Historical plant introductions predict current insect invasions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37276425
PubMed Central
PMC10268304
DOI
10.1073/pnas.2221826120
Knihovny.cz E-zdroje
- Klíčová slova
- invasion debt, nonnative insects, nonnative plants, species flow, time lag,
- MeSH
- hmyz * MeSH
- rostliny MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Thousands of insect species have been introduced outside of their native ranges, and some of them strongly impact ecosystems and human societies. Because a large fraction of insects feed on or are associated with plants, nonnative plants provide habitat and resources for invading insects, thereby facilitating their establishment. Furthermore, plant imports represent one of the main pathways for accidental nonnative insect introductions. Here, we tested the hypothesis that plant invasions precede and promote insect invasions. We found that geographical variation in current nonnative insect flows was best explained by nonnative plant flows dating back to 1900 rather than by more recent plant flows. Interestingly, nonnative plant flows were a better predictor of insect invasions than potentially confounding socioeconomic variables. Based on the observed time lag between plant and insect invasions, we estimated that the global insect invasion debt consists of 3,442 region-level introductions, representing a potential increase of 35% of insect invasions. This debt was most important in the Afrotropics, the Neotropics, and Indomalaya, where we expect a 10 to 20-fold increase in discoveries of new nonnative insect species. Overall, our results highlight the strong link between plant and insect invasions and show that limiting the spread of nonnative plants might be key to preventing future invasions of both plants and insects.
Department of Ecology and Evolution University of Lausanne 1015 Lausanne Switzerland
Forest Industries Research Centre University of the Sunshine Coast Buderim QLD 4556 Australia
Institut National de la Recherche Agronomique UR 0633 Zoologie Forestière 4575 Orléans France
Intertidal Agency San Francisco CA 94104 5401
Northern Research Station Forest Service US Department of Agriculture Morgantown WV 26505
Zobrazit více v PubMed
Pyšek P., et al. , Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020). PubMed PMC
Seebens H., et al. , No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 1–9 (2017). PubMed PMC
Invasive Species Specialist Group ISSG, Global Invasive Species Database (2015). 12 December 2022.
Hill M. P., Clusella-Trullas S., Terblanche J. S., Richardson D. M., Drivers, impacts, mechanisms and adaptation in insect invasions. Biol. Invasions 18, 883–891 (2016).
Kenis M., et al. , Ecological effects of invasive alien insects. Biol. Invasions 11, 21–45 (2009).
Oliveira C. M., Auad A. M., Mendes S. M., Frizzas M. R., Economic impact of exotic insect pests in Brazilian agriculture. J. Appl. Entomol. 137, 1–15 (2013).
Fei S., Morin R. S., Oswalt C. M., Liebhold A. M., Biomass losses resulting from insect and disease invasions in US forests. Proc. Natl. Acad. Sci. U.S.A. 116, 17371–17376 (2019). PubMed PMC
Bras A., et al. , The fast invasion of Europe by the box tree moth: An additional example coupling multiple introduction events, bridgehead effects and admixture events. Biol. Invasions 24, 3865–3883 (2022).
Mellor P. S., Boorman J., Baylis M., Culicoides biting midges: Their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000). PubMed
Leta S., et al. , Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis. 67, 25–35 (2018). PubMed PMC
Kraemer M. U. G., Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019). PubMed PMC
Bradshaw C. J. A., et al. , Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 1–8 (2016). PubMed PMC
Strong D. R., Lawton J. H., Southwood S. R., Insects on Plants. Community Patterns and Mechanisms (Blackwell Scientific Publications, 1984) (14 December 2022).
Meurisse N., Rassati D., Hurley B. P., Brockerhoff E. G., Haack R. A., Common pathways by which non-native forest insects move internationally and domestically. J. Pest Sci. 92, 13–27 (2019).
Fenn-Moltu G., et al. , Alien insect dispersal mediated by the global movement of commodities. Ecol. Appl 33, e2721 (2022). PubMed PMC
Ollier S., Bertelsmeier C., Precise knowledge of commodity trade is needed to understand invasion flows. Front. Ecol. Environ. 20, 467–473 (2022).
Kenis M., Rabitsch W., Auger-Rozenberg M. A., Roques A., How can alien species inventories and interception data help us prevent insect invasions? Bull. Entomol. Res. 97, 489–502 (2007). PubMed
Smith R. M., et al. , Recent non-native invertebrate plant pest establishments in Great Britain: Origins, pathways, and trends. Agric. For. Entomol. 9, 307–326 (2007).
Liebhold A. M., Brockerhoff E. G., Garrett L. J., Parke J. L., Britton K. O., Live plant imports: The major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 10, 135–143 (2012).
Roques A., et al. , Are invasive patterns of non-native insects related to woody plants differing between Europe and China? Front. For. Glob. Change 2, 91 (2020).
Liebhold A. M., et al. , Plant diversity drives global patterns of insect invasions. Sci. Rep. 8, 1–5 (2018). PubMed PMC
Bacon S. J., Aebi A., Calanca P., Bacher S., Quarantine arthropod invasions in Europe: The role of climate, hosts and propagule pressure. Divers. Distrib. 20, 84–94 (2014).
Bebber D. P., Holmes T., Gurr S. J., The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).
Hurley B. P., et al. , Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol. Invasions 18, 921–933 (2016).
Mally R., et al. , Non-native plant drives the spatial dynamics of its herbivores: The case of black locust (Robinia pseudoacacia) in Europe. NeoBiota 69, 155–175 (2021).
Morales C. L., Aizen M. A., Does invasion of exotic plants promote invasion of exotic flower visitors? A case study from the temperate forests of the Southern Andes. Biol. Invasions 4, 87–100 (2002).
Fontúrbel F. E., et al. , Do exotic plants and flower colour facilitate bumblebee invasion? Insights from citizen science data. Flora 298, 152200 (2023).
Essl F., et al. , Socioeconomic legacy yields an invasion debt. Proc. Natl. Acad. Sci. U.S.A. 108, 203–207 (2011). PubMed PMC
Lenzner B., et al. , Naturalized alien floras still carry the legacy of European colonialism. Nat. Ecol. Evol. 6, 1723–1732 (2022). PubMed
Bertelsmeier C., Ollier S., Liebhold A., Keller L., Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 1, 0184 (2017). PubMed PMC
Bonnamour A., Gippet J. M. W., Bertelsmeier C., Insect and plant invasions follow two waves of globalisation. Ecol. Lett. 24, 2418–2426 (2021). PubMed PMC
Hulme P. E., Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679 (2021).
Hughes A. C., et al. , Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).
Nakagawa S., Johnson P. C. D., Schielzeth H., The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017). PubMed PMC
Burnham K. P., Anderson D. R., Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
Ward S. F., Liebhold A. M., Fei S., Variable effects of forest diversity on invasions by non-native insects and pathogens. Biodivers. Conserv. 31, 2575–2586 (2022).
Troudet J., Grandcolas P., Blin A., Vignes-Lebbe R., Legendre F., Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017). PubMed PMC
Spear M. J., Walsh J. R., Ricciardi A., Jake M., Zanden V., The Invasion ecology of sleeper populations: Prevalence, persistence, and abrupt shifts. BioScience 71, 357–369 (2021).
Walsh J. R., Pedersen E. J., Vander Zanden M. J., Detecting species at low densities: A new theoretical framework and an empirical test on an invasive zooplankton. Ecosphere 9, e02475 (2018).
MacLachlan M. J., Liebhold A. M., Yamanaka T., Springborn M. R., Hidden patterns of insect establishment risk revealed from two centuries of alien species discoveries. Sci. Adv. 7, eabj1012 (2021). PubMed PMC
van Kleunen M., et al. , The changing role of ornamental horticulture in alien plant invasions. Biol. Rev. 93, 1421–1437 (2018). PubMed
van Kleunen M., Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020). PubMed PMC
Saul W. C., et al. , Assessing patterns in introduction pathways of alien species by linking major invasion data bases. J. Appl. Ecol. 54, 657–669 (2017).
Gippet J. M. W., Liebhold A. M., Fenn-Moltu G., Bertelsmeier C., Human-mediated dispersal in insects. Curr. Opin. Insect Sci. 35, 96–102 (2019). PubMed
Seebens H., et al. , Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Change Biol. 21, 4128–4140 (2015). PubMed
Nahrung H. F., Carnegie A. J., Border interceptions of forest insects established in Australia: Intercepted invaders travel early and often. NeoBiota 64, 69–86 (2021).
Seebens H., et al. , Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27, 970–982 (2021). PubMed
van Kleunen M., Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015). PubMed
Mattson W., Vanhanen H., Veteli T., Sivonen S., Niemelä P., Few immigrant phytophagous insects on woody plants in Europe: Legacy of the European crucible? Biol. Invasions 9, 957–974 (2007).
Lombaert E., et al. , Bridgehead effect in the worldwide invasion of the biocontrol Harlequin ladybird. PLoS One 5, e9743 (2010). PubMed PMC
Bertelsmeier C., Keller L., Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 33, 527–534 (2018). PubMed
Bertelsmeier C., et al. , Recurrent bridgehead effects accelerate global alien ant spread. Proc. Natl. Acad. Sci. U.S.A. 115, 5486–5491 (2018). PubMed PMC
Blumenfeld A. J., Vargo E. L., Geography, opportunity and bridgeheads facilitate termite invasions to the United States. Biol. Invasions 22, 3269–3282 (2020).
Bertelsmeier C., Ollier S., Bridgehead effects distort global flows of alien species. Diversity Distrib. 27, 2180–2189 (2021).
Wan F.-H., Yang N.-W., Invasion and Management of Agricultural Alien Insects in China. Annu. Rev. Entomol. 61, 77–98 (2016). PubMed
Bella S., New alien insect pests to Portugal on urban ornamental plants and additional data on recently introduced species. Annales de la Société entomologique de France (N.S.) 49, 374–382 (2013).
Eschen R., et al. , International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environ. Sci. Policy 51, 228–237 (2015).
Nahrung H. F., Carnegie A. J., Non-native forest insects and pathogens in Australia: Establishment, spread, and impact. Front. For. Glob. Change 3, 37 (2020).
Liebhold A. M., et al. , Invasion disharmony in the global biogeography of native and non-native beetle species. Divers. Distrib. 27, 2050–2062 (2021).
Turner R., Blake R., Liebhold A. M., International non-native insect establishment data (0.1). Zenodo (2021), 10.5281/zenodo.5245302. DOI
Mally R., et al. , Moths and butterflies on alien shores: Global biogeography of non-native Lepidoptera. J. Biogeogr. 49, 1455–1468 (2022).
Pagad S., Genovesi P., Carnevali L., Schigel D., McGeoch M. A., Introducing the global register of introduced and invasive species. Sci. Data 5, 1–12 (2018). PubMed PMC
GBIF.org, GBIF insect occurrence download (2021), 10.15468/dl.8bw6hc. 28 July 2022. DOI
GBIF.org, GBIF vascular plant occurrence download (2021). 10.15468/dl.awwnws. 28 July 2022. DOI
Chamberlain S., Arendsee Z., taxizedb: Tools for Working with “Taxonomic” Databases. (R Package Version 0.3.0). Zenodo (2021). 10.5281/zenodo.4441353. DOI
Smith R., Non-native invertebrate plant pests established in Great Britain: An assessment of patterns and trends. “Plant Protection and Plant Health in Europe: Introduction and Spread of Invasive Species. BCPC Symposium Proceedings” (2005), vol. 81.
WCSP, World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet 65, 1–216203 (2021).
Muir C., comtradr: Interface with the United Nations Comtrade API (R Package Version 0.3.0, 2022). https://CRAN.R-project.org/package=comtradr
Mangiante M. J., et al. , Trends in nonindigenous aquatic species richness in the United States reveal shifting spatial and temporal patterns of species introductions. Aquat. Invasions 13, 323–338 (2018). PubMed PMC
R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2022), 28 July 2022.
Bonnamour A, et al. , Data and code for: “Historical plant introductions predict current insect invasions”. Zenodo. 10.5281/zenodo.7945261. Deposited 17 May 2023. PubMed DOI PMC
Global proliferation of nonnative plants is a major driver of insect invasions
Historical plant introductions predict current insect invasions