Chlorella mirabilis as a Potential Species for Biomass Production in Low-Temperature Environment

. 2013 ; 4 () : 97. [epub] 20130423

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid23630521

Successful adaptation/acclimatization to low temperatures in micro-algae is usually connected with production of specific biotechnologically important compounds. In this study, we evaluated the growth characteristics in a micro-scale mass cultivation of the Antarctic soil green alga Chlorella mirabilis under different nitrogen and carbon sources followed by analyses of fatty acid contents. The micro-scale mass cultivation was performed in stable (in-door) and variable (out-door) conditions during winter and/or early spring in the Czech Republic. In the in-door cultivation, the treatments for nitrogen and carbon sources determination included pure Z medium (control, Z), Z medium + 5% glycerol (ZG), Z medium + 5% glycerol + 50 μM KNO3 (ZGN), Z medium + 5% glycerol + 200 μM NH4Cl (ZGA), Z medium + 5% glycerol + 1 mM Na2CO3 (ZNC), Z medium + 5% glycerol + 1 mM Na2CO3 + 200 μM NH4Cl (ZGCA) and Z medium + 5% glycerol + 1 mM Na2CO3 + 50 μM KNO3 (ZGCN) and were performed at 15°C with an irradiance of 75 μmol m(-2) s(-1). During the out-door experiments, the night-day temperature ranged from -6.6 to 17.5°C (daily average 3.1 ± 5.3°C) and irradiance ranged from 0 to 2,300 μmol m(-2) s(-1) (daily average 1,500 ± 1,090 μmol m(-2) s(-1)). Only the Z, ZG, ZGN, and ZGC treatments were used in the out-door cultivation. In the in-door mass cultivation, all nitrogen and carbon sources additions increased the growth rate with the exception of ZGA. When individual sources were considered, only the effect of 5% glycerol addition was significant. On the other hand, the growth rate decreased in the ZG and ZGN treatments in the out-door experiment, probably due to carbon limitation. Fatty acid composition showed increased production of linoleic acid in the glycerol treatments. The studied strain of C. mirabilis is proposed to be a promising source of linoleic acid in low-temperature-mass cultivation biotechnology. This strain is a perspective model organism for biotechnology in low-temperature conditions.

Zobrazit více v PubMed

Bennemann J. R., Tillett D. M., Weissman J. C. (1987). Microalgae biotechnology. Trends Biotechnol. 5, 47–5310.1016/0167-7799(87)90037-0 DOI

Blanck H., Wallin G., Wängberg S. A. (1984). Species-dependent variation in algal sensitivity to chemical compounds. Ecotoxicol. Environ. Saf. 8, 339–35110.1016/0147-6513(84)90003-4 PubMed DOI

Borowitzka M. (1997). Microalgae for aquaculture: opportunities and constraints. J. Appl. Phycol. 9, 393–40110.1023/A:1007921728300 DOI

Borowitzka M. A. (2005). “Culturing microalgae in outdoor ponds,” in Algal Culturing Techniques, ed. Andersen R. A. (Amsterdam: Elsevier Academic Press; ), 205–218

Cerón Garcí M. C., Fernández Sevilla J. M., Acién Fernández F. G., Molina Grima E., García Camacho F. (2000). Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J. Appl. Phycol. 12, 239–24810.1023/A:1008123000002 DOI

Chen F., Zhang Y. (1997). High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb. Tech. 20, 221–22410.1016/S0141-0229(96)00209-8 DOI

Cleuvers M., Attenburger R., Ratte H. T. (2002). Combination effects of light and toxicity in algal tests. J. Environ. Qual. 31, 539–54710.2134/jeq2002.0539 PubMed DOI

Cohen Z., Vonshak A., Richmond A. (1988). Effect of environmental conditions on fatty acid composition of the red alga Porphyridium purpureum: correlation to growth rate. J. Phycol. 24, 328–33210.1111/j.1529-8817.1988.tb04474.x DOI

Davey M. C., Rothery P. (1992). Factors causing the limitation of growth of terrestrial algae in maritime Antarctica during late summer. Polar Biol. 12, 595–60110.1007/BF00236982 DOI

Day J., Tsavalos A. (1996). An investigation of the heterotrophic culture of the green alga Tetraselmis. J. Appl. Phycol. 8, 73–7710.1007/BF02184973 DOI

Dickson L. G. (2000). Constraints to nitrogen fixation by cryptogamic crusts in a polar desert ecosystem, Devon Island, N.W.T., Canada. Arct. Antarct. Alp. Res. 32, 40–4510.2307/1552408 DOI

Dunstan G. A., Volkman J. K., Barrett S. M., Leroi J. M., Jeffrey S. W. (1994). Essential polyunsaturated fatty acids from fourteen species of diatom (Bacillariophyceae). Phytochemistry 31, 155–161

Elster J. (1996). Algal diversity, seasonality and abundance in, and along glacial stream in Sverdrup Pass, 79°N, Central Ellesmere Island, Canada. Memoir. Natl. Inst. Polar Res. 51, 99–118

Elster J. (2002). “Ecological classification of terrestrial algal communities in polar environments,” in Geoecology of Antarctic Ice-Free Coastal Landscapes, eds Beyer L., Bötler M. (Berlin: Springer-Verlag; ), 303–326

Elster J., Benson E. E. (2004). “Life in the polar terrestrial environment with a focus on algae and cyanobacteria,” in Life in the Frozen State, eds Fuller B. J., Lane N., Benson E. E. (Boca Raton: CRC Press; ), 111–150

Elster J., Komárek O. (2003). Ecology of periphyton in a meltwater stream ecosystem in the maritime Antarctica. Antarct. Sci. 15, 189–20110.1017/S0954102003001226 DOI

Elster J., Lukavský J., Harding K., Benson E. E., Day J. G. (2008). Deployment of the encapsulation/dehydration protocol to cryopreserve polar microalgae held at the Czech Republic Academy of Science Institute of Botany. Cryo Letters 29, 27–28 PubMed

Elster J., Svoboda J. (1995). “ In situ simulation and manipulation of a glacial stream ecosystem in the Canadian High Arctic,” in Ecosystem Manipulation Experiments: Scientific Approaches, Experimental Design and Relevant Results, eds Jenkins D., Ferrier R. C., Kirby C. (Brussels: Commission of the European Communities, Institute of Hydrology, UK and Environment Canada; ), 254–263

Elster J., Svoboda J., Kanda H. (2001). “Controlled environmental platform used in temperature manipulation study of a stream periphyton in the Ny-Ålesund, Svalbard,” in Algae and Extreme Environments, eds Elster J., Seckbach J., Vincent W. F., Lhotský O. (Stuttgart: Cramer; ), 63–75

Faust M. A., Gantt E. (1973). Effect of light intensity on glycerol on the growth, pigment composition, and ultrastructure of Chroomonas sp. J. Phycol. 9, 489–49510.1111/j.0022-3646.1973.00489.x DOI

Gombos Z., Wada H., Murata N. (1992). Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobycterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc. Natl. Acad. Sci. U.S.A. 89, 9959–996310.1073/pnas.89.20.9959 PubMed DOI PMC

Harel M., Koven W., Lein I., Bar Y., Behrens P., Stubblefield J., et al. (2002). Advanced DHA, EPA and ArA enrichment materials for marine aquaculture using single cell heterotrophs. Aquaculture 213, 347–36210.1016/S0044-8486(02)00047-9 DOI

Henry G. H. R., Svoboda J. (1986). Dinitrogen fixation (acetylene reduction) in high arctic sedge meadow communities. Arct. Antarct. Alp. Res. 18, 181–18710.2307/1551127 DOI

Hu H. H., Ll H. Y., Xu X. D. (2008). Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia 47, 28–3410.2216/07-28.1 DOI

Kaštovská K., Elster J., Stibal M., Šantrucková H. (2005). Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb. Ecol. 50, 396–40710.1007/s00248-005-0246-4 PubMed DOI

Kvíderová J. (2010). Rapid algal toxicity assay using variable chlorophyll fluorescence for Chlorella kesslerii (Chlorophyta). Environ. Toxicol. 25, 554–56310.1002/tox.20516 PubMed DOI

Kvíderová J., Lukavský J. (2001). “A new unit for crossed gradients of temperature and light,” in Algae and Extreme Environments, eds Elster J., Seckbach J., Vincent W. F., Lhotský O. (Stuttgart: Cramer; ), 541–550

Kvíderová J., Lukavský J. (2003). The cultivation of Phaeodactylum tricornutum in crossed gradeints of temperature and light. Arch. Hydrobiol. Suppl. 149/Algol. Stud. 110, 67–80

Kvíderová J., Lukavský J. (2005). The comparison of ecological characteristics of Stichococcus (Chlorophyta) strains isolated from polar and temperate regions. Arch. Hydrobiol. Suppl. 160/Algol. Stud. 118, 127–140

Langden C., Onal E. (1999). Replacement of living microalgae with spray-dried diets for marine mussel Mytilus galloprouicialis. Aquaculture 180, 283–29410.1016/S0044-8486(99)00197-0 DOI

Lee Y.-K., Low C.-S. (1992). Productivity of outdoor algal cultures in enclosed tubular photobioreactor. Biotechnol. Bioeng. 40, 1119–112210.1002/bit.260400203 PubMed DOI

Liang Y., Sarkany N., Cui Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31, 1043–104910.1007/s10529-009-9975-7 PubMed DOI

Liengen T., Olsen R. A. (1997). Nitrogen fixation by free-living cyanobacteria from different coastal sites in a High Arctic tundra, Spitzbergen. Arct. Antarct. Alp. Res. 29, 470–47710.2307/1551994 DOI

Lukavský J., Furnadjieva S., Cepák V. (2003). Toxicity of metals, Al, Cd, Co, Cr, Cu, Fen, Ni, Pb, and Zn on microalgae, using microplate bioassay 1: Chlorella kessleri, Scenedesmus quadricauda, Sc. subspicatus and Raphidocelis subcapitata (Selenastrum capricornutum). Arch. Hydrobiol. Suppl. 149/Algol. Stud. 110, 127–141

Masojídek J., Torzillo G., Koblížek M., Kopecký J., Bernardini P., Sacchi A., et al. (1999). Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: changes in chlorophyll fluorescence quenching and the xanthophyll cycle. Planta 209, 126–13510.1007/s004250050614 PubMed DOI

Mayasich J. M., Karlander E. P., Terlizzi D. E. (1987). Growth responses of Nannochloris oculata droop and Phaeodactylum tricornutum Bohlin to the herbicide atrazine as influenced by light intensity and temperature in unialgal and bialgal assemblage. Aquat. Toxicol. 10, 187–19710.1016/0166-445X(87)90011-7 DOI

Mayer P., Frickmann J., Christensen E. R., Nyholm N. (1998). Influence of growth conditions on the results obtained in algal toxicity assays. Environ. Toxicol. Chem. 17, 1091–109810.1897/1551-5028(1998)017<1848:TCCOTP>2.3.CO;2 DOI

O’Grady J., Morgan J. A. (2011). Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess Biosyst. Eng. 34, 121–12510.1007/s00449-010-0474-y PubMed DOI

Oliver R. L., Whittington J., Lorenz Z., Webster I. T. (2003). The influence of vertical mixing on the photoinhibition of variable chlorophyll a fluorescence and its inclusion in a model of phytoplankton photosynthesis. J. Plankton Res. 25, 1107–112910.1093/plankt/25.9.1107 DOI

Pandey K. D., Shukla S. P., Shukla N. P., Giri D. D., Singh J. S., Singh P., et al. (2004). Cyanobacteria in Antarctica: ecology, physiology and cold adaptation. Cell. Mol. Biol. 50, 575–584 PubMed

řezanka T., Nedbalová L., Elster J., Cajthaml T., Sigler K. (2009). Very-long-chain iso and anteiso branched fatty acids in N-acylphosphatidylethanolamines from a natural cyanobacterial mat of Calothrix sp. Phytochemistry 70, 655–66310.1016/j.phytochem.2009.02.003 PubMed DOI

řezanka T., Nedbalová L., Sigler K. (2008). Unusual medium chain-chain polyunsaturated fatty acids from snow alga Chloromonas brevispina. Microbiol. Res. 163, 373–37910.1016/j.micres.2006.11.021 PubMed DOI

Samejima H., Myers J. (1958). On the heterotrophic growth of Chlorella pyrenoidosa. J. Gen. Microbiol. 18, 107–11710.1099/00221287-18-1-107 PubMed DOI

Sanchez S., Martinez M. E., Molina E., Casa J. A. (1995). Skeletonema costatum, as a potential source of fatty acids and single cell protein (SCP): the effect of pH on growth rate and biomass composition. J. Mar. Biotechnol. 2, 23–26

Satoh N., Murata N., Miura Y., Ueta N. (1979). Effect of growth temperature on lipid and fatty acid composition in the blue-green algae, Anabaena variabilis and Anacystis nidulans. Biochim. Biophys. Acta 572, 19–2810.1016/0005-2760(79)90196-6 PubMed DOI

Shukla S. P., Kashyap A. K. (2003). An assessment of biopotential of three cyanobacterial isolates from Antarctic for carotenoid production. Indian J. Biochem. Biophys. 40, 362–366 PubMed

Shukla S. P., Kvíderová J., Elster J. (2011). Nutrient requirements of polar Chlorella-like species. Czech Polar Rep. 1, 1–10

Shukla S. P., Mishra A. K., Kashyap A. K. (1997a). Influence of low temperature and salinity stress on growth behaviour and pigment composition of Antarctic and tropical isolates of a diazotrophic cyanobacterium Anabaena. Indian J. Exp. Biol. 35, 1224–1228

Shukla S. P., Padney K. D., Kashyap A. K. (1997b). Nitrogen fixation, ammonium transport and glutamine synthetase activity in an Antarctic cyanobacterium Anabaena sp.: influence of temperature. J. Plant Physiol. 150, 351–35410.1016/S0176-1617(97)80132-0 DOI

Staub R. (1961). Ernahrungsphysiologisch-autokolagische Untersuchungenan der planktonische Blaualgae Ocillatoria rubescens DC. Schweis. Z. Hydrol. 23, 82–198

Tan C. K., Johns M. R. (1991). Fatty acid production by heterotrophic Chlorella sacharophilla. Hydrobiologia 215, 13–1910.1007/BF00005896 DOI

Thimijan R. W., Heins R. D. (1983). Photometric, radiometric and quantum light units of measure: a review of procedures for interconversion. HortScience 18, 818–822

Torzillo G., Accolla P., Pinzani E., Masojidek J. (1996). In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors. J. Appl. Phycol. 8, 283–29110.1007/BF02178571 DOI

Torzillo G., Bernardini P., Masojídek J. (1998). On-line monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effect on the productivity of outdoor cultures of Spirulina platensis (Cyanobacteria). J. Phycol. 34, 504–51010.1046/j.1529-8817.1998.340504.x DOI

Torzillo G., Goksan T., Faraloni C., Kopecký J., Masojídek J. (2003). Interplay between photochemical activities and pigment composition in an outdoor culture of Heterococcus pluvialis during shift from the green to red stage. J. Appl. Phycol. 15, 127–13610.1023/A:1023854904163 DOI

Vonshak A., Torzillo G. (2004). “Environmental stress physiology,” in Handbook of Microbial Culture, Biotechnology and Applied Phycology, ed. Richmond A. (Oxford: Blackwell Science; ), 57–82

Walker J. K. M., Egger K. N., Henry G. H. R. (2008). Long-term experimental warming alters nitrogen-cycling communities but site factors remain the primary drivers of community structure in high arctic tundra soil. ISME J. 2, 982–99510.1038/ismej.2008.52 PubMed DOI

Wood B. J. B., Grimson P. H. K., German J. B., Turner M. (1999). “Photoheterotrophy in the production of phytoplankton organisms,” in Progress in Industrial Microbiology, eds Osinga R., Tramper J., Burgess T. G., Wijffels R. H. (Amsterodam: Elsevier; ), 175–183

Zhou B., Liu W., Qu W., Tseng C. K. (1991). Application of Spirulina mixed feed in the breeding of bay scallop. Bioresour. Technol. 38, 229–23210.1016/0960-8524(91)90159-H DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...