Projecting the continental accumulation of alien species through to 2050

. 2020 Oct 01 ; () : . [epub] 20201001

Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33000893

Grantová podpora
31003A_179491 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
31BD30_184114 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
CEECIND/02037/2017 Fundação para a Ciência e a Tecnologia
EVA4.0 OP RDE
I 4011-B32 Austrian Science Fund
SE 1891/2-1 Deutsche Forschungsgemeinschaft
264740629 Deutsche Forschungsgemeinschaft
19-28807X Grantová Agentura České Republiky
RVO 67985939 Akademie Věd České Republiky
JE 288/9-2 Deutsche Forschungsgemeinschaft
I 3757 Austrian Science Fund FWF - Austria
01LC1807A Bundesministerium für Bildung und Forschung
USDA Forest Service
Belmont Forum
UIDB/00295/2020 Fundação para a Ciência e a Tecnologia
01LC1807C Bundesministerium für Bildung und Forschung
UIDP/00295/2020 Fundação para a Ciência e a Tecnologia
FZT 118 Deutsche Forschungsgemeinschaft
01LC1807B Bundesministerium für Bildung und Forschung
CZ.02.1.01/0.0/0.0/16_019/0000803 OP RDE

Biological invasions have steadily increased over recent centuries. However, we still lack a clear expectation about future trends in alien species numbers. In particular, we do not know whether alien species will continue to accumulate in regional floras and faunas, or whether the pace of accumulation will decrease due to the depletion of native source pools. Here, we apply a new model to simulate future numbers of alien species based on estimated sizes of source pools and dynamics of historical invasions, assuming a continuation of processes in the future as observed in the past (a business-as-usual scenario). We first validated performance of different model versions by conducting a back-casting approach, therefore fitting the model to alien species numbers until 1950 and validating predictions on trends from 1950 to 2005. In a second step, we selected the best performing model that provided the most robust predictions to project trajectories of alien species numbers until 2050. Altogether, this resulted in 3,790 stochastic simulation runs for 38 taxon-continent combinations. We provide the first quantitative projections of future trajectories of alien species numbers for seven major taxonomic groups in eight continents, accounting for variation in sampling intensity and uncertainty in projections. Overall, established alien species numbers per continent were predicted to increase from 2005 to 2050 by 36%. Particularly, strong increases were projected for Europe in absolute (+2,543 ± 237 alien species) and relative terms, followed by Temperate Asia (+1,597 ± 197), Northern America (1,484 ± 74) and Southern America (1,391 ± 258). Among individual taxonomic groups, especially strong increases were projected for invertebrates globally. Declining (but still positive) rates were projected only for Australasia. Our projections provide a first baseline for the assessment of future developments of biological invasions, which will help to inform policies to contain the spread of alien species.

Berlin Brandenburg Institute of Advanced Biodiversity Research Berlin Germany

Bio Protection Research Centre Lincoln University Christchurch New Zealand

Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa

Centro de Estudos Geográficos Instituto de Geografia e Ordenamento do Território IGOT Universidade de Lisboa Lisbon Portugal

Chair IUCN Species Survival Commission Invasive Species Specialist Group Rome Italy

Department of Biology Chemistry Pharmacy Institute of Biology Freie Universität Berlin Berlin Germany

Department of Biology University of Fribourg Fribourg Switzerland

Department of Biosciences Durham University Durham UK

Department of Botany and Biodiversity Research University of Vienna Vienna Austria

Department of Community Ecology Helmholtz Centre for Environmental Research UFZ Halle Germany

Department of Ecology Faculty of Science Charles University Prague Czech Republic

Department of Genetics Evolution and Environment Centre for Biodiversity and Environment Research University College London London UK

Department of Invasion Ecology Institute of Botany Czech Academy of Sciences Průhonice Czech Republic

Ecology Department of Biology University of Konstanz Konstanz Germany

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Praha Suchdol Czech Republic

Geobotany and Botanical Garden Martin Luther University Halle Wittenberg Halle Germany

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Institute for Environmental Protection and Research Rome Italy

Institute of Zoology Zoological Society of London London UK

Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany

School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK

Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany

USDA Forest Service Northern Research Station Morgantown WV USA

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China

Zobrazit více v PubMed

Albert, R. J., Lishman, J. M., & Saxena, J. R. (2013). Ballast water regulations and the move toward concentration-based numeric discharge limits. Ecological Applications, 23(2), 289-300. https://doi.org/10.1890/12-0669.1

Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., … Costello, M. J. (2012). The magnitude of global marine species diversity. Current Biology, 22(23), 2189-2202. https://doi.org/10.1016/j.cub.2012.09.036

Aukema, J. E., Cullough, D. G. M., Holle, B. V., Liebhold, A. M., Britton, K., & Frankel, S. J. (2010). Historical accumulation of nonindigenous forest pests in the continental United States. BioScience, 60(11), 886-897. https://doi.org/10.1525/bio.2010.60.11.5

Bacon, S. J., Bacher, S., & Aebi, A. (2012). Gaps in border controls are related to quarantine alien insect invasions in Europe. PLoS One, 7(10), e47689. https://doi.org/10.1371/journal.pone.0047689

Bell, C. (2000). The distribution of abundance in neutral communities. The American Naturalist, 155(5), 606. https://doi.org/10.2307/3078983

Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M., & Courchamp, F. (2013). Will climate change promote future invasions? Global Change Biology, 19(12), 3740-3748. https://doi.org/10.1111/gcb.12344

Blackburn, T. M., Dyer, E. E., Su, S., & Cassey, P. (2015). Long after the event, or four things we (should) know about bird invasions. Journal of Ornithology, 156(1), 15-25. https://doi.org/10.1007/s10336-015-1155-z

Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., … Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 26(7), 333-339. https://doi.org/10.1016/j.tree.2011.03.023

Bradley, B. A., Blumenthal, D. M., Early, R., Grosholz, E. D., Lawler, J. J., Miller, L. P., … Olden, J. D. (2012). Global change, global trade, and the next wave of plant invasions. Frontiers in Ecology and the Environment, 10(1), 20-28. https://doi.org/10.1890/110145

Burnham, K. P., & Anderson, D. R. (2004). Model selection and inference - A practical information-theoretic approach. Sociological Methods & Research, 33(2), 261-304.

Costello, M. J., Wilson, S., & Houlding, B. (2012). Predicting total global species richness using rates of species description and estimates of taxonomic effort. Systematic Biology, 61(5), 871-883. https://doi.org/10.1093/sysbio/syr080

Cox, J. G., & Lima, S. L. (2006). Naiveté and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends in Ecology & Evolution, 21(12), 674-680. https://doi.org/10.1016/j.tree.2006.07.011

Cudahy, B. J. (2006). The containership revolution: Malcom McLean’s 1956 innovation goes global. Transportation Research News, 246, 5-9.

Dawson, W., Moser, D., van Kleunen, M., Kreft, H., Pergl, J., Pyšek, P., … Essl, F. (2017). Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology & Evolution, 1, 0186. https://doi.org/10.1038/s41559-017-0186

di Castri, F. (1989). History of biological invasions with special emphasis on the Old World. In J. A. Drake, H. A. Mooney, F. di Castri, R. H. Groves, F. J. Kruger, M. Rejmánek, & M. Williamson (Eds.), Biological invasions: A global perspective (pp. 1-30). Chichester: John Wiley and Sons.

Dyer, E. E., Cassey, P., Redding, D. W., Collen, B., Franks, V., Gaston, K. J., … Blackburn, T. M. (2017). The global distribution and drivers of alien bird species richness. PLoS Biology, 15(1), e2000942. https://doi.org/10.1371/journal.pbio.2000942

Early, R., Bradley, B. A., Dukes, J. S., Lawler, J. J., Olden, J. D., Blumenthal, D. M., … Tatem, A. J. (2016). Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, 7, 12485. https://doi.org/10.1038/ncomms12485

Ellis, E. C., Kaplan, J. O., Fuller, D. Q., Vavrus, S., Goldewijk, K. K., Verburg, P. H., … Verburg, P. H. (2013). Used planet: A global history. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 7978-7985. https://doi.org/10.1073/pnas.1217241110

Essl, F., Bacher, S., Blackburn, T. M., Booy, O., Brundu, G., Brunel, S., … Jeschke, J. M. (2015). Crossing frontiers in tackling pathways of biological invasions. BioScience, 65(8), 769-782. https://doi.org/10.1093/biosci/biv082

Essl, F., Lenzner, B., Bacher, S., Bailey, S., Capinha, C., Daehler, C., … Roura-Pascual, N. (2020). Drivers of future alien species impacts: An expert-based assessment. Global Change Biology, 26(9), 4880-4893. https://doi.org/10.1111/gcb.15199

Fridley, J. D., & Sax, D. F. (2014). The imbalance of nature: Revisiting a Darwinian framework for invasion biology. Global Ecology and Biogeography, 23(11), 1157-1166. https://doi.org/10.1111/geb.12221

Froese, R., & Pauly, D. (Eds). (2015). FishBase. Retrieved from http://www.Fishbase.de/

Hulme, P. E. (2009). Trade, transport and trouble: Managing invasive species pathways in an era of globalization. Journal of Applied Ecology, 46(1), 10-18. https://doi.org/10.1111/j.1365-2664.2008.01600.x

IPBES. (2016). Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In V. C. S. Ferrier, K. N. Ninan, P. Leadley, R. Alkemade, L. A. Acosta, H. R. Akçakaya, L. Brotons, W. Cheung, N. H. R. K. A. Harhash, J. Kabubo-Mariara, C. Lundquist, M. Obersteiner, H. Pereira, G. Peterson, R. Pichs-Madruga, & B. W. C. Rondinini (Eds.). Bonn, Germany: Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.

IPBES. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In S. Díaz, J. Settele, E. S. Brondizio, H. T. Ngo, M. Guèze, J. Agard, & C. N. Zayas (Eds.). Bonn, Germany: IPBES Secretariat.

IPCC. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.

Knapp, S., Winter, M., & Klotz, S. (2017). Increasing species richness but decreasing phylogenetic richness and divergence over a 320-year period of urbanization. Journal of Applied Ecology, 54(4), 1152-1160. https://doi.org/10.1111/1365-2664.12826

Lenzner, B., Latombe, G., Capinha, C., Bellard, C., Courchamp, F., Diagne, C., … Essl, F. (2020). What will the future bring for biological invasions on islands? An expert-based assessment. Frontiers in Ecology and Evolution, 8. https://doi.org/10.3389/fevo.2020.00280

Lenzner, B., Leclère, D., Franklin, O., Seebens, H., Roura-Pascual, N., Obersteiner, M., … Essl, F. (2019). A framework for global twenty-first century scenarios and models of biological invasions. BioScience, 69(9), 697-710. https://doi.org/10.1093/biosci/biz070

Leung, B., Springborn, M. R., Turner, J. A., & Brockerhoff, E. G. (2014). Pathway-level risk analysis: The net present value of an invasive species policy in the US. Frontiers in Ecology and the Environment, 12(5), 273-279. https://doi.org/10.1890/130311

Lewis, S. L., & Maslin, M. A. (2015). Defining the Anthropocene. Nature, 519(7542), 171-180. https://doi.org/10.1038/nature14258

Liebhold, A. M., Brockerhoff, E. G., & Kimberley, M. (2017). Depletion of heterogeneous source species pools predicts future invasion rates. Journal of Applied Ecology, 54(6), 1968-1977. https://doi.org/10.1111/1365-2664.12895

Meyerson, L. A., & Mooney, H. A. (2007). Invasive alien species in an era of globalization. Frontiers in Ecology and the Environment, 5(4), 199-208. https://doi.org/10.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;2

Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). How many species are there on earth and in the ocean? PLoS Biology, 9(8), 1-8. https://doi.org/10.1371/journal.pbio.1001127

Muñoz-Mas, R., & García-Berthou, E. (2020). Alien animal introductions in Iberian inland waters: An update and analysis. Science of the Total Environment, 703, 134505. https://doi.org/10.1016/j.scitotenv.2019.134505

Pauchard, A., & Alaback, P. B. (2004). Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conservation Biology, 18(1), 238-248. https://doi.org/10.1111/j.1523-1739.2004.00300.x

Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., … Richardson, D. M. (2020). Scientists’ warning on invasive alien species. Biological Reviews, brv.12627. https://doi.org/10.1111/brv.12627

Pyšek, P., Pergl, J., Essl, F., Lenzner, B., Dawson, W., Kreft, H., … Kleunen, M. V. (2017). Naturalized alien flora of the world: Species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia, 89(3), 203-274. https://doi.org/10.23855/preslia.2017.203

R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/

Rouget, M., Robertson, M. P., Wilson, J. R. U., Hui, C., Essl, F., Renteria, J. L., & Richardson, D. M. (2016). Invasion debt - Quantifying future biological invasions. Diversity and Distributions, 22(4), 445-456. https://doi.org/10.1111/ddi.12408

Russell, J. C., Meyer, J. Y., Holmes, N. D., & Pagad, S. (2017). Invasive alien species on islands: Impacts, distribution, interactions and management. Environmental Conservation, 44(4), 359-370. https://doi.org/10.1017/S0376892917000297

Sax, D. F., & Gaines, S. D. (2008). Species invasions and extinction: The future of native biodiversity on islands. Proceedings of the National Academy of Sciences of the United States of America, 105, 11490-11497. https://doi.org/10.1073/pnas.0802290105

Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., … Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8(1), 14435. https://doi.org/10.1038/ncomms14435

Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., … Essl, F. (2018). Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 115(10), E2264-E2273. https://doi.org/10.1073/pnas.1719429115

Seebens, H., Essl, F., Dawson, W., Fuentes, N., Moser, D., Pergl, J., … Blasius, B. (2015). Global trade will accelerate plant invasions in emerging economies under climate change. Global Change Biology, 21(11), 4128-4140. https://doi.org/10.1111/gcb.13021

Seebens, H., Schwartz, N., Schupp, P. J., & Blasius, B. (2016). Predicting the spread of marine species introduced by global shipping. Proceedings of the National Academy of Sciences of the United States of America, 113(20), 5646-5651. https://doi.org/10.1073/pnas.1524427113

Sikes, B. A., Bufford, J. L., Hulme, P. E., Cooper, J. A., Johnston, P. R., & Duncan, R. P. (2018). Import volumes and biosecurity interventions shape the arrival rate of fungal pathogens. PLOS Biology, 16(5), e2006025. https://doi.org/10.1371/journal.pbio.2006025

Turbelin, A. J., Malamud, B. D., & Francis, R. A. (2017). Mapping the global state of invasive alien species: Patterns of invasion and policy responses. Global Ecology and Biogeography, 26(1), 78-92. https://doi.org/10.1111/geb.12517

van Kleunen, M., Dawson, W., Essl, F., Pergl, J., Winter, M., Weber, E., … Pyšek, P. (2015). Global exchange and accumulation of non-native plants. Nature, 525(7567), 100-103. https://doi.org/10.1038/nature14910

Walther, G.-R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., Kühn, I., … Bugmann, H. (2009). Alien species in a warmer world: Risks and opportunities. Trends in Ecology & Evolution, 24(12), 686-693. https://doi.org/10.1016/j.tree.2009.06.008

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Management Measures and Trends of Biological Invasions in Europe: A Survey-Based Assessment of Local Managers

. 2025 Jan ; 31 (1) : e70028.

Differences in Tri-Trophic Community Responses to Temperature-Dependent Vital Rates, Thermal Niche Mismatches and Temperature-Size Rule

. 2024 Nov ; 27 (11) : e70022.

Prioritising non-native fish species for management actions in three Polish rivers using the newly developed tool-dispersal-origin-status-impact scheme

. 2024 ; 12 () : e18300. [epub] 20241031

Risk Perception: Chemical Stimuli in Predator Detection and Feeding Behaviour of the Invasive Round Goby Neogobius melanostomus

. 2024 Jun 02 ; 13 (6) : . [epub] 20240602

Plant invasion and naturalization are influenced by genome size, ecology and economic use globally

. 2024 Feb 13 ; 15 (1) : 1330. [epub] 20240213

Potential sources of time lags in calibrating species distribution models

. 2024 Jan ; 51 (1) : 89-102. [epub] 20230928

A latitudinal gradient in Darwin's naturalization conundrum at the global scale for flowering plants

. 2023 Oct 12 ; 14 (1) : 6244. [epub] 20231012

Historical plant introductions predict current insect invasions

. 2023 Jun 13 ; 120 (24) : e2221826120. [epub] 20230605

Unveiling the hidden economic toll of biological invasions in the European Union

. 2023 ; 35 (1) : 43. [epub] 20230608

The impact of land use on non-native species incidence and number in local assemblages worldwide

. 2023 Apr 12 ; 14 (1) : 2090. [epub] 20230412

Adaptive photosynthetic strategies of the invasive plant Sphagneticola trilobata and its hybrid to a low-light environment

. 2022 ; 60 (4) : 549-561. [epub] 20221220

Identifying, reducing, and communicating uncertainty in community science: a focus on alien species

. 2022 ; 24 (11) : 3395-3421. [epub] 20220829

Building a synthesis of economic costs of biological invasions in New Zealand

. 2022 ; 10 () : e13580. [epub] 20220815

Global economic costs of herpetofauna invasions

. 2022 Jul 28 ; 12 (1) : 10829. [epub] 20220728

The global loss of floristic uniqueness

. 2021 Dec 15 ; 12 (1) : 7290. [epub] 20211215

Survival, Growth, and Reproduction: Comparison of Marbled Crayfish with Four Prominent Crayfish Invaders

. 2021 May 10 ; 10 (5) : . [epub] 20210510

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...