Mechanistic insights into TTLL11 polyglutamylase-mediated primary tubulin chain elongation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40834096
PubMed Central
PMC12366701
DOI
10.1126/sciadv.adw1561
Knihovny.cz E-zdroje
- MeSH
- elektronová kryomikroskopie MeSH
- lidé MeSH
- mikrotubuly metabolismus MeSH
- molekulární modely MeSH
- peptidsynthasy * metabolismus chemie genetika MeSH
- posttranslační úpravy proteinů MeSH
- tubulin * metabolismus chemie MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peptidsynthasy * MeSH
- tubulin polyglutamylase MeSH Prohlížeč
- tubulin * MeSH
Microtubules (MTs) undergo diverse posttranslational modifications that regulate their structural and functional properties. Among these, polyglutamylation-a dominant and conserved modification targeting unstructured tubulin C-terminal tails-plays a pivotal role in defining the tubulin code. Here, we describe a mechanism by which tubulin tyrosine ligase-like 11 (TTLL11) expands and diversifies the code. Cryo-electron microscopy revealed a unique bipartite MT recognition strategy wherein TTLL11 binding and catalytic domains engage adjacent MT protofilaments. Biochemical and cellular assays identified previously uncharacterized polyglutamylation patterns, showing that TTLL11 directly extends the primary polypeptide chains of α- and β-tubulin in vitro, challenging the prevailing paradigms emphasizing lateral branching. Moreover, cell-based and in vivo data suggest a cross-talk between polyglutamylation and the detyrosination/tyrosination cycle likely linked to the TTLL11-mediated elongation of the primary α-tubulin chain. These findings unveil an unrecognized layer of complexity within the tubulin code and offer mechanistic insights into the molecular basis of functional specialization of MT cytoskeleton.
Department of Biochemistry Faculty of Science Charles University Albertov 6 Prague Czech Republic
Department of Chemistry Umeå University SE 901 87 Umeå Sweden
Grenoble Institute Neurosciences University Grenoble Alpes Inserm U1216 CNRS 38000 Grenoble France
Institut de Biologie Structurale Université Grenoble Alpes CEA CNRS 38044 Grenoble France
Zobrazit více v PubMed
Roll-Mecak A., How cells exploit tubulin diversity to build functional cellular microtubule mosaics. Curr. Opin. Cell Biol. 56, 102–108 (2019). PubMed PMC
Roll-Mecak A., The tubulin code in microtubule dynamics and information encoding. Dev. Cell 54, 7–20 (2020). PubMed PMC
Aillaud C., Bosc C., Peris L., Bosson A., Heemeryck P., Van Dijk J., Le Friec J., Boulan B., Vossier F., Sanman L. E., Syed S., Amara N., Coute Y., Lafanechere L., Denarier E., Delphin C., Pelletier L., Humbert S., Bogyo M., Andrieux A., Rogowski K., Moutin M.-J., Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation. Science 358, 1448–1453 (2017). PubMed
Nieuwenhuis J., Adamopoulos A., Bleijerveld O. B., Mazouzi A., Stickel E., Celie P., Altelaar M., Knipscheer P., Perrakis A., Blomen V. A., Brummelkamp T. R., Vasohibins encode tubulin detyrosinating activity. Science 358, 1453–1456 (2017). PubMed
Landskron L., Bak J., Adamopoulos A., Kaplani K., Moraiti M., van den Hengel L. G., Song J.-Y., Bleijerveld O. B., Nieuwenhuis J., Heidebrecht T., Henneman L., Moutin M.-J., Barisic M., Taraviras S., Perrakis A., Brummelkamp T. R., Posttranslational modification of microtubules by the MATCAP detyrosinase. Science 376, eabn6020 (2022). PubMed
Nicot S., Gillard G., Impheng H., Joachimiak E., Urbach S., Mochizuki K., Wloga D., Juge F., Rogowski K., A family of carboxypeptidases catalyzing α- and β-tubulin tail processing and deglutamylation. Sci. Adv. 9, eadi7838 (2023). PubMed PMC
Rogowski K., van Dijk J., Magiera M. M., Bosc C., Deloulme J.-C., Bosson A., Peris L., Gold N. D., Lacroix B., Grau M. B., Bec N., Larroque C., Desagher S., Holzer M., Andrieux A., Moutin M.-J., Janke C., A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143, 564–578 (2010). PubMed
Tort O., Tanco S., Rocha C., Bieche I., Seixas C., Bosc C., Andrieux A., Moutin M. J., Aviles F. X., Lorenzo J., Janke C., The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Mol. Biol. Cell 25, 3017–3027 (2014). PubMed PMC
Raybin D., Flavin M., An enzyme tyrosylating α-tubulin and its role in microtubule assembly. Biochem. Biophys. Res. Commun. 65, 1088–1095 (1975). PubMed
Paturle-Lafanechere L., Manier M., Trigault N., Pirollet F., Mazarguil H., Job D., Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J. Cell Sci. 107, 1529–1543 (1994). PubMed
Aillaud C., Bosc C., Saoudi Y., Denarier E., Peris L., Sago L., Taulet N., Cieren A., Tort O., Magiera M. M., Janke C., Redeker V., Andrieux A., Moutin M.-J., Bloom K. S., Evidence for new C-terminally truncated variants of α- and β-tubulins. Mol. Biol. Cell 27, 640–653 (2016). PubMed PMC
Magiera M. M., Singh P., Gadadhar S., Janke C., Tubulin posttranslational modifications and emerging links to human disease. Cell 173, 1323–1327 (2018). PubMed
Lee J. E., Silhavy J. L., Zaki M. S., Schroth J., Bielas S. L., Marsh S. E., Olvera J., Brancati F., Iannicelli M., Ikegami K., Schlossman A. M., Merriman B., Attie-Bitach T., Logan C. V., Glass I. A., Cluckey A., Louie C. M., Lee J. H., Raynes H. R., Rapin I., Castroviejo I. P., Setou M., Barbot C., Boltshauser E., Nelson S. F., Hildebrandt F., Johnson C. A., Doherty D. A., Valente E. M., Gleeson J. G., CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nat. Genet. 44, 193–199 (2012). PubMed PMC
Xia P., Ye B., Wang S., Zhu X., Du Y., Xiong Z., Tian Y., Fan Z., Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol. 17, 369–378 (2016). PubMed
Deshpande A., Brants J., Wasylyk C., van Hooij O., Verhaegh G. W., Maas P., Schalken J. A., Wasylyk B., TTLL12 has a potential oncogenic activity, suppression of ligation of nitrotyrosine to the C-terminus of detyrosinated α-tubulin, that can be overcome by molecules identified by screening a compound library. PLOS ONE 19, e0296960 (2024). PubMed PMC
Froidevaux-Klipfel L., Targa B., Cantaloube I., Ahmed-Zaid H., Pous C., Baillet A., Septin cooperation with tubulin polyglutamylation contributes to cancer cell adaptation to taxanes. Oncotarget 6, 36063–36080 (2015). PubMed PMC
Zadra I., Jimenez-Delgado S., Anglada-Girotto M., Segura-Morales C., Compton Z. J., Janke C., Serrano L., Ruprecht V., Vernos I., Chromosome segregation fidelity requires microtubule polyglutamylation by the cancer downregulated enzyme TTLL11. Nat. Commun. 13, 7147 (2022). PubMed PMC
van Dijk J., Rogowski K., Miro J., Lacroix B., Eddé B., Janke C., A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol. Cell 26, 437–448 (2007). PubMed
Kravec M., Šedo O., Nedvědová J., Micka M., Šulcová M., Zezula N., Gömöryová K., Potěšil D., Ganji R. S., Bologna S., Červenka I., Zdráhal Z., Harnoš J., Tripsianes K., Janke C., Bařinka C., Bryja V., Carboxy-terminal polyglutamylation regulates signaling and phase separation of the Dishevelled protein. EMBO J. 43, 5635–5666 (2024). PubMed PMC
Lorton B. M., Warren C., Ilyas H., Nandigrami P., Hegde S., Cahill S., Lehman S. M., Shabanowitz J., Hunt D. F., Fiser A., Cowburn D., Shechter D., Glutamylation of Npm2 and Nap1 acidic disordered regions increases DNA mimicry and histone chaperone efficiency. iScience 27, 109458 (2024). PubMed PMC
van Dijk J., Miro J., Strub J. M., Lacroix B., van Dorsselaer A., Edde B., Janke C., Polyglutamylation is a post-translational modification with a broad range of substrates. J. Biol. Chem. 283, 3915–3922 (2008). PubMed
Lacroix B., van Dijk J., Gold N. D., Guizetti J., Aldrian-Herrada G., Rogowski K., Gerlich D. W., Janke C., Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J. Cell Biol. 189, 945–954 (2010). PubMed PMC
O’Hagan R., Silva M., Nguyen K. C. Q., Zhang W., Bellotti S., Ramadan Y. H., Hall D. H., Barr M. M., Glutamylation regulates transport, specializes function, and sculpts the structure of cilia. Curr. Biol. 27, 3430–3441.e6 (2017). PubMed PMC
Mathieu H., Patten S. A., Aragon-Martin J. A., Ocaka L., Simpson M., Child A., Moldovan F., Genetic variant of TTLL11 gene and subsequent ciliary defects are associated with idiopathic scoliosis in a 5-generation UK family. Sci. Rep. 11, 11026 (2021). PubMed PMC
Garnham C. P., Vemu A., Wilson-Kubalek E. M., Yu I., Szyk A., Lander G. C., Milligan R. A., Roll-Mecak A., Multivalent microtubule recognition by tubulin tyrosine ligase-like family glutamylases. Cell 161, 1112–1123 (2015). PubMed PMC
Mahalingan K. K., Keith Keenan E., Strickland M., Li Y., Liu Y., Ball H. L., Tanner M. E., Tjandra N., Roll-Mecak A., Structural basis for polyglutamate chain initiation and elongation by TTLL family enzymes. Nat. Struct. Mol. Biol. 27, 802–813 (2020). PubMed
Fu G., Yan S., Khoo C. J., Chao V. C., Liu Z., Mukhi M., Hervas R., Li X. D., Ti S.-C., Integrated regulation of tubulin tyrosination and microtubule stability by human α-tubulin isotypes. Cell Rep. 42, 112653 (2023). PubMed
Mahalingan K. K., Grotjahn D. A., Li Y., Lander G. C., Zehr E. A., Roll-Mecak A., Structural basis for α-tubulin-specific and modification state-dependent glutamylation. Nat. Chem. Biol. 20, 1493–1504 (2024). PubMed PMC
Amos L. A., Microtubule structure and its stabilisation. Org. Biomol. Chem. 2, 2153–2160 (2004). PubMed
ProteinAtlas, “Created with The Human Protein Atlas” (2024); www.proteinatlas.org/.
Sanyal C., Pietsch N., Ramirez Rios S., Peris L., Carrier L., Moutin M. J., The detyrosination/re-tyrosination cycle of tubulin and its role and dysfunction in neurons and cardiomyocytes. Semin. Cell Dev. Biol. 137, 46–62 (2023). PubMed
Janke C., Magiera M. M., The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 21, 307–326 (2020). PubMed
Natarajan K., Gadadhar S., Souphron J., Magiera M. M., Janke C., Molecular interactions between tubulin tails and glutamylases reveal determinants of glutamylation patterns. EMBO Rep. 18, 1013–1026 (2017). PubMed PMC
Bodakuntla S., Schnitzler A., Villablanca C., Gonzalez-Billault C., Bieche I., Janke C., Magiera M. M., Tubulin polyglutamylation is a general traffic-control mechanism in hippocampal neurons. J. Cell Sci. 133, jcs241802 (2020). PubMed
Pagnamenta A. T., Heemeryck P., Martin H. C., Bosc C., Peris L., Uszynski I., Gory-Fauré S., Couly S., Deshpande C., Siddiqui A., Elmonairy A. A., WGS500 Consortium, Genomics England Research Consortium, Jayawant S., Murthy S., Walker I., Loong L., Bauer P., Vossier F., Denarier E., Maurice T., Barbier E. L., Deloulme J.-C., Taylor J. C., Blair E. M., Andrieux A., Moutin M.-J., Defective tubulin detyrosination causes structural brain abnormalities with cognitive deficiency in humans and mice. Hum. Mol. Genet. 28, 3391–3405 (2019). PubMed PMC
Magiera M. M., Bodakuntla S., Ziak J., Lacomme S., Marques Sousa P., Leboucher S., Hausrat T. J., Bosc C., Andrieux A., Kneussel M., Landry M., Calas A., Balastik M., Janke C., Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J. 37, e100440 (2018). PubMed PMC
B. Badarudeen, H.-J. Chiang, L. Collado, L. Wang, I. Sanchez, B. D. Dynlacht, The tubulin poly-glutamylase complex, TPGC, is required for phosphatidyl inositol homeostasis and cilium assembly and maintenance. bioRxiv 2025.03.03.641315 [Preprint] (2025). 10.1101/2025.03.03.641315. DOI
Janke C., Rogowski K., Wloga D., Regnard C., Kajava A. V., Strub J.-M., Temurak N., van Dijk J., Boucher D., van Dorsselaer A., Suryavanshi S., Gaertig J., Eddé B., Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308, 1758–1762 (2005). PubMed
Konietzny A., Han Y., Popp Y., van Bommel B., Sharma A., Delagrange P., Arbez N., Moutin M. J., Peris L., Mikhaylova M., Efficient axonal transport of endolysosomes relies on the balanced ratio of microtubule tyrosination and detyrosination. J. Cell Sci. 137, jcs261737 (2024). PubMed PMC
Nirschl J. J., Magiera M. M., Lazarus J. E., Janke C., Holzbaur E. L., α-Tubulin tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons. Cell Rep. 14, 2637–2652 (2016). PubMed PMC
Peris L., Thery M., Faure J., Saoudi Y., Lafanechere L., Chilton J. K., Gordon-Weeks P., Galjart N., Bornens M., Wordeman L., Wehland J., Andrieux A., Job D., Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol. 174, 839–849 (2006). PubMed PMC
Peris L., Wagenbach M., Lafanechere L., Brocard J., Moore A. T., Kozielski F., Job D., Wordeman L., Andrieux A., Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 185, 1159–1166 (2009). PubMed PMC
Steinmetz M. O., Akhmanova A., Capturing protein tails by CAP-Gly domains. Trends Biochem. Sci. 33, 535–545 (2008). PubMed
Lu Y.-M., Yan S., Ti S.-C., Zheng C., Editing of endogenous tubulins reveals varying effects of tubulin posttranslational modifications on axonal growth and regeneration. eLife 13, RP94583 (2024). PubMed PMC
Pathak N., Obara T., Mangos S., Liu Y., Drummond I. A., The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol. Biol. Cell 18, 4353–4364 (2007). PubMed PMC
Sheikh A. M., Tabassum S., Potential role of tubulin glutamylation in neurodegenerative diseases. Neural Regen. Res. 19, 1191–1192 (2024). PubMed PMC
Martin D. T., Jardin N., Vougny J., Giudicelli F., Gasmi L., Berbée N., Henriot V., Lebrun L., Haumaître C., Kneussel M., Nicol X., Janke C., Magiera M. M., Hazan J., Fassier C., Tubulin glutamylation regulates axon guidance via the selective tuning of microtubule-severing enzymes. EMBO J. 44, 107–140 (2025). PubMed PMC
Chakraborti S., Natarajan K., Curiel J., Janke C., Liu J., The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease. Cytoskeleton 73, 521–550 (2016). PubMed
Gadadhar S., Bodakuntla S., Natarajan K., Janke C., The tubulin code at a glance. J. Cell Sci. 130, 1347–1353 (2017). PubMed
McKenna E. D., Sarbanes S. L., Cummings S. W., Roll-Mecak A., The tubulin code, from molecules to health and disease. Annu. Rev. Cell Dev. Biol. 39, 331–361 (2023). PubMed
Viar G. A., Pigino G., Tubulin posttranslational modifications through the lens of new technologies. Curr. Opin. Cell Biol. 88, 102362 (2024). PubMed
Sirajuddin M., Rice L. M., Vale R. D., Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16, 335–344 (2014). PubMed PMC
Valenstein M. L., Roll-Mecak A., Graded control of microtubule severing by tubulin glutamylation. Cell 164, 911–921 (2016). PubMed PMC
Skultetyova L., Ustinova K., Kutil Z., Novakova Z., Pavlicek J., Mikesova J., Trapl D., Baranova P., Havlinova B., Hubalek M., Lansky Z., Barinka C., Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci. Rep. 7, 11547 (2017). PubMed PMC
Elegheert J., Behiels E., Bishop B., Scott S., Woolley R. E., Griffiths S. C., Byrne E. F. X., Chang V. T., Stuart D. I., Jones E. Y., Siebold C., Aricescu A. R., Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat. Protoc. 13, 2991–3017 (2018). PubMed PMC
Kutil Z., Skultetyova L., Rauh D., Meleshin M., Snajdr I., Novakova Z., Mikesova J., Pavlicek J., Hadzima M., Baranova P., Havlinova B., Majer P., Schutkowski M., Barinka C., The unraveling of substrate specificity of histone deacetylase 6 domains using acetylome peptide microarrays and peptide libraries. FASEB J. 33, 4035–4045 (2019). PubMed
Souphron J., Bodakuntla S., Jijumon A. S., Lakisic G., Gautreau A. M., Janke C., Magiera M. M., Purification of tubulin with controlled post-translational modifications by polymerization-depolymerization cycles. Nat. Protoc. 14, 1634–1660 (2019). PubMed
Castoldi M., Popov A. V., Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88 (2003). PubMed
Ustinova K., Novakova Z., Saito M., Meleshin M., Mikesova J., Kutil Z., Baranova P., Havlinova B., Schutkowski M., Matthias P., Barinka C., The disordered N-terminus of HDAC6 is a microtubule-binding domain critical for efficient tubulin deacetylation. J. Biol. Chem. 295, 2614–2628 (2020). PubMed PMC
Magiera M. M., Janke C., Investigating tubulin posttranslational modifications with specific antibodies. Methods Cell Biol. 115, 247–267 (2013). PubMed
Mahamdeh M., Simmert S., Luchniak A., Schaffer E., Howard J., Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy. J. Microsc. 272, 60–66 (2018). PubMed PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J. Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed PMC
Braun M., Lansky Z., Fink G., Ruhnow F., Diez S., Janson M. E., Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nat. Cell Biol. 13, 1259–1264 (2011). PubMed
Hyman A. A., Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence. J. Cell Sci. Suppl. 14, 125–127 (1991). PubMed
Cook A. D., Manka S. W., Wang S., Moores C. A., Atherton J., A microtubule RELION-based pipeline for cryo-EM image processing. J. Struct. Biol. 209, 107402 (2020). PubMed PMC
Scheres S. H. W., RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). PubMed PMC
Punjani A., Rubinstein J. L., Fleet D. J., Brubaker M. A., cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). PubMed
Sanchez-Garcia R., Gomez-Blanco J., Cuervo A., Carazo J. M., Sorzano C. O. S., Vargas J., DeepEMhancer: A deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021). PubMed PMC
Emsley P., Lohkamp B., Scott W. G., Cowtan K., Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010). PubMed PMC
Pettersen E. F., Goddard T. D., Huang C. C., Meng E. C., Couch G. S., Croll T. I., Morris J. H., Ferrin T. E., UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). PubMed PMC
Adams P. D., Afonine P. V., Bunkoczi G., Chen V. B., Davis I. W., Echols N., Headd J. J., Hung L. W., Kapral G. J., Grosse-Kunstleve R. W., McCoy A. J., Moriarty N. W., Oeffner R., Read R. J., Richardson D. C., Richardson J. S., Terwilliger T. C., Zwart P. H., PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). PubMed PMC
Chen V. B., Bryan Arendall W. III, Headd J. J., Keedy D. A., Immormino R. M., Kapral G. J., Murray L. W., Richardson J. S., Richardson D. C., MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010). PubMed PMC
Bankhead P., Loughrey M. B., Fernandez J. A., Dombrowski Y., McArt D. G., Dunne P. D., McQuaid S., Gray R. T., Murray L. J., Coleman H. G., James J. A., Salto-Tellez M., Hamilton P. W., QuPath: Open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017). PubMed PMC
Wang N., Bosc C., Ryul Choi S., Boulan B., Peris L., Olieric N., Bao H., Krichen F., Chen L., Andrieux A., Olieric V., Moutin M. J., Steinmetz M. O., Huang H., Structural basis of tubulin detyrosination by the vasohibin-SVBP enzyme complex. Nat. Struct. Mol. Biol. 26, 571–582 (2019). PubMed