Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30420556
PubMed Central
PMC6276888
DOI
10.15252/embj.2018100440
PII: embj.2018100440
Knihovny.cz E-zdroje
- Klíčová slova
- axonal transport, neurodegeneration, tubulin code, tubulin polyglutamylation, tubulin posttranslational modifications,
- MeSH
- aktivní transport genetika MeSH
- myši knockoutované MeSH
- myši MeSH
- neurodegenerativní nemoci genetika metabolismus patologie MeSH
- peptidsynthasy genetika metabolismus MeSH
- peptidy genetika metabolismus MeSH
- posttranslační úpravy proteinů * MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- Purkyňovy buňky metabolismus patologie MeSH
- tubulin genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Ccdc115 protein, mouse MeSH Prohlížeč
- peptidsynthasy MeSH
- peptidy MeSH
- polyglutamine MeSH Prohlížeč
- proteiny nervové tkáně MeSH
- tubulin polyglutamylase MeSH Prohlížeč
- tubulin MeSH
Posttranslational modifications of tubulin are emerging regulators of microtubule functions. We have shown earlier that upregulated polyglutamylation is linked to rapid degeneration of Purkinje cells in mice with a mutation in the deglutamylating enzyme CCP1. How polyglutamylation leads to degeneration, whether it affects multiple neuron types, or which physiological processes it regulates in healthy neurons has remained unknown. Here, we demonstrate that excessive polyglutamylation induces neurodegeneration in a cell-autonomous manner and can occur in many parts of the central nervous system. Degeneration of selected neurons in CCP1-deficient mice can be fully rescued by simultaneous knockout of the counteracting polyglutamylase TTLL1. Excessive polyglutamylation reduces the efficiency of neuronal transport in cultured hippocampal neurons, suggesting that impaired cargo transport plays an important role in the observed degenerative phenotypes. We thus establish polyglutamylation as a cell-autonomous mechanism for neurodegeneration that might be therapeutically accessible through manipulation of the enzymes that control this posttranslational modification.
Bordeaux Imaging Center BIC UMS 3420 Université Bordeaux Bordeaux France
Center for Molecular Neurobiology University Medical Center Hamburg Eppendorf Hamburg Germany
Faculty of Science Charles University Prague 2 Czech Republic
Grenoble Institut des Neurosciences GIN Université Grenoble Alpes Grenoble France
Institut Curie CNRS UMR3348 PSL Research University Orsay France
Interdisciplinary Institute for Neuroscience CNRS UMR5297 Université Bordeaux Bordeaux France
Université Paris Saclay CNRS UMR3348 Université Paris Sud Orsay France
Zobrazit více v PubMed
Aillaud C, Bosc C, Saoudi Y, Denarier E, Peris L, Sago L, Taulet N, Cieren A, Tort O, Magiera MM, Janke C, Redeker V, Andrieux A, Moutin M‐J (2016) Evidence for new C‐terminally truncated variants of alpha‐ and beta‐tubulins. Mol Biol Cell 27: 640–653 PubMed PMC
Alexopoulou AN, Couchman JR, Whiteford JR (2008) The CMV early enhancer/chicken beta actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors. BMC Cell Biol 9: 2 PubMed PMC
Audebert S, Desbruyeres E, Gruszczynski C, Koulakoff A, Gros F, Denoulet P, Eddé B (1993) Reversible polyglutamylation of alpha‐ and beta‐tubulin and microtubule dynamics in mouse brain neurons. Mol Biol Cell 4: 615–626 PubMed PMC
Audebert S, Koulakoff A, Berwald‐Netter Y, Gros F, Denoulet P, Eddé B (1994) Developmental regulation of polyglutamylated alpha‐ and beta‐tubulin in mouse brain neurons. J Cell Sci 107: 2313–2322 PubMed
Baird FJ, Bennett CL (2013) Microtubule defects & neurodegeneration. J Genet Syndr Gene Ther 4: 203 PubMed PMC
Balastik M, Ferraguti F, Pires‐da Silva A, Lee TH, Alvarez‐Bolado G, Lu KP, Gruss P (2008) Deficiency in ubiquitin ligase TRIM2 causes accumulation of neurofilament light chain and neurodegeneration. Proc Natl Acad Sci USA 105: 12016–12021 PubMed PMC
Balastik M, Zhou XZ, Alberich‐Jorda M, Weissova R, Ziak J, Pazyra‐Murphy MF, Cosker KE, Machonova O, Kozmikova I, Chen C‐H, Pastorino L, Asara JM, Cole A, Sutherland C, Segal RA, Lu KP (2015) Prolyl isomerase pin1 regulates axon guidance by stabilizing CRMP2A selectively in distal axons. Cell Rep 13: 812–828 PubMed PMC
Barlan K, Lu W, Gelfand VI (2013) The microtubule‐binding protein ensconsin is an essential cofactor of kinesin‐1. Curr Biol 23: 317–322 PubMed PMC
Belvindrah R, Natarajan K, Shabajee P, Bruel‐Jungerman E, Bernard J, Goutierre M, Moutkine I, Jaglin XH, Savariradjane M, Irinopoulou T, Poncer J‐C, Janke C, Francis F (2017) Mutation of the alpha‐tubulin Tuba1a leads to straighter microtubules and perturbs neuronal migration. J Cell Biol 216: 2443–2461 PubMed PMC
Berezniuk I, Vu HT, Lyons PJ, Sironi JJ, Xiao H, Burd B, Setou M, Angeletti RH, Ikegami K, Fricker LD (2012) Cytosolic carboxypeptidase 1 is involved in processing alpha‐ and beta‐tubulin. J Biol Chem 287: 6503–6517 PubMed PMC
Bosch Grau M, Masson C, Gadadhar S, Rocha C, Tort O, Marques Sousa P, Vacher S, Bieche I, Janke C (2017) Alterations in the balance of tubulin glycylation and glutamylation in photoreceptors leads to retinal degeneration. J Cell Sci 130: 938–949 PubMed
Brady ST, Morfini GA (2017) Regulation of motor proteins, axonal transport deficits and adult‐onset neurodegenerative diseases. Neurobiol Dis 105: 273–282 PubMed PMC
Brettschneider J, Del Tredici K, Lee VM‐Y, Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16: 109–120 PubMed PMC
Brill MS, Kleele T, Ruschkies L, Wang M, Marahori NA, Reuter MS, Hausrat TJ, Weigand E, Fisher M, Ahles A, Engelhardt S, Bishop DL, Kneussel M, Misgeld T (2016) Branch‐specific microtubule destabilization mediates axon branch loss during neuromuscular synapse elimination. Neuron 92: 845–856 PubMed PMC
Chakraborti S, Natarajan K, Curiel J, Janke C, Liu J (2016) The emerging role of the tubulin code: from the tubulin molecule to neuronal function and disease. Cytoskeleton 73: 521–550 PubMed
Craig AM, Banker G (1994) Neuronal polarity. Annu Rev Neurosci 17: 267–310 PubMed
De Vos KJ, Grierson AJ, Ackerley S, Miller CCJ (2008) Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31: 151–173 PubMed
Dent EW, Baas PW (2014) Microtubules in neurons as information carriers. J Neurochem 129: 235–239 PubMed PMC
van Dijk J, Rogowski K, Miro J, Lacroix B, Eddé B, Janke C (2007) A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol Cell 26: 437–448 PubMed
Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, Saudou F (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci 27: 3571–3583 PubMed PMC
Eddé B, Rossier J, Le Caer JP, Desbruyeres E, Gros F, Denoulet P (1990) Posttranslational glutamylation of alpha‐tubulin. Science 247: 83–85 PubMed
Fernandez‐Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, Morgan JI, Zuo J (2002) Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy‐induced gene, Nna1. Science 295: 1904–1906 PubMed
Franker MAM, Hoogenraad CC (2013) Microtubule‐based transport ‐ basic mechanisms, traffic rules and role in neurological pathogenesis. J Cell Sci 126: 2319–2329 PubMed
Garden GA, La Spada AR (2012) Intercellular (mis)communication in neurodegenerative disease. Neuron 73: 886–901 PubMed PMC
Geevasinga N, Menon P, Ozdinler PH, Kiernan MC, Vucic S (2016) Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol 12: 651–661 PubMed
Gentili M, Kowal J, Tkach M, Satoh T, Lahaye X, Conrad C, Boyron M, Lombard B, Durand S, Kroemer G, Loew D, Dalod M, Thery C, Manel N (2015) Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 349: 1232–1236 PubMed
Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, Los MJ (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112: 24–49 PubMed
Ghiretti AE, Thies E, Tokito MK, Lin T, Ostap EM, Kneussel M, Holzbaur ELF (2016) Activity‐dependent regulation of distinct transport and cytoskeletal remodeling functions of the dendritic kinesin KIF21B. Neuron 92: 857–872 PubMed PMC
Godena VK, Brookes‐Hocking N, Moller A, Shaw G, Oswald M, Sancho RM, Miller CCJ, Whitworth AJ, De Vos KJ (2014) Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc‐COR domain mutations. Nat Commun 5: 5245 PubMed PMC
Greer CA, Shepherd GM (1982) Mitral cell degeneration and sensory function in the neurological mutant mouse Purkinje cell degeneration (PCD). Brain Res 235: 156–161 PubMed
Hol EM, Pekny M (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32: 121–130 PubMed
Huang Q, Figueiredo‐Pereira ME (2010) Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis 15: 1292–1311 PubMed PMC
Ikegami K, Heier RL, Taruishi M, Takagi H, Mukai M, Shimma S, Taira S, Hatanaka K, Morone N, Yao I, Campbell PK, Yuasa S, Janke C, Macgregor GR, Setou M (2007) Loss of alpha‐tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci USA 104: 3213–3218 PubMed PMC
Janke C, Rogowski K, Wloga D, Regnard C, Kajava AV, Strub J‐M, Temurak N, van Dijk J, Boucher D, van Dorsselaer A, Suryavanshi S, Gaertig J, Eddé B (2005) Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308: 1758–1762 PubMed
Janke C, Bulinski JC (2011) Post‐translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12: 773–786 PubMed
Janke C (2014) The tubulin code: molecular components, readout mechanisms, and functions. J Cell Biol 206: 461–472 PubMed PMC
Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1: 2406–2415 PubMed
Kalinina E, Biswas R, Berezniuk I, Hermoso A, Aviles FX, Fricker LD (2007) A novel subfamily of mouse cytosolic carboxypeptidases. FASEB J 21: 836–850 PubMed
Kang J‐S, Tian J‐H, Pan P‐Y, Zald P, Li C, Deng C, Sheng Z‐H (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short‐term facilitation. Cell 132: 137–148 PubMed PMC
Kim JY, Shen S, Dietz K, He Y, Howell O, Reynolds R, Casaccia P (2010) HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 13: 180–189 PubMed PMC
Kim JH, Lee S‐R, Li L‐H, Park H‐J, Park J‐H, Lee KY, Kim M‐K, Shin BA, Choi S‐Y (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus‐1 in human cell lines, zebrafish and mice. PLoS ONE 6: e18556 PubMed PMC
Kim J‐Y, Woo S‐Y, Hong YB, Choi H, Kim J, Choi H, Mook‐Jung I, Ha N, Kyung J, Koo SK, Jung S‐C, Choi B‐O (2016) HDAC6 inhibitors rescued the defective axonal mitochondrial movement in motor neurons derived from the induced pluripotent stem cells of peripheral neuropathy patients with HSPB1 mutation. Stem Cells Int 2016: 9475981 PubMed PMC
Krstic D, Knuesel I (2013) Deciphering the mechanism underlying late‐onset Alzheimer disease. Nat Rev Neurol 9: 25–34 PubMed
Lacroix B, van Dijk J, Gold ND, Guizetti J, Aldrian‐Herrada G, Rogowski K, Gerlich DW, Janke C (2010) Tubulin polyglutamylation stimulates spastin‐mediated microtubule severing. J Cell Biol 189: 945–954 PubMed PMC
Lahaye X, Satoh T, Gentili M, Cerboni S, Silvin A, Conrad C, Ahmed‐Belkacem A, Rodriguez EC, Guichou J‐F, Bosquet N, Piel M, Le GR, King MC, Pawlotsky J‐M, Manel N (2016) Nuclear envelope protein SUN2 promotes cyclophilin‐A‐dependent steps of HIV replication. Cell Rep 15: 879–892 PubMed PMC
Lambert JC, Ibrahim‐Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier‐Boley B, Russo G, Thorton‐Wells TA, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, Vardarajan BN, Kamatani Y et al (2013) Meta‐analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 45: 1452–1458 PubMed PMC
LaVail MM, Blanks JC, Mullen RJ (1982) Retinal degeneration in the pcd cerebellar mutant mouse. I. Light microscopic and autoradiographic analysis. J Comp Neurol 212: 217–230 PubMed
Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443: 787–795 PubMed
Liu G, Dwyer T (2014) Microtubule dynamics in axon guidance. Neurosci Bull 30: 569–583 PubMed PMC
McMurray CT (2000) Neurodegeneration: diseases of the cytoskeleton? Cell Death Differ 7: 861–865 PubMed
Millecamps S, Julien J‐P (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14: 161–176 PubMed
Monroy BY, Sawyer DL, Ackermann BE, Borden MM, Tan TC, Ori‐McKenney KM (2018) Competition between microtubule‐associated proteins directs motor transport. Nat Commun 9: 1487 PubMed PMC
Mullen RJ, Eicher EM, Sidman RL (1976) Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci USA 73: 208–212 PubMed PMC
Munoz‐Castaneda R, Diaz D, Peris L, Andrieux A, Bosc C, Munoz‐Castaneda JM, Janke C, Alonso JR, Moutin M‐J, Weruaga E (2018) Cytoskeleton stability is essential for the integrity of the cerebellum and its motor‐ and affective‐related behaviors. Sci Rep 8: 3072 PubMed PMC
O'Gorman S, Sidman RL (1985) Degeneration of thalamic neurons in “Purkinje cell degeneration” mutant mice. I. Distribution of neuron loss. J Comp Neurol 234: 277–297 PubMed
Pellegrini L, Wetzel A, Granno S, Heaton G, Harvey K (2017) Back to the tubule: microtubule dynamics in Parkinson's disease. Cell Mol Life Sci 74: 409–434 PubMed PMC
Redeker V, Rossier J, Frankfurter A (1998) Posttranslational modifications of the C‐terminus of alpha‐tubulin in adult rat brain: alpha 4 is glutamylated at two residues. Biochemistry 37: 14838–14844 PubMed
Rico B, Beggs HE, Schahin‐Reed D, Kimes N, Schmidt A, Reichardt LF (2004) Control of axonal branching and synapse formation by focal adhesion kinase. Nat Neurosci 7: 1059–1069 PubMed PMC
Rodriguez de la Vega M, Sevilla RG, Hermoso A, Lorenzo J, Tanco S, Diez A, Fricker LD, Bautista JM, Aviles FX (2007) Nna1‐like proteins are active metallocarboxypeptidases of a new and diverse M14 subfamily. FASEB J 21: 851–865 PubMed
Rogowski K, van Dijk J, Magiera MM, Bosc C, Deloulme J‐C, Bosson A, Peris L, Gold ND, Lacroix B, Bosch Grau M, Bec N, Larroque C, Desagher S, Holzer M, Andrieux A, Moutin M‐J, Janke C (2010) A family of protein‐deglutamylating enzymes associated with neurodegeneration. Cell 143: 564–578 PubMed
Ross CA, Poirier MA (2005) Opinion: what is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6: 891–898 PubMed
Roy S, Zhang B, Lee VM‐Y, Trojanowski JQ (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol 109: 5–13 PubMed
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675 PubMed PMC
Semenova I, Ikeda K, Resaul K, Kraikivski P, Aguiar M, Gygi S, Zaliapin I, Cowan A, Rodionov V (2014) Regulation of microtubule‐based transport by MAP4. Mol Biol Cell 25: 3119–3132 PubMed PMC
Seyfried NT, Dammer EB, Swarup V, Nandakumar D, Duong DM, Yin L, Deng Q, Nguyen T, Hales CM, Wingo T, Glass J, Gearing M, Thambisetty M, Troncoso JC, Geschwind DH, Lah JJ, Levey AI (2017) A multi‐network approach identifies protein‐specific co‐expression in asymptomatic and symptomatic Alzheimer's disease. Cell Syst 4: 60–72 e64 PubMed PMC
Shashi V, Magiera MM, Klein D, Zaki M, Schoch K, Rudnik‐Schöneborn S, Norman A, Lopes Abath Neto O, Dusl M, Yuan X, Bartesaghi L, De Marco P, Alfares AA, Marom R, Arold ST, Guzmán‐Vega FJ, Pena LDM, Smith EC, Steinlin M, Babiker MOE et al (2018) Loss of tubulin deglutamylase CCP1 causes infantile‐onset neurodegeneration. EMBO J 37: e100540 PubMed PMC
Shimada A, Tsuzuki M, Keino H, Satoh M, Chiba Y, Saitoh Y, Hosokawa M (2006) Apical vulnerability to dendritic retraction in prefrontal neurones of ageing SAMP10 mouse: a model of cerebral degeneration. Neuropathol Appl Neurobiol 32: 1–14 PubMed
Sirajuddin M, Rice LM, Vale RD (2014) Regulation of microtubule motors by tubulin isotypes and post‐translational modifications. Nat Cell Biol 16: 335–344 PubMed PMC
Small SA, Simoes‐Spassov S, Mayeux R, Petsko GA (2017) Endosomal traffic jams represent a pathogenic hub and therapeutic target in Alzheimer's disease. Trends Neurosci 40: 592–602 PubMed PMC
Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen ISY, Hahn WC, Sharp PA, Weinberg RA, Novina CD (2003) Lentivirus‐delivered stable gene silencing by RNAi in primary cells. RNA 9: 493–501 PubMed PMC
Tanco S, Tort O, Demol H, Aviles FX, Gevaert K, Van Damme P, Lorenzo J (2015) C‐terminomics screen for natural substrates of cytosolic carboxypeptidase 1 reveals processing of acidic protein C termini. Mol Cell Proteomics 14: 177–190 PubMed PMC
Tort O, Tanco S, Rocha C, Bieche I, Seixas C, Bosc C, Andrieux A, Moutin M‐J, Xavier Aviles F, Lorenzo J, Janke C (2014) The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Mol Biol Cell 25: 3017–3027 PubMed PMC
Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, Bock R, Klein R, Schutz G (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23: 99–103 PubMed
Tymanskyj SR, Yang BH, Verhey KJ, Ma L (2018) MAP7 regulates axon morphogenesis by recruiting kinesin‐1 to microtubules and modulating organelle transport. Elife 7: e36374 PubMed PMC
Valenstein ML, Roll‐Mecak A (2016) Graded control of microtubule severing by tubulin glutamylation. Cell 164: 911–921 PubMed PMC
Vu HT, Akatsu H, Hashizume Y, Setou M, Ikegami K (2017) Increase in alpha‐tubulin modifications in the neuronal processes of hippocampal neurons in both kainic acid‐induced epileptic seizure and Alzheimer's disease. Sci Rep 7: 40205 PubMed PMC
Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17: 22–35 PubMed
Watson DF, Fittro KP, Hoffman PN, Griffin JW (1991) Phosphorylation‐related immunoreactivity and the rate of transport of neurofilaments in chronic 2,5‐hexanedione intoxication. Brain Res 539: 103–109 PubMed
Xu Z, Schaedel L, Portran D, Aguilar A, Gaillard J, Marinkovich MP, Thery M, Nachury MV (2017) Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 356: 328–332 PubMed PMC
d'Ydewalle C, Krishnan J, Chiheb DM, Van Damme P, Irobi J, Kozikowski AP, Vanden Berghe P, Timmerman V, Robberecht W, Van Den Bosch L (2011) HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1‐induced Charcot‐Marie‐Tooth disease. Nat Med 17: 968–974 PubMed
Zala D, Hinckelmann M‐V, Yu H, Lyra da Cunha MM, Liot G, Cordelieres FP, Marco S, Saudou F (2013) Vesicular glycolysis provides on‐board energy for fast axonal transport. Cell 152: 479–491 PubMed
Zhang F, Su B, Wang C, Siedlak SL, Mondragon‐Rodriguez S, Lee H‐G, Wang X, Perry G, Zhu X (2015) Posttranslational modifications of alpha‐tubulin in alzheimer disease. Transl Neurodegener 4: 9 PubMed PMC
Tubulin polyglutamylation differentially regulates microtubule-interacting proteins
CRMP2 mediates Sema3F-dependent axon pruning and dendritic spine remodeling