The disordered N-terminus of HDAC6 is a microtubule-binding domain critical for efficient tubulin deacetylation

. 2020 Feb 28 ; 295 (9) : 2614-2628. [epub] 20200117

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31953325
Odkazy

PubMed 31953325
PubMed Central PMC7049964
DOI 10.1074/jbc.ra119.011243
PII: S0021-9258(17)49000-4
Knihovny.cz E-zdroje

Histone deacetylase 6 (HDAC6) is a multidomain cytosolic enzyme having tubulin deacetylase activity that has been unequivocally assigned to the second of the tandem catalytic domains. However, virtually no information exists on the contribution of other HDAC6 domains on tubulin recognition. Here, using recombinant protein expression, site-directed mutagenesis, fluorimetric and biochemical assays, microscale thermophoresis, and total internal reflection fluorescence microscopy, we identified the N-terminal, disordered region of HDAC6 as a microtubule-binding domain and functionally characterized it to the single-molecule level. We show that the microtubule-binding motif spans two positively charged patches comprising residues Lys-32 to Lys-58. We found that HDAC6-microtubule interactions are entirely independent of the catalytic domains and are mediated by ionic interactions with the negatively charged microtubule surface. Importantly, a crosstalk between the microtubule-binding domain and the deacetylase domain was critical for recognition and efficient deacetylation of free tubulin dimers both in vitro and in vivo Overall, our results reveal that recognition of substrates by HDAC6 is more complex than previously appreciated and that domains outside the tandem catalytic core are essential for proficient substrate deacetylation.

Zobrazit více v PubMed

Hansen B. K., Gupta R., Baldus L., Lyon D., Narita T., Lammers M., Choudhary C., and Weinert B. T. (2019) Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat. Commun. 10, 1055 10.1038/s41467-019-09024-0 PubMed DOI PMC

Guan J. S., Haggarty S. J., Giacometti E., Dannenberg J. H., Joseph N., Gao J., Nieland T. J., Zhou Y., Wang X., Mazitschek R., Bradner J. E., DePinho R. A., Jaenisch R., and Tsai L. H. (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459, 55–60 10.1038/nature07925 PubMed DOI PMC

Villagra A., Cheng F., Wang H. W., Suarez I., Glozak M., Maurin M., Nguyen D., Wright K. L., Atadja P. W., Bhalla K., Pinilla-Ibarz J., Seto E., and Sotomayor E. M. (2009) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat. Immunol. 10, 92–100 10.1038/ni.1673 PubMed DOI PMC

Gräff J., Rei D., Guan J. S., Wang W. Y., Seo J., Hennig K. M., Nieland T. J., Fass D. M., Kao P. F., Kahn M., Su S. C., Samiei A., Joseph N., Haggarty S. J., Delalle I., and Tsai L. H. (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483, 222–226 10.1038/nature10849 PubMed DOI PMC

Jakovcevski M., and Akbarian S. (2012) Epigenetic mechanisms in neurological disease. Nat. Med. 18, 1194–1204 10.1038/nm.2828 PubMed DOI PMC

Falkenberg K. J., and Johnstone R. W. (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 10.1038/nrd4360 PubMed DOI

Zhao S., Xu W., Jiang W., Yu W., Lin Y., Zhang T., Yao J., Zhou L., Zeng Y., Li H., Li Y., Shi J., An W., Hancock S. M., He F., et al. (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004 10.1126/science.1179689 PubMed DOI PMC

Wang M. M., You D., and Ye B. C. (2017) Site-specific and kinetic characterization of enzymatic and nonenzymatic protein acetylation in bacteria. Sci. Rep. 7, 14790 10.1038/s41598-017-13897-w PubMed DOI PMC

Clocchiatti A., Florean C., and Brancolini C. (2011) Class IIa HDACs: From important roles in differentiation to possible implications in tumourigenesis. J. Cell Mol. Med. 15, 1833–1846 10.1111/j.1582-4934.2011.01321.x PubMed DOI PMC

Lernoux M., Schnekenburger M., Dicato M., and Diederich M. (2018) Anti-cancer effects of naturally derived compounds targeting histone deacetylase 6-related pathways. Pharmacol. Res. 129, 337–356 10.1016/j.phrs.2017.11.004 PubMed DOI

Li G., Jiang H., Chang M., Xie H., and Hu L. (2011) HDAC6 α-tubulin deacetylase: A potential therapeutic target in neurodegenerative diseases. J. Neurol. Sci. 304, 1–8 10.1016/j.jns.2011.02.017 PubMed DOI

Kozikowski A. P., Shen S., Pardo M., Tavares M. T., Szarics D., Benoy V., Zimprich C. A., Kutil Z., Zhang G., Bainka C., Robers M. B., Van Den Bosch L., Eubanks J. H., and Jope R. S. (2019) Brain penetrable histone deacetylase 6 inhibitor SW-100 ameliorates memory and learning impairments in a mouse model of fragile X syndrome. ACS Chem. Neurosci. 10, 1679–1695 10.1021/acschemneuro.8b00600 PubMed DOI PMC

Hai Y., and Christianson D. W. (2016) Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol. 12, 741–747 10.1038/nchembio.2134 PubMed DOI PMC

Miyake Y., Keusch J. J., Wang L., Saito M., Hess D., Wang X., Melancon B. J., Helquist P., Gut H., and Matthias P. (2016) Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat. Chem. Biol. 12, 748–754 10.1038/nchembio.2140 PubMed DOI

Boyault C., Gilquin B., Zhang Y., Rybin V., Garman E., Meyer-Klaucke W., Matthias P., Müller C. W., and Khochbin S. (2006) HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J. 25, 3357–3366 10.1038/sj.emboj.7601210 PubMed DOI PMC

Hao R., Nanduri P., Rao Y., Panichelli R. S., Ito A., Yoshida M., and Yao T. P. (2013) Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains. Mol. Cell 51, 819–828 10.1016/j.molcel.2013.08.016 PubMed DOI PMC

Banerjee I., Miyake Y., Nobs S. P., Schneider C., Horvath P., Kopf M., Matthias P., Helenius A., and Yamauchi Y. (2014) Influenza A virus uses the aggresome processing machinery for host cell entry. Science 346, 473–477 10.1126/science.1257037 PubMed DOI

Liu Y., Peng L., Seto E., Huang S., and Qiu Y. (2012) Modulation of histone deacetylase 6 (HDAC6) nuclear import and tubulin deacetylase activity through acetylation. J. Biol. Chem. 287, 29168–29174 10.1074/jbc.M112.371120 PubMed DOI PMC

Kutil Z., Skultetyova L., Rauh D., Meleshin M., Snajdr I., Novakova Z., Mikesova J., Pavlicek J., Hadzima M., Baranova P., Havlinova B., Majer P., Schutkowski M., and Barinka C. (2019) The unraveling of substrate specificity of histone deacetylase 6 domains using acetylome peptide microarrays and peptide libraries. FASEB J. 33, 4035–4045 10.1096/fj.201801680R PubMed DOI

Saito M., Hess D., Eglinger J., Fritsch A. W., Kreysing M., Weinert B. T., Choudhary C., and Matthias P. (2019) Acetylation of intrinsically disordered regions regulates phase separation. Nat. Chem. Biol. 15, 51–61 10.1038/s41589-018-0180-7 PubMed DOI

Bertos N. R., Gilquin B., Chan G. K., Yen T. J., Khochbin S., and Yang X. J. (2004) Role of the tetradecapeptide repeat domain of human histone deacetylase 6 in cytoplasmic retention. J. Biol. Chem. 279, 48246–48254 10.1074/jbc.M408583200 PubMed DOI

Hubbert C., Guardiola A., Shao R., Kawaguchi Y., Ito A., Nixon A., Yoshida M., Wang X. F., and Yao T. P. (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 10.1038/417455a PubMed DOI

Matsuyama A., Shimazu T., Sumida Y., Saito A., Yoshimatsu Y., Seigneurin-Berny D., Osada H., Komatsu Y., Nishino N., Khochbin S., Horinouchi S., and Yoshida M. (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 21, 6820–6831 10.1093/emboj/cdf682 PubMed DOI PMC

Zhang Y., Li N., Caron C., Matthias G., Hess D., Khochbin S., and Matthias P. (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 22, 1168–1179 10.1093/emboj/cdg115 PubMed DOI PMC

Zhao Z., Xu H., and Gong W. (2010) Histone deacetylase 6 (HDAC6) is an independent deacetylase for α-tubulin. Protein Pept. Lett. 17, 555–558 10.2174/092986610791112620 PubMed DOI

Zou H., Wu Y., Navre M., and Sang B. C. (2006) Characterization of the two catalytic domains in histone deacetylase 6. Biochem. Biophys. Res. Commun. 341, 45–50 10.1016/j.bbrc.2005.12.144 PubMed DOI

Portran D., Schaedel L., Xu Z., Théry M., and Nachury M. V. (2017) Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat. Cell Biol. 19, 391–398 10.1038/ncb3481 PubMed DOI PMC

Verhey K. J., and Gaertig J. (2007) The tubulin code. Cell Cycle 6, 2152–2160 10.4161/cc.6.17.4633 PubMed DOI

Janke C. (2014) The tubulin code: Molecular components, readout mechanisms, and functions. J. Cell Biol. 206, 461–472 10.1083/jcb.201406055 PubMed DOI PMC

Alushin G. M., Musinipally V., Matson D., Tooley J., Stukenberg P. T., and Nogales E. (2012) Multimodal microtubule binding by the Ndc80 kinetochore complex. Nat. Struct. Mol. Biol. 19, 1161–1167 10.1038/nsmb.2411 PubMed DOI PMC

Garnham C. P., Vemu A., Wilson-Kubalek E. M., Yu I., Szyk A., Lander G. C., Milligan R. A., and Roll-Mecak A. (2015) Multivalent microtubule recognition by tubulin tyrosine ligase-like family glutamylases. Cell 161, 1112–1123 10.1016/j.cell.2015.04.003 PubMed DOI PMC

Sirajuddin M., Rice L. M., and Vale R. D. (2014) Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16, 335–344 10.1038/ncb2920 PubMed DOI PMC

Tran A. D., Marmo T. P., Salam A. A., Che S., Finkelstein E., Kabarriti R., Xenias H. S., Mazitschek R., Hubbert C., Kawaguchi Y., Sheetz M. P., Yao T. P., and Bulinski J. C. (2007) HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J. Cell Sci. 120, 1469–1479 10.1242/jcs.03431 PubMed DOI

Nahhas F., Dryden S. C., Abrams J., and Tainsky M. A. (2007) Mutations in SIRT2 deacetylase which regulate enzymatic activity but not its interaction with HDAC6 and tubulin. Mol. Cell Biochem. 303, 221–230 10.1007/s11010-007-9478-6 PubMed DOI

Chang J., Baloh R. H., and Milbrandt J. (2009) The NIMA-family kinase Nek3 regulates microtubule acetylation in neurons. J. Cell Sci. 122, 2274–2282 10.1242/jcs.048975 PubMed DOI PMC

Zilberman Y., Ballestrem C., Carramusa L., Mazitschek R., Khochbin S., and Bershadsky A. (2009) Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J. Cell Sci. 122, 3531–3541 10.1242/jcs.046813 PubMed DOI

Skultetyova L., Ustinova K., Kutil Z., Novakova Z., Pavlicek J., Mikesova J., Trapl D., Baranova P., Havlinova B., Hubalek M., Lansky Z., and Barinka C. (2017) Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci. Rep. 7, 11547 10.1038/s41598-017-11739-3 PubMed DOI PMC

Hinrichs M. H., Jalal A., Brenner B., Mandelkow E., Kumar S., and Scholz T. (2012) Tau protein diffuses along the microtubule lattice. J. Biol. Chem. 287, 38559–38568 10.1074/jbc.M112.369785 PubMed DOI PMC

Seitz A., Kojima H., Oiwa K., Mandelkow E. M., Song Y. H., and Mandelkow E. (2002) Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J. 21, 4896–4905 10.1093/emboj/cdf503 PubMed DOI PMC

Thiede C., Lakämper S., Wessel A. D., Kramer S., and Schmidt C. F. (2013) A chimeric kinesin-1 head/kinesin-5 tail motor switches between diffusive and processive motility. Biophys. J. 104, 432–441 10.1016/j.bpj.2012.11.3810 PubMed DOI PMC

Gao Y. S., Hubbert C. C., and Yao T. P. (2010) The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J. Biol. Chem. 285, 11219–11226 10.1074/jbc.M109.042754 PubMed DOI PMC

Huo L., Li D., Sun X., Shi X., Karna P., Yang W., Liu M., Qiao W., Aneja R., and Zhou J. (2011) Regulation of Tat acetylation and transactivation activity by the microtubule-associated deacetylase HDAC6. J. Biol. Chem. 286, 9280–9286 10.1074/jbc.M110.208884 PubMed DOI PMC

Kovacs J. J., Murphy P. J., Gaillard S., Zhao X., Wu J. T., Nicchitta C. V., Yoshida M., Toft D. O., Pratt W. B., and Yao T. P. (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 18, 601–607 10.1016/j.molcel.2005.04.021 PubMed DOI

Parmigiani R. B., Xu W. S., Venta-Perez G., Erdjument-Bromage H., Yaneva M., Tempst P., and Marks P. A. (2008) HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc. Natl. Acad. Sci. U.S.A. 105, 9633–9638 10.1073/pnas.0803749105 PubMed DOI PMC

Zhang X., Yuan Z., Zhang Y., Yong S., Salas-Burgos A., Koomen J., Olashaw N., Parsons J. T., Yang X. J., Dent S. R., Yao T. P., Lane W. S., and Seto E. (2007) HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell 27, 197–213 10.1016/j.molcel.2007.05.033 PubMed DOI PMC

Lefevre J., Chernov K. G., Joshi V., Delga S., Toma F., Pastre D., Curmi P. A., and Savarin P. (2011) The C terminus of tubulin, a versatile partner for cationic molecules binding of tau, polyamines, and calcium. J. Biol. Chem. 286, 3065–3078 10.1074/jbc.M110.144089 PubMed DOI PMC

Wang Q., Crevenna A. H., Kunze I., and Mizuno N. (2014) Structural basis for the extended CAP-Gly domains of p150(glued) binding to microtubules and the implication for tubulin dynamics. Proc. Natl. Acad. Sci. U.S.A. 111, 11347–11352 10.1073/pnas.1403135111 PubMed DOI PMC

Hard R. L., Liu J., Shen J., Zhou P., and Pei D. (2010) HDAC6 and Ubp-M BUZ domains recognize specific C-terminal sequences of proteins. Biochemistry 49, 10737–10746 10.1021/bi101014s PubMed DOI PMC

Alberti S., Gladfelter A., and Mittag T. (2019) Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176, 419–434 10.1016/j.cell.2018.12.035 PubMed DOI PMC

Du Y., Seibenhener M. L., Yan J., Jiang J., and Wooten M. C. (2015) aPKC phosphorylation of HDAC6 results in increased deacetylation activity. PLoS One 10, e0123191 10.1371/journal.pone.0123191 PubMed DOI PMC

Zhuang Y., Nguyen H. T., Lasky J. A., Cao S., Li C., Hu J., Guo X., Burow M. E., and Shan B. (2010) Requirement of a novel splicing variant of human histone deacetylase 6 for TGF-β1-mediated gene activation. Biochem. Biophys. Res. Commun. 392, 608–613 10.1016/j.bbrc.2010.01.091 PubMed DOI PMC

Thierry-Mieg D., and Thierry-Mieg J. (2006) AceView: A comprehensive cDNA-supported gene and transcripts annotation. Genome Biol. 7, Suppl. 1, S12 10.1186/gb-2006-7-s1-s12 PubMed DOI PMC

Lafarga V., Aymerich I., Tapia O., Mayor F. Jr., and Penela P. (2012) A novel GRK2/HDAC6 interaction modulates cell spreading and motility. EMBO J. 31, 856–869 10.1038/emboj.2011.466 PubMed DOI PMC

Williams K. A., Zhang M., Xiang S., Hu C., Wu J. Y., Zhang S., Ryan M., Cox A. D., Der C. J., Fang B., Koomen J., Haura E., Bepler G., Nicosia S. V., Matthias P., Wang C., Bai W., and Zhang X. (2013) Extracellular signal-regulated kinase (ERK) phosphorylates histone deacetylase 6 (HDAC6) at serine 1035 to stimulate cell migration. J. Biol. Chem. 288, 33156–33170 10.1074/jbc.M113.472506 PubMed DOI PMC

Watabe M., and Nakaki T. (2011) Protein kinase CK2 regulates the formation and clearance of aggresomes in response to stress. J. Cell Sci. 124, 1519–1532 10.1242/jcs.081778 PubMed DOI

Pugacheva E. N., Jablonski S. A., Hartman T. R., Henske E. P., and Golemis E. A. (2007) HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351–1363 10.1016/j.cell.2007.04.035 PubMed DOI PMC

Chen S., Owens G. C., Makarenkova H., and Edelman D. B. (2010) HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One 5, e10848 10.1371/journal.pone.0010848 PubMed DOI PMC

Deribe Y. L., Wild P., Chandrashaker A., Curak J., Schmidt M. H. H., Kalaidzidis Y., Milutinovic N., Kratchmarova I., Buerkle L., Fetchko M. J., Schmidt P., Kittanakom S., Brown K. R., Jurisica I., Blagoev B., Zerial M., Stagljar I., and Dikic I. (2009) Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci. Signal. 2, ra84 10.1126/scisignal.2000576 PubMed DOI

Kellogg E. H., Howes S., Ti S. C., Ramírez-Aportela E., Kapoor T. M., Chacón P., and Nogales E. (2016) Near-atomic cryo-EM structure of PRC1 bound to the microtubule. Proc. Natl. Acad. Sci. U.S.A. 113, 9430–9439 10.1073/pnas.1609903113 PubMed DOI PMC

Castoldi M., and Popov A. V. (2003) Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88 10.1016/S1046-5928(03)00218-3 PubMed DOI

Redeker V., Melki R., Promé D., Le Caer J. P., and Rossier J. (1992) Structure of tubulin C-terminal domain obtained by subtilisin treatment. The major α and β tubulin isotypes from pig brain are glutamylated. FEBS Lett. 313, 185–192 10.1016/0014-5793(92)81441-N PubMed DOI

Rueden C. T., Schindelin J., Hiner M. C., DeZonia B. E., Walter A. E., Arena E. T., and Eliceiri K. W. (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 10.1186/s12859-017-1934-z PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J. Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., and Cardona A. (2012) Fiji: An open-source platform for biological image analysis. Nat. Meth. 9, 676–682 10.1038/nmeth.2019 PubMed DOI PMC

Braun M., Lansky Z., Fink G., Ruhnow F., Diez S., and Janson M. E. (2011) Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nat. Cell Biol. 13, 1259–1264 10.1038/ncb2323 PubMed DOI

Hyman A. A. (1991) Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence. J. Cell Sci. Suppl. 14, 125–127 10.1242/jcs.1991.supplement_14.25 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Characterization of glutamate carboxypeptidase 2 orthologs in trematodes

. 2022 Dec 20 ; 15 (1) : 480. [epub] 20221220

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...