A latitudinal gradient in Darwin's naturalization conundrum at the global scale for flowering plants

. 2023 Oct 12 ; 14 (1) : 6244. [epub] 20231012

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37828007
Odkazy

PubMed 37828007
PubMed Central PMC10570376
DOI 10.1038/s41467-023-41607-w
PII: 10.1038/s41467-023-41607-w
Knihovny.cz E-zdroje

Darwin's naturalization conundrum describes two seemingly contradictory hypotheses regarding whether alien species closely or distantly related to native species should be more likely to naturalize in regional floras. Both expectations have accumulated empirical support, and whether such apparent inconsistency can be reconciled at the global scale is unclear. Here, using 219,520 native and 9,531 naturalized alien plant species across 487 globally distributed regions, we found a latitudinal gradient in Darwin's naturalization conundrum. Naturalized alien plant species are more closely related to native species at higher latitudes than they are at lower latitudes, indicating a greater influence of preadaptation in harsher climates. Human landscape modification resulted in even steeper latitudinal clines by selecting aliens distantly related to natives in warmer and drier regions. Our results demonstrate that joint consideration of climatic and anthropogenic conditions is critical to reconciling Darwin's naturalization conundrum.

Zobrazit více v PubMed

Dawson W, et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 2017;1:0186.

Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. Human domination of Earth’s ecosystems. Science. 1997;277:494–499.

Seebens H, et al. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 2021;27:970–982. PubMed

van Kleunen M, et al. Global exchange and accumulation of non-native plants. Nature. 2015;525:100–103. PubMed

Yang Q, et al. The global loss of floristic uniqueness. Nat. Commun. 2021;12:7290. PubMed PMC

Daru BH, et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 2021;12:6983. PubMed PMC

Bellard C, Cassey P, Blackburn TM. Alien species as a driver of recent extinctions. Biol. Lett. 2016;12:20150623. PubMed PMC

Diagne C, et al. High and rising economic costs of biological invasions worldwide. Nature. 2021;592:571–576. PubMed

Vila M, et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 2010;8:135–144.

Pyšek P, et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia. 2017;89:203–274.

Darwin, C. On the Origin of Species. (J. Murray, 1859).

Ricciardi A, Mottiar M. Does Darwin’s naturalization hypothesis explain fish invasions? Biol. Invasions. 2006;8:1403–1407.

Daehler CC. Darwin’s naturalization hypothesis revisited. Am. Nat. 2001;158:324–330. PubMed

Thuiller W, et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 2010;16:461–475.

Cadotte MW, Campbell SE, Li SP, Sodhi DS, Mandrak NE. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu. Rev. Plant Biol. 2018;69:661–684. PubMed

Ma C, et al. Different effects of invader-native phylogenetic relatedness on invasion success and impact: a meta-analysis of Darwin’s naturalization hypothesis. Proc. R. Soc. B-Biol. Sci. 2016;283:20160663. PubMed PMC

Park DS, Feng X, Maitner BS, Ernst KC, Enquist BJ. Darwin’s naturalization conundrum can be explained by spatial scale. Proc. Natl Acad. Sci. USA. 2020;117:10904–10910. PubMed PMC

Diez JM, et al. Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol. Lett. 2009;12:1174–1183. PubMed

Li SP, et al. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. J. Appl. Ecol. 2015;52:89–99.

Li SP, et al. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin’s naturalisation conundrum. Ecol. Lett. 2015;18:1285–1292. PubMed

Procheş Ş, Wilson JR, Richardson DM, Rejmánek M. Searching for phylogenetic pattern in biological invasions. Glob. Ecol. Biogeogr. 2008;17:5–10.

Kempel A, Rindisbacher A, Fischer M, Allan E. Plant soil feedback strength in relation to large-scale plant rarity and phylogenetic relatedness. Ecology. 2018;99:597–606. PubMed

Jiang Y, Wang Z, Chu C, Kembel SW, He F. Phylogenetic dependence of plant–soil feedback promotes rare species in a subtropical forest. J. Ecol. 2022;110:1237–1246.

Ness JH, Rollinson EJ, Whitney KD. Phylogenetic distance can predict susceptibility to attack by natural enemies. Oikos. 2011;120:1327–1334.

Ødegaard F, Diserud OH, Østbye K. The importance of plant relatedness for host utilization among phytophagous insects. Ecol. Lett. 2005;8:612–617.

Zvereva EL, Kozlov MV. Latitudinal gradient in the intensity of biotic interactions in terrestrial ecosystems: sources of variation and differences from the diversity gradient revealed by meta-analysis. Ecol. Lett. 2021;24:2506–2520. PubMed

Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 2009;40:245–269.

Dobzhansky T. Evolution in the tropics. Am. Sci. 1950;38:208–221.

Louthan AM, Doak DF, Angert AL. Where and when do species interactions set range limits? Trends Ecol. Evol. 2015;30:780–792. PubMed

Qian H, Zhang J, Sandel B, Jin Y. Phylogenetic structure of angiosperm trees in local forest communities along latitudinal and elevational gradients in eastern North America. Ecography. 2020;43:419–430.

Qian H, Zhang Y, Zhang J, Wang X. Latitudinal gradients in phylogenetic relatedness of angiosperm trees in North America. Glob. Ecol. Biogeogr. 2013;22:1183–1191.

Qian H, Sandel B. Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Glob. Ecol. Biogeogr. 2017;26:1258–1269.

Kusumoto B, Kubota Y, Shiono T, Villalobos F. Biogeographical origin effects on exotic plants colonization in the insular flora of Japan. Biol. Invasions. 2021;23:2973–2984.

Davis MA, Grime JP, Thompson K. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 2000;88:528–534.

Kempel A, Chrobock T, Fischer M, Rohr RP, van Kleunen M. Determinants of plant establishment success in a multispecies introduction experiment with native and alien species. Proc. Natl Acad. Sci. USA. 2013;110:12727–12732. PubMed PMC

Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315.

Coley PD, Barone JA. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 1996;27:305–335.

Coley, P. D. & Aide, T. M. In Plant–animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions (eds Price, P. W., Lewinsohm, T. M., Fernandes, G. W., & Benson, W. W.) 25–49 (Wiley, 1991).

Janzen DH. Herbivores and the number of tree species in tropical forests. Am. Nat. 1970;104:501–528.

Connell, J. H. In Dynamics of Populations (eds den Boer, P. J. & Gradwell, G. R.) 298–312 (Centre for Agricultural Publishing and Documentation, 1971).

Cai L, et al. Global models and predictions of plant diversity based on advanced machine learning techniques. N. Phytol. 2023;237:1432–1445. PubMed

Udy K, et al. Environmental heterogeneity predicts global species richness patterns better than area. Glob. Ecol. Biogeogr. 2021;30:842–851.

Cain, S. A. Foundations of plant geography. (Harper and Brothers, New York, 1944).

Kennedy CM, Oakleaf JR, Theobald DM, Baruch-Mordo S, Kiesecker J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Chang. Biol. 2019;25:811–826. PubMed

Shea K, Chesson P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 2002;17:170–176.

di Castri, F. In Biological invasions: a global perspective (eds J. Drake et al.) 1–30 (Wiley, 1989).

Malecore EM, Dawson W, Kempel A, Müller G, van Kleunen M. Nonlinear effects of phylogenetic distance on early-stage establishment of experimentally introduced plants in grassland communities. J. Ecol. 2019;107:781–793.

Cadotte MW. Phylogenetic diversity–ecosystem function relationships are insensitive to phylogenetic edge lengths. Funct. Ecol. 2015;29:718–723.

Cadotte MW, Cardinale BJ, Oakley TH. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. USA. 2008;105:17012–17017. PubMed PMC

Cadotte MW, Hamilton MA, Murray BR. Phylogenetic relatedness and plant invader success across two spatial scales. Divers. Distrib. 2009;15:481–488.

Li D, et al. For common community phylogenetic analyses, go ahead and use synthesis phylogenies. Ecology. 2019;100:e02788. PubMed PMC

Qian H, Jin Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. 2021;43:255–263. PubMed PMC

Wiens JJ, Graham CH. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 2005;36:519–539.

Kattge J, et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 2020;26:119–188. PubMed

Omer A, et al. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants (Lond., U. K.) 2022;8:906–914. PubMed

van Kleunen M, et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology. 2019;100:2. PubMed

Weigelt P, König C, Kreft H. GIFT - A Global Inventory of Floras and Traits for macroecology and biogeography. J. Biogeogr. 2020;47:16–43.

Denelle P, Weigelt P, Kreft H. GIFT – an R package to access the Global Inventory of Floras and Traits. bioRxiv. 2023;2023:546704.

Cayuela L, Granzow-de la Cerda Í, Albuquerque FS, Golicher DJ. Taxonstand: an R package for species names standardisation in vegetation databases. Methods Ecol. Evol. 2012;3:1078–1083.

Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018;105:302–314. PubMed

Strauss SY, Webb CO, Salamin N. Exotic taxa less related to native species are more invasive. Proc. Natl Acad. Sci. USA. 2006;103:5841–5845. PubMed PMC

Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 2002;33:475–505.

Tucker CM, et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 2017;92:698–715. PubMed PMC

Sandel B. Richness-dependence of phylogenetic diversity indices. Ecography. 2018;41:837–844.

Kalusová V, et al. Phylogenetic structure of alien plant species pools from European donor habitats. Glob. Ecol. Biogeogr. 2021;30:2354–2367.

Kembel SW, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–1464. PubMed

Cadotte, M. W. & Davies, T. J. Phylogenies in ecology: a guide to concepts and methods. (Princeton University Press, 2016).

van Kleunen M, et al. Economic use of plants is key to their naturalization success. Nat. Commun. 2020;11:3201. PubMed PMC

Diazgranados, M. et al. World Checklist of Useful Plant Species. (Royal Botanic Gardens, Kew & Knowledge Network for Biocomplexity, 2020).

Kinlock NL, et al. Introduction history mediates naturalization and invasiveness of cultivated plants. Glob. Ecol. Biogeogr. 2022;31:1104–1119.

Maurel N, Hanspach J, Kühn I, Pyšek P, van Kleunen M. Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Glob. Ecol. Biogeogr. 2016;25:1500–1509.

Carta A, Peruzzi L, Ramírez-Barahona S. A global phylogenetic regionalization of vascular plants reveals a deep split between Gondwanan and Laurasian biotas. N. Phytol. 2022;233:1494–1504. PubMed PMC

Hijmans RJ, Phillips S, Leathwick J, Elith J. dismo: species distribution modeling. R. package version. 2021;1:3–5.

Dormann CF, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36:27–46.

van Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N. Minimum required number of specimen records to develop accurate species distribution models. Ecography. 2016;39:542–552.

Phillips SJ, Dudik M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 2008;31:161–175.

Vilela, B. Normalizer: making data normal again. R package version 0.1.0. (2020).

Zomer RJ, Xu J, Trabucco A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data. 2022;9:409. PubMed PMC

Center for International Earth Science Information Network - CIESIN - Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC). (2018) Available at 10.7927/H49C6VHW. Accessed 28/12/2022.

Breheny P, Burchett W. Visualization of regression models using visreg. R. J. 2017;9:56–71.

Bates D, Machler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48.

Ben-Shachar M, Lüdecke D, Makowski D. Effectsize: estimation of effect size indices and standardized parameters. J. Open Source Softw. 2020;5:2815.

R. Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).

Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, 2009).

Fan, S. et al. Data and R codes for A latitudinal gradient in Darwin’s naturalization conundrum at the global scale for vascular plants. 10.6084/m9.figshare.20055611.v5 (2022). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A latitudinal gradient in Darwin's naturalization conundrum at the global scale for flowering plants

. 2023 Oct 12 ; 14 (1) : 6244. [epub] 20231012

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.20055611.v5

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace