Mechanistic insights into TTLL11 polyglutamylase-mediated primary tubulin chain elongation

. 2025 Aug 22 ; 11 (34) : eadw1561. [epub] 20250820

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40834096

Microtubules (MTs) undergo diverse posttranslational modifications that regulate their structural and functional properties. Among these, polyglutamylation-a dominant and conserved modification targeting unstructured tubulin C-terminal tails-plays a pivotal role in defining the tubulin code. Here, we describe a mechanism by which tubulin tyrosine ligase-like 11 (TTLL11) expands and diversifies the code. Cryo-electron microscopy revealed a unique bipartite MT recognition strategy wherein TTLL11 binding and catalytic domains engage adjacent MT protofilaments. Biochemical and cellular assays identified previously uncharacterized polyglutamylation patterns, showing that TTLL11 directly extends the primary polypeptide chains of α- and β-tubulin in vitro, challenging the prevailing paradigms emphasizing lateral branching. Moreover, cell-based and in vivo data suggest a cross-talk between polyglutamylation and the detyrosination/tyrosination cycle likely linked to the TTLL11-mediated elongation of the primary α-tubulin chain. These findings unveil an unrecognized layer of complexity within the tubulin code and offer mechanistic insights into the molecular basis of functional specialization of MT cytoskeleton.

Zobrazit více v PubMed

Roll-Mecak A., How cells exploit tubulin diversity to build functional cellular microtubule mosaics. Curr. Opin. Cell Biol. 56, 102–108 (2019). PubMed PMC

Roll-Mecak A., The tubulin code in microtubule dynamics and information encoding. Dev. Cell 54, 7–20 (2020). PubMed PMC

Aillaud C., Bosc C., Peris L., Bosson A., Heemeryck P., Van Dijk J., Le Friec J., Boulan B., Vossier F., Sanman L. E., Syed S., Amara N., Coute Y., Lafanechere L., Denarier E., Delphin C., Pelletier L., Humbert S., Bogyo M., Andrieux A., Rogowski K., Moutin M.-J., Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation. Science 358, 1448–1453 (2017). PubMed

Nieuwenhuis J., Adamopoulos A., Bleijerveld O. B., Mazouzi A., Stickel E., Celie P., Altelaar M., Knipscheer P., Perrakis A., Blomen V. A., Brummelkamp T. R., Vasohibins encode tubulin detyrosinating activity. Science 358, 1453–1456 (2017). PubMed

Landskron L., Bak J., Adamopoulos A., Kaplani K., Moraiti M., van den Hengel L. G., Song J.-Y., Bleijerveld O. B., Nieuwenhuis J., Heidebrecht T., Henneman L., Moutin M.-J., Barisic M., Taraviras S., Perrakis A., Brummelkamp T. R., Posttranslational modification of microtubules by the MATCAP detyrosinase. Science 376, eabn6020 (2022). PubMed

Nicot S., Gillard G., Impheng H., Joachimiak E., Urbach S., Mochizuki K., Wloga D., Juge F., Rogowski K., A family of carboxypeptidases catalyzing α- and β-tubulin tail processing and deglutamylation. Sci. Adv. 9, eadi7838 (2023). PubMed PMC

Rogowski K., van Dijk J., Magiera M. M., Bosc C., Deloulme J.-C., Bosson A., Peris L., Gold N. D., Lacroix B., Grau M. B., Bec N., Larroque C., Desagher S., Holzer M., Andrieux A., Moutin M.-J., Janke C., A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143, 564–578 (2010). PubMed

Tort O., Tanco S., Rocha C., Bieche I., Seixas C., Bosc C., Andrieux A., Moutin M. J., Aviles F. X., Lorenzo J., Janke C., The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Mol. Biol. Cell 25, 3017–3027 (2014). PubMed PMC

Raybin D., Flavin M., An enzyme tyrosylating α-tubulin and its role in microtubule assembly. Biochem. Biophys. Res. Commun. 65, 1088–1095 (1975). PubMed

Paturle-Lafanechere L., Manier M., Trigault N., Pirollet F., Mazarguil H., Job D., Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J. Cell Sci. 107, 1529–1543 (1994). PubMed

Aillaud C., Bosc C., Saoudi Y., Denarier E., Peris L., Sago L., Taulet N., Cieren A., Tort O., Magiera M. M., Janke C., Redeker V., Andrieux A., Moutin M.-J., Bloom K. S., Evidence for new C-terminally truncated variants of α- and β-tubulins. Mol. Biol. Cell 27, 640–653 (2016). PubMed PMC

Magiera M. M., Singh P., Gadadhar S., Janke C., Tubulin posttranslational modifications and emerging links to human disease. Cell 173, 1323–1327 (2018). PubMed

Lee J. E., Silhavy J. L., Zaki M. S., Schroth J., Bielas S. L., Marsh S. E., Olvera J., Brancati F., Iannicelli M., Ikegami K., Schlossman A. M., Merriman B., Attie-Bitach T., Logan C. V., Glass I. A., Cluckey A., Louie C. M., Lee J. H., Raynes H. R., Rapin I., Castroviejo I. P., Setou M., Barbot C., Boltshauser E., Nelson S. F., Hildebrandt F., Johnson C. A., Doherty D. A., Valente E. M., Gleeson J. G., CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nat. Genet. 44, 193–199 (2012). PubMed PMC

Xia P., Ye B., Wang S., Zhu X., Du Y., Xiong Z., Tian Y., Fan Z., Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol. 17, 369–378 (2016). PubMed

Deshpande A., Brants J., Wasylyk C., van Hooij O., Verhaegh G. W., Maas P., Schalken J. A., Wasylyk B., TTLL12 has a potential oncogenic activity, suppression of ligation of nitrotyrosine to the C-terminus of detyrosinated α-tubulin, that can be overcome by molecules identified by screening a compound library. PLOS ONE 19, e0296960 (2024). PubMed PMC

Froidevaux-Klipfel L., Targa B., Cantaloube I., Ahmed-Zaid H., Pous C., Baillet A., Septin cooperation with tubulin polyglutamylation contributes to cancer cell adaptation to taxanes. Oncotarget 6, 36063–36080 (2015). PubMed PMC

Zadra I., Jimenez-Delgado S., Anglada-Girotto M., Segura-Morales C., Compton Z. J., Janke C., Serrano L., Ruprecht V., Vernos I., Chromosome segregation fidelity requires microtubule polyglutamylation by the cancer downregulated enzyme TTLL11. Nat. Commun. 13, 7147 (2022). PubMed PMC

van Dijk J., Rogowski K., Miro J., Lacroix B., Eddé B., Janke C., A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol. Cell 26, 437–448 (2007). PubMed

Kravec M., Šedo O., Nedvědová J., Micka M., Šulcová M., Zezula N., Gömöryová K., Potěšil D., Ganji R. S., Bologna S., Červenka I., Zdráhal Z., Harnoš J., Tripsianes K., Janke C., Bařinka C., Bryja V., Carboxy-terminal polyglutamylation regulates signaling and phase separation of the Dishevelled protein. EMBO J. 43, 5635–5666 (2024). PubMed PMC

Lorton B. M., Warren C., Ilyas H., Nandigrami P., Hegde S., Cahill S., Lehman S. M., Shabanowitz J., Hunt D. F., Fiser A., Cowburn D., Shechter D., Glutamylation of Npm2 and Nap1 acidic disordered regions increases DNA mimicry and histone chaperone efficiency. iScience 27, 109458 (2024). PubMed PMC

van Dijk J., Miro J., Strub J. M., Lacroix B., van Dorsselaer A., Edde B., Janke C., Polyglutamylation is a post-translational modification with a broad range of substrates. J. Biol. Chem. 283, 3915–3922 (2008). PubMed

Lacroix B., van Dijk J., Gold N. D., Guizetti J., Aldrian-Herrada G., Rogowski K., Gerlich D. W., Janke C., Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J. Cell Biol. 189, 945–954 (2010). PubMed PMC

O’Hagan R., Silva M., Nguyen K. C. Q., Zhang W., Bellotti S., Ramadan Y. H., Hall D. H., Barr M. M., Glutamylation regulates transport, specializes function, and sculpts the structure of cilia. Curr. Biol. 27, 3430–3441.e6 (2017). PubMed PMC

Mathieu H., Patten S. A., Aragon-Martin J. A., Ocaka L., Simpson M., Child A., Moldovan F., Genetic variant of TTLL11 gene and subsequent ciliary defects are associated with idiopathic scoliosis in a 5-generation UK family. Sci. Rep. 11, 11026 (2021). PubMed PMC

Garnham C. P., Vemu A., Wilson-Kubalek E. M., Yu I., Szyk A., Lander G. C., Milligan R. A., Roll-Mecak A., Multivalent microtubule recognition by tubulin tyrosine ligase-like family glutamylases. Cell 161, 1112–1123 (2015). PubMed PMC

Mahalingan K. K., Keith Keenan E., Strickland M., Li Y., Liu Y., Ball H. L., Tanner M. E., Tjandra N., Roll-Mecak A., Structural basis for polyglutamate chain initiation and elongation by TTLL family enzymes. Nat. Struct. Mol. Biol. 27, 802–813 (2020). PubMed

Fu G., Yan S., Khoo C. J., Chao V. C., Liu Z., Mukhi M., Hervas R., Li X. D., Ti S.-C., Integrated regulation of tubulin tyrosination and microtubule stability by human α-tubulin isotypes. Cell Rep. 42, 112653 (2023). PubMed

Mahalingan K. K., Grotjahn D. A., Li Y., Lander G. C., Zehr E. A., Roll-Mecak A., Structural basis for α-tubulin-specific and modification state-dependent glutamylation. Nat. Chem. Biol. 20, 1493–1504 (2024). PubMed PMC

Amos L. A., Microtubule structure and its stabilisation. Org. Biomol. Chem. 2, 2153–2160 (2004). PubMed

ProteinAtlas, “Created with The Human Protein Atlas” (2024); www.proteinatlas.org/.

Sanyal C., Pietsch N., Ramirez Rios S., Peris L., Carrier L., Moutin M. J., The detyrosination/re-tyrosination cycle of tubulin and its role and dysfunction in neurons and cardiomyocytes. Semin. Cell Dev. Biol. 137, 46–62 (2023). PubMed

Janke C., Magiera M. M., The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 21, 307–326 (2020). PubMed

Natarajan K., Gadadhar S., Souphron J., Magiera M. M., Janke C., Molecular interactions between tubulin tails and glutamylases reveal determinants of glutamylation patterns. EMBO Rep. 18, 1013–1026 (2017). PubMed PMC

Bodakuntla S., Schnitzler A., Villablanca C., Gonzalez-Billault C., Bieche I., Janke C., Magiera M. M., Tubulin polyglutamylation is a general traffic-control mechanism in hippocampal neurons. J. Cell Sci. 133, jcs241802 (2020). PubMed

Pagnamenta A. T., Heemeryck P., Martin H. C., Bosc C., Peris L., Uszynski I., Gory-Fauré S., Couly S., Deshpande C., Siddiqui A., Elmonairy A. A., WGS500 Consortium, Genomics England Research Consortium, Jayawant S., Murthy S., Walker I., Loong L., Bauer P., Vossier F., Denarier E., Maurice T., Barbier E. L., Deloulme J.-C., Taylor J. C., Blair E. M., Andrieux A., Moutin M.-J., Defective tubulin detyrosination causes structural brain abnormalities with cognitive deficiency in humans and mice. Hum. Mol. Genet. 28, 3391–3405 (2019). PubMed PMC

Magiera M. M., Bodakuntla S., Ziak J., Lacomme S., Marques Sousa P., Leboucher S., Hausrat T. J., Bosc C., Andrieux A., Kneussel M., Landry M., Calas A., Balastik M., Janke C., Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J. 37, e100440 (2018). PubMed PMC

B. Badarudeen, H.-J. Chiang, L. Collado, L. Wang, I. Sanchez, B. D. Dynlacht, The tubulin poly-glutamylase complex, TPGC, is required for phosphatidyl inositol homeostasis and cilium assembly and maintenance. bioRxiv 2025.03.03.641315 [Preprint] (2025). 10.1101/2025.03.03.641315. DOI

Janke C., Rogowski K., Wloga D., Regnard C., Kajava A. V., Strub J.-M., Temurak N., van Dijk J., Boucher D., van Dorsselaer A., Suryavanshi S., Gaertig J., Eddé B., Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308, 1758–1762 (2005). PubMed

Konietzny A., Han Y., Popp Y., van Bommel B., Sharma A., Delagrange P., Arbez N., Moutin M. J., Peris L., Mikhaylova M., Efficient axonal transport of endolysosomes relies on the balanced ratio of microtubule tyrosination and detyrosination. J. Cell Sci. 137, jcs261737 (2024). PubMed PMC

Nirschl J. J., Magiera M. M., Lazarus J. E., Janke C., Holzbaur E. L., α-Tubulin tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons. Cell Rep. 14, 2637–2652 (2016). PubMed PMC

Peris L., Thery M., Faure J., Saoudi Y., Lafanechere L., Chilton J. K., Gordon-Weeks P., Galjart N., Bornens M., Wordeman L., Wehland J., Andrieux A., Job D., Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol. 174, 839–849 (2006). PubMed PMC

Peris L., Wagenbach M., Lafanechere L., Brocard J., Moore A. T., Kozielski F., Job D., Wordeman L., Andrieux A., Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 185, 1159–1166 (2009). PubMed PMC

Steinmetz M. O., Akhmanova A., Capturing protein tails by CAP-Gly domains. Trends Biochem. Sci. 33, 535–545 (2008). PubMed

Lu Y.-M., Yan S., Ti S.-C., Zheng C., Editing of endogenous tubulins reveals varying effects of tubulin posttranslational modifications on axonal growth and regeneration. eLife 13, RP94583 (2024). PubMed PMC

Pathak N., Obara T., Mangos S., Liu Y., Drummond I. A., The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol. Biol. Cell 18, 4353–4364 (2007). PubMed PMC

Sheikh A. M., Tabassum S., Potential role of tubulin glutamylation in neurodegenerative diseases. Neural Regen. Res. 19, 1191–1192 (2024). PubMed PMC

Martin D. T., Jardin N., Vougny J., Giudicelli F., Gasmi L., Berbée N., Henriot V., Lebrun L., Haumaître C., Kneussel M., Nicol X., Janke C., Magiera M. M., Hazan J., Fassier C., Tubulin glutamylation regulates axon guidance via the selective tuning of microtubule-severing enzymes. EMBO J. 44, 107–140 (2025). PubMed PMC

Chakraborti S., Natarajan K., Curiel J., Janke C., Liu J., The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease. Cytoskeleton 73, 521–550 (2016). PubMed

Gadadhar S., Bodakuntla S., Natarajan K., Janke C., The tubulin code at a glance. J. Cell Sci. 130, 1347–1353 (2017). PubMed

McKenna E. D., Sarbanes S. L., Cummings S. W., Roll-Mecak A., The tubulin code, from molecules to health and disease. Annu. Rev. Cell Dev. Biol. 39, 331–361 (2023). PubMed

Viar G. A., Pigino G., Tubulin posttranslational modifications through the lens of new technologies. Curr. Opin. Cell Biol. 88, 102362 (2024). PubMed

Sirajuddin M., Rice L. M., Vale R. D., Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16, 335–344 (2014). PubMed PMC

Valenstein M. L., Roll-Mecak A., Graded control of microtubule severing by tubulin glutamylation. Cell 164, 911–921 (2016). PubMed PMC

Skultetyova L., Ustinova K., Kutil Z., Novakova Z., Pavlicek J., Mikesova J., Trapl D., Baranova P., Havlinova B., Hubalek M., Lansky Z., Barinka C., Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci. Rep. 7, 11547 (2017). PubMed PMC

Elegheert J., Behiels E., Bishop B., Scott S., Woolley R. E., Griffiths S. C., Byrne E. F. X., Chang V. T., Stuart D. I., Jones E. Y., Siebold C., Aricescu A. R., Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat. Protoc. 13, 2991–3017 (2018). PubMed PMC

Kutil Z., Skultetyova L., Rauh D., Meleshin M., Snajdr I., Novakova Z., Mikesova J., Pavlicek J., Hadzima M., Baranova P., Havlinova B., Majer P., Schutkowski M., Barinka C., The unraveling of substrate specificity of histone deacetylase 6 domains using acetylome peptide microarrays and peptide libraries. FASEB J. 33, 4035–4045 (2019). PubMed

Souphron J., Bodakuntla S., Jijumon A. S., Lakisic G., Gautreau A. M., Janke C., Magiera M. M., Purification of tubulin with controlled post-translational modifications by polymerization-depolymerization cycles. Nat. Protoc. 14, 1634–1660 (2019). PubMed

Castoldi M., Popov A. V., Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88 (2003). PubMed

Ustinova K., Novakova Z., Saito M., Meleshin M., Mikesova J., Kutil Z., Baranova P., Havlinova B., Schutkowski M., Matthias P., Barinka C., The disordered N-terminus of HDAC6 is a microtubule-binding domain critical for efficient tubulin deacetylation. J. Biol. Chem. 295, 2614–2628 (2020). PubMed PMC

Magiera M. M., Janke C., Investigating tubulin posttranslational modifications with specific antibodies. Methods Cell Biol. 115, 247–267 (2013). PubMed

Mahamdeh M., Simmert S., Luchniak A., Schaffer E., Howard J., Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy. J. Microsc. 272, 60–66 (2018). PubMed PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J. Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed PMC

Braun M., Lansky Z., Fink G., Ruhnow F., Diez S., Janson M. E., Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nat. Cell Biol. 13, 1259–1264 (2011). PubMed

Hyman A. A., Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence. J. Cell Sci. Suppl. 14, 125–127 (1991). PubMed

Cook A. D., Manka S. W., Wang S., Moores C. A., Atherton J., A microtubule RELION-based pipeline for cryo-EM image processing. J. Struct. Biol. 209, 107402 (2020). PubMed PMC

Scheres S. H. W., RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). PubMed PMC

Punjani A., Rubinstein J. L., Fleet D. J., Brubaker M. A., cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). PubMed

Sanchez-Garcia R., Gomez-Blanco J., Cuervo A., Carazo J. M., Sorzano C. O. S., Vargas J., DeepEMhancer: A deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021). PubMed PMC

Emsley P., Lohkamp B., Scott W. G., Cowtan K., Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010). PubMed PMC

Pettersen E. F., Goddard T. D., Huang C. C., Meng E. C., Couch G. S., Croll T. I., Morris J. H., Ferrin T. E., UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). PubMed PMC

Adams P. D., Afonine P. V., Bunkoczi G., Chen V. B., Davis I. W., Echols N., Headd J. J., Hung L. W., Kapral G. J., Grosse-Kunstleve R. W., McCoy A. J., Moriarty N. W., Oeffner R., Read R. J., Richardson D. C., Richardson J. S., Terwilliger T. C., Zwart P. H., PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). PubMed PMC

Chen V. B., Bryan Arendall W. III, Headd J. J., Keedy D. A., Immormino R. M., Kapral G. J., Murray L. W., Richardson J. S., Richardson D. C., MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010). PubMed PMC

Bankhead P., Loughrey M. B., Fernandez J. A., Dombrowski Y., McArt D. G., Dunne P. D., McQuaid S., Gray R. T., Murray L. J., Coleman H. G., James J. A., Salto-Tellez M., Hamilton P. W., QuPath: Open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017). PubMed PMC

Wang N., Bosc C., Ryul Choi S., Boulan B., Peris L., Olieric N., Bao H., Krichen F., Chen L., Andrieux A., Olieric V., Moutin M. J., Steinmetz M. O., Huang H., Structural basis of tubulin detyrosination by the vasohibin-SVBP enzyme complex. Nat. Struct. Mol. Biol. 26, 571–582 (2019). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...