Projecting the continental accumulation of alien species through to 2050
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
31003A_179491
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
31BD30_184114
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
CEECIND/02037/2017
Fundação para a Ciência e a Tecnologia
EVA4.0
OP RDE
I 4011-B32
Austrian Science Fund
SE 1891/2-1
Deutsche Forschungsgemeinschaft
264740629
Deutsche Forschungsgemeinschaft
19-28807X
Grantová Agentura České Republiky
RVO 67985939
Akademie Věd České Republiky
JE 288/9-2
Deutsche Forschungsgemeinschaft
I 3757
Austrian Science Fund FWF - Austria
01LC1807A
Bundesministerium für Bildung und Forschung
USDA Forest Service
Belmont Forum
UIDB/00295/2020
Fundação para a Ciência e a Tecnologia
01LC1807C
Bundesministerium für Bildung und Forschung
UIDP/00295/2020
Fundação para a Ciência e a Tecnologia
FZT 118
Deutsche Forschungsgemeinschaft
01LC1807B
Bundesministerium für Bildung und Forschung
CZ.02.1.01/0.0/0.0/16_019/0000803
OP RDE
PubMed
33000893
DOI
10.1111/gcb.15333
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversity, biological invasions, business-as-usual scenario, future predictions, global, modelling, species richness, trends,
- Publikační typ
- časopisecké články MeSH
Biological invasions have steadily increased over recent centuries. However, we still lack a clear expectation about future trends in alien species numbers. In particular, we do not know whether alien species will continue to accumulate in regional floras and faunas, or whether the pace of accumulation will decrease due to the depletion of native source pools. Here, we apply a new model to simulate future numbers of alien species based on estimated sizes of source pools and dynamics of historical invasions, assuming a continuation of processes in the future as observed in the past (a business-as-usual scenario). We first validated performance of different model versions by conducting a back-casting approach, therefore fitting the model to alien species numbers until 1950 and validating predictions on trends from 1950 to 2005. In a second step, we selected the best performing model that provided the most robust predictions to project trajectories of alien species numbers until 2050. Altogether, this resulted in 3,790 stochastic simulation runs for 38 taxon-continent combinations. We provide the first quantitative projections of future trajectories of alien species numbers for seven major taxonomic groups in eight continents, accounting for variation in sampling intensity and uncertainty in projections. Overall, established alien species numbers per continent were predicted to increase from 2005 to 2050 by 36%. Particularly, strong increases were projected for Europe in absolute (+2,543 ± 237 alien species) and relative terms, followed by Temperate Asia (+1,597 ± 197), Northern America (1,484 ± 74) and Southern America (1,391 ± 258). Among individual taxonomic groups, especially strong increases were projected for invertebrates globally. Declining (but still positive) rates were projected only for Australasia. Our projections provide a first baseline for the assessment of future developments of biological invasions, which will help to inform policies to contain the spread of alien species.
Berlin Brandenburg Institute of Advanced Biodiversity Research Berlin Germany
Bio Protection Research Centre Lincoln University Christchurch New Zealand
Chair IUCN Species Survival Commission Invasive Species Specialist Group Rome Italy
Department of Biology University of Fribourg Fribourg Switzerland
Department of Biosciences Durham University Durham UK
Department of Botany and Biodiversity Research University of Vienna Vienna Austria
Department of Community Ecology Helmholtz Centre for Environmental Research UFZ Halle Germany
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Ecology Department of Biology University of Konstanz Konstanz Germany
Geobotany and Botanical Garden Martin Luther University Halle Wittenberg Halle Germany
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute for Environmental Protection and Research Rome Italy
Institute of Zoology Zoological Society of London London UK
Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
USDA Forest Service Northern Research Station Morgantown WV USA
Zobrazit více v PubMed
Albert, R. J., Lishman, J. M., & Saxena, J. R. (2013). Ballast water regulations and the move toward concentration-based numeric discharge limits. Ecological Applications, 23(2), 289-300. https://doi.org/10.1890/12-0669.1
Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., … Costello, M. J. (2012). The magnitude of global marine species diversity. Current Biology, 22(23), 2189-2202. https://doi.org/10.1016/j.cub.2012.09.036
Aukema, J. E., Cullough, D. G. M., Holle, B. V., Liebhold, A. M., Britton, K., & Frankel, S. J. (2010). Historical accumulation of nonindigenous forest pests in the continental United States. BioScience, 60(11), 886-897. https://doi.org/10.1525/bio.2010.60.11.5
Bacon, S. J., Bacher, S., & Aebi, A. (2012). Gaps in border controls are related to quarantine alien insect invasions in Europe. PLoS One, 7(10), e47689. https://doi.org/10.1371/journal.pone.0047689
Bell, C. (2000). The distribution of abundance in neutral communities. The American Naturalist, 155(5), 606. https://doi.org/10.2307/3078983
Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M., & Courchamp, F. (2013). Will climate change promote future invasions? Global Change Biology, 19(12), 3740-3748. https://doi.org/10.1111/gcb.12344
Blackburn, T. M., Dyer, E. E., Su, S., & Cassey, P. (2015). Long after the event, or four things we (should) know about bird invasions. Journal of Ornithology, 156(1), 15-25. https://doi.org/10.1007/s10336-015-1155-z
Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., … Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 26(7), 333-339. https://doi.org/10.1016/j.tree.2011.03.023
Bradley, B. A., Blumenthal, D. M., Early, R., Grosholz, E. D., Lawler, J. J., Miller, L. P., … Olden, J. D. (2012). Global change, global trade, and the next wave of plant invasions. Frontiers in Ecology and the Environment, 10(1), 20-28. https://doi.org/10.1890/110145
Burnham, K. P., & Anderson, D. R. (2004). Model selection and inference - A practical information-theoretic approach. Sociological Methods & Research, 33(2), 261-304.
Costello, M. J., Wilson, S., & Houlding, B. (2012). Predicting total global species richness using rates of species description and estimates of taxonomic effort. Systematic Biology, 61(5), 871-883. https://doi.org/10.1093/sysbio/syr080
Cox, J. G., & Lima, S. L. (2006). Naiveté and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends in Ecology & Evolution, 21(12), 674-680. https://doi.org/10.1016/j.tree.2006.07.011
Cudahy, B. J. (2006). The containership revolution: Malcom McLean’s 1956 innovation goes global. Transportation Research News, 246, 5-9.
Dawson, W., Moser, D., van Kleunen, M., Kreft, H., Pergl, J., Pyšek, P., … Essl, F. (2017). Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology & Evolution, 1, 0186. https://doi.org/10.1038/s41559-017-0186
di Castri, F. (1989). History of biological invasions with special emphasis on the Old World. In J. A. Drake, H. A. Mooney, F. di Castri, R. H. Groves, F. J. Kruger, M. Rejmánek, & M. Williamson (Eds.), Biological invasions: A global perspective (pp. 1-30). Chichester: John Wiley and Sons.
Dyer, E. E., Cassey, P., Redding, D. W., Collen, B., Franks, V., Gaston, K. J., … Blackburn, T. M. (2017). The global distribution and drivers of alien bird species richness. PLoS Biology, 15(1), e2000942. https://doi.org/10.1371/journal.pbio.2000942
Early, R., Bradley, B. A., Dukes, J. S., Lawler, J. J., Olden, J. D., Blumenthal, D. M., … Tatem, A. J. (2016). Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, 7, 12485. https://doi.org/10.1038/ncomms12485
Ellis, E. C., Kaplan, J. O., Fuller, D. Q., Vavrus, S., Goldewijk, K. K., Verburg, P. H., … Verburg, P. H. (2013). Used planet: A global history. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 7978-7985. https://doi.org/10.1073/pnas.1217241110
Essl, F., Bacher, S., Blackburn, T. M., Booy, O., Brundu, G., Brunel, S., … Jeschke, J. M. (2015). Crossing frontiers in tackling pathways of biological invasions. BioScience, 65(8), 769-782. https://doi.org/10.1093/biosci/biv082
Essl, F., Lenzner, B., Bacher, S., Bailey, S., Capinha, C., Daehler, C., … Roura-Pascual, N. (2020). Drivers of future alien species impacts: An expert-based assessment. Global Change Biology, 26(9), 4880-4893. https://doi.org/10.1111/gcb.15199
Fridley, J. D., & Sax, D. F. (2014). The imbalance of nature: Revisiting a Darwinian framework for invasion biology. Global Ecology and Biogeography, 23(11), 1157-1166. https://doi.org/10.1111/geb.12221
Froese, R., & Pauly, D. (Eds). (2015). FishBase. Retrieved from http://www.Fishbase.de/
Hulme, P. E. (2009). Trade, transport and trouble: Managing invasive species pathways in an era of globalization. Journal of Applied Ecology, 46(1), 10-18. https://doi.org/10.1111/j.1365-2664.2008.01600.x
IPBES. (2016). Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In V. C. S. Ferrier, K. N. Ninan, P. Leadley, R. Alkemade, L. A. Acosta, H. R. Akçakaya, L. Brotons, W. Cheung, N. H. R. K. A. Harhash, J. Kabubo-Mariara, C. Lundquist, M. Obersteiner, H. Pereira, G. Peterson, R. Pichs-Madruga, & B. W. C. Rondinini (Eds.). Bonn, Germany: Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.
IPBES. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In S. Díaz, J. Settele, E. S. Brondizio, H. T. Ngo, M. Guèze, J. Agard, & C. N. Zayas (Eds.). Bonn, Germany: IPBES Secretariat.
IPCC. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.
Knapp, S., Winter, M., & Klotz, S. (2017). Increasing species richness but decreasing phylogenetic richness and divergence over a 320-year period of urbanization. Journal of Applied Ecology, 54(4), 1152-1160. https://doi.org/10.1111/1365-2664.12826
Lenzner, B., Latombe, G., Capinha, C., Bellard, C., Courchamp, F., Diagne, C., … Essl, F. (2020). What will the future bring for biological invasions on islands? An expert-based assessment. Frontiers in Ecology and Evolution, 8. https://doi.org/10.3389/fevo.2020.00280
Lenzner, B., Leclère, D., Franklin, O., Seebens, H., Roura-Pascual, N., Obersteiner, M., … Essl, F. (2019). A framework for global twenty-first century scenarios and models of biological invasions. BioScience, 69(9), 697-710. https://doi.org/10.1093/biosci/biz070
Leung, B., Springborn, M. R., Turner, J. A., & Brockerhoff, E. G. (2014). Pathway-level risk analysis: The net present value of an invasive species policy in the US. Frontiers in Ecology and the Environment, 12(5), 273-279. https://doi.org/10.1890/130311
Lewis, S. L., & Maslin, M. A. (2015). Defining the Anthropocene. Nature, 519(7542), 171-180. https://doi.org/10.1038/nature14258
Liebhold, A. M., Brockerhoff, E. G., & Kimberley, M. (2017). Depletion of heterogeneous source species pools predicts future invasion rates. Journal of Applied Ecology, 54(6), 1968-1977. https://doi.org/10.1111/1365-2664.12895
Meyerson, L. A., & Mooney, H. A. (2007). Invasive alien species in an era of globalization. Frontiers in Ecology and the Environment, 5(4), 199-208. https://doi.org/10.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;2
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). How many species are there on earth and in the ocean? PLoS Biology, 9(8), 1-8. https://doi.org/10.1371/journal.pbio.1001127
Muñoz-Mas, R., & García-Berthou, E. (2020). Alien animal introductions in Iberian inland waters: An update and analysis. Science of the Total Environment, 703, 134505. https://doi.org/10.1016/j.scitotenv.2019.134505
Pauchard, A., & Alaback, P. B. (2004). Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conservation Biology, 18(1), 238-248. https://doi.org/10.1111/j.1523-1739.2004.00300.x
Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., … Richardson, D. M. (2020). Scientists’ warning on invasive alien species. Biological Reviews, brv.12627. https://doi.org/10.1111/brv.12627
Pyšek, P., Pergl, J., Essl, F., Lenzner, B., Dawson, W., Kreft, H., … Kleunen, M. V. (2017). Naturalized alien flora of the world: Species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia, 89(3), 203-274. https://doi.org/10.23855/preslia.2017.203
R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
Rouget, M., Robertson, M. P., Wilson, J. R. U., Hui, C., Essl, F., Renteria, J. L., & Richardson, D. M. (2016). Invasion debt - Quantifying future biological invasions. Diversity and Distributions, 22(4), 445-456. https://doi.org/10.1111/ddi.12408
Russell, J. C., Meyer, J. Y., Holmes, N. D., & Pagad, S. (2017). Invasive alien species on islands: Impacts, distribution, interactions and management. Environmental Conservation, 44(4), 359-370. https://doi.org/10.1017/S0376892917000297
Sax, D. F., & Gaines, S. D. (2008). Species invasions and extinction: The future of native biodiversity on islands. Proceedings of the National Academy of Sciences of the United States of America, 105, 11490-11497. https://doi.org/10.1073/pnas.0802290105
Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., … Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8(1), 14435. https://doi.org/10.1038/ncomms14435
Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., … Essl, F. (2018). Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 115(10), E2264-E2273. https://doi.org/10.1073/pnas.1719429115
Seebens, H., Essl, F., Dawson, W., Fuentes, N., Moser, D., Pergl, J., … Blasius, B. (2015). Global trade will accelerate plant invasions in emerging economies under climate change. Global Change Biology, 21(11), 4128-4140. https://doi.org/10.1111/gcb.13021
Seebens, H., Schwartz, N., Schupp, P. J., & Blasius, B. (2016). Predicting the spread of marine species introduced by global shipping. Proceedings of the National Academy of Sciences of the United States of America, 113(20), 5646-5651. https://doi.org/10.1073/pnas.1524427113
Sikes, B. A., Bufford, J. L., Hulme, P. E., Cooper, J. A., Johnston, P. R., & Duncan, R. P. (2018). Import volumes and biosecurity interventions shape the arrival rate of fungal pathogens. PLOS Biology, 16(5), e2006025. https://doi.org/10.1371/journal.pbio.2006025
Turbelin, A. J., Malamud, B. D., & Francis, R. A. (2017). Mapping the global state of invasive alien species: Patterns of invasion and policy responses. Global Ecology and Biogeography, 26(1), 78-92. https://doi.org/10.1111/geb.12517
van Kleunen, M., Dawson, W., Essl, F., Pergl, J., Winter, M., Weber, E., … Pyšek, P. (2015). Global exchange and accumulation of non-native plants. Nature, 525(7567), 100-103. https://doi.org/10.1038/nature14910
Walther, G.-R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., Kühn, I., … Bugmann, H. (2009). Alien species in a warmer world: Risks and opportunities. Trends in Ecology & Evolution, 24(12), 686-693. https://doi.org/10.1016/j.tree.2009.06.008
Plant invasion and naturalization are influenced by genome size, ecology and economic use globally
Potential sources of time lags in calibrating species distribution models
A latitudinal gradient in Darwin's naturalization conundrum at the global scale for flowering plants
Historical plant introductions predict current insect invasions
Unveiling the hidden economic toll of biological invasions in the European Union
The impact of land use on non-native species incidence and number in local assemblages worldwide
Identifying, reducing, and communicating uncertainty in community science: a focus on alien species
Building a synthesis of economic costs of biological invasions in New Zealand
Global economic costs of herpetofauna invasions