.2007.12.007 PubMed DOI PMC
Bauman MD, Iosif AM, Ashwood P, et al. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl Psychiatry. 2013;3:e278. doi:10.1038/tp.2013.47 PubMed DOI PMC
Singer HS, Morris C, Gause C, et al. Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: a pregnant dam mouse model. J Neuroimmunol. 2009;211(1–2):39–48. doi:10.1016/j.jneuroim.2009.03.011 PubMed DOI
Braunschweig D, Golub MS, Koenig CM, Qi L, Pessah IN, Van de Water J. Maternal autism-associated IgG antibodies delay development and produce anxiety in a mouse gestational transfer model. J Neuroimmunol. 2012;252(1–2):56–65. doi:10.1016/j.jneuroim.2012.08.002 PubMed DOI PMC
Brimberg L, Mader S, Jeganathan V, et al. Caspr2-reactive antibody cloned from a mother of an ASD child mediates as ASD-like phenotype in mice. Mol Psychiatry. 2016;21(12):1663–1671. doi:10.1038/mp.2016.165 PubMed DOI PMC
Camacho J, Jones KL, Miller E, et al. Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autistic-like stereotypical behaviors in offspring mice. Behav Brain Res. 2014;266:46–51. doi:10.1016/j.bbr.2014.02.045 PubMed DOI PMC
Courchesne E, Karns CM, Davis HR, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 2001;57:245–254. doi:10.1212/WNL.57.2.245 PubMed DOI
Hazlett HC, Poe M, Gerig G, et al. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry. 2005;62:1366–1376. doi:10.1001/archpsyc.62.12.1366 PubMed DOI
Schumann CM, Bloss CS, Carter Barnes C, et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci. 2010;30(12):4419–4427. doi:10.1523/JNEUROSCI.5714-09.2010 PubMed DOI PMC
Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31:137–145. doi:10.1016/j.tins.2007.12.005 PubMed DOI
Nordahl CW, Lange N, Li DD, et al. Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders. Proc Natl Acad Sci U S A. 2011;108:20195–20200. doi:10.1073/pnas.1107560108 PubMed DOI PMC
Nordahl CW, Braunschweig D, Iosif AM, et al. Maternal autoantibodies are associated with abnormal brain enlargement in a subgroup of children with autism spectrum disorder. Brain Behav Immun. 2013;30:61–65. doi:10.1016/j.bbi.2013.01.084 PubMed DOI PMC
Martínez-Cerdeño V, Camacho J, Fox E, et al. Prenatal exposure to autism-specific maternal autoantibodies alters proliferation of cortical neural precursor cells, enlarges brain, and increases neuronal size in adult animals. Cereb Cortex. 2016;26:374–383. doi:10.1093/cercor/bhu291 PubMed DOI PMC
Braunschweig D, Ashwood P, Krakowiak P, et al. Autism: maternally derived antibodies specific for fetal brain proteins. Neurotoxicology. 2008;29:226–231. doi:10.1016/j.neuro.2007.10.010 PubMed DOI PMC
Croen LA, Braunschweig D, Haapanen L. Maternal mid-pregnancy autoantibodies to fetal brain protein: the early markers for autism study. Biol Psychiatry. 2008;64:583–588. doi:10.1016/j.biopsych.2008.05.006 PubMed DOI PMC
Braunschweig D, Duncanson P, Boyce R, et al. Behavioral correlates of maternal antibody status among children with autism. J Autism Dev Disord. 2012;42:1435–1445. doi:10.1007/s10803-011-1378-7 PubMed DOI PMC
Chang Q, Yang H, Wang M, Wei H, Hu F. Role of microtubule-associated protein in autism spectrum disorder. Neurosci Bull. 2018;34(6):1119–1126. doi:10.1007/s12264-018-0246-2 PubMed DOI PMC
Schmidt EF, Strittmatter SM. The CRMP family of proteins and their role in Sema3A signaling In: Pasterkamp RJ, editor. Semaphorins: Receptor and Intracellular Signaling Mechanisms. Advances in Experimental Medicine and Biology. Vol. 600 New York: Springer; 2007:1–11. PubMed PMC
Lin PC, Chan PM, Hall C, Manser E. Collapsin response mediator proteins (CRMPs) are a new class of microtubule-associated protein (MAP) that selectively interacts with assembled microtubules via a taxol-sensitive binding interaction. J Biol Chem. 2011;286:41466–41478. doi:10.1074/jbc.M111.283580 PubMed DOI PMC
Wang LH, Strittmatter SM. A family of rat CRMP genes is differentially expressed in the nervous system. J Neurosci. 1996;16:6197–6207. doi:10.1523/JNEUROSCI.16-19-06197.1996 PubMed DOI PMC
Yoshimura T, Kawano Y, Arimura N, et al. GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell. 2005;120(1):137–149. doi:10.1016/j.cell.2004.11.012 PubMed DOI
Balastik M, Zhou XZ, Alberich-Jorda M, et al. Prolyl isomerase Pin1 regulates axon guidance by stabilizing CRMP2A selectively in distal axons. Cell Rep. 2015;13(4):812–828. doi:10.1016/j.celrep.2015.09.026 PubMed DOI PMC
Ip JP, Fu AK, Ip NY. CRMP2: functional roles in neural development and therapeutic potential in neurological diseases. Neuroscientist. 2014;20(6):589–598. doi:10.1177/1073858413514278 PubMed DOI
Yuasa-Kawada J, Suzuki R, Kano F, et al. Axonal morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization. Eur J Neurosci. 2003;17:2329–2343. doi:10.1046/j.1460-9568.2003.02664.x PubMed DOI
Ziak J, Weissova R, Jeřábková K, et al. CRMP2 mediates Sema3F-dependent axon pruning and dendritic spine remodeling. EMBO Rep. 2020;e48512. doi:10.15252/embr.201948512 PubMed DOI PMC
Zhang H, Kang E, Wang Y, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioral impairments in mice. Nat Commun. 2016;7. doi:10.1038/ncomms11773 PubMed DOI PMC
Buzzigoli SB, Genovesi M, Lambelet P, Logi C, Raffaelli S, Cattano D. Plasmapheresis treatment in Guillain-Barré syndrome: potential benefit over intravenous immunoglobulin. Anaesth Intensive Care. 2010;38(2):387–389. doi:10.1177/0310057X1003800225 PubMed DOI
Mitoma H, Manto M, Hampe CS. Immune-mediated cerebellar ataxias: practical guidelines and therapeutic challenges. Curr Neuropharmacol. 2019;17(1):33–58. doi:10.2174/1570159X16666180917105033 PubMed DOI PMC
Vaccaro C, Zhou J, Ober RJ, Ward ES. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol. 2005;23(10):1283–1288. doi:10.1038/nbt1143 PubMed DOI