A latitudinal gradient in Darwin's naturalization conundrum at the global scale for flowering plants
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37828007
PubMed Central
PMC10570376
DOI
10.1038/s41467-023-41607-w
PII: 10.1038/s41467-023-41607-w
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- lidé MeSH
- Magnoliopsida * MeSH
- rostliny MeSH
- státní občanství MeSH
- zavlečené druhy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Darwin's naturalization conundrum describes two seemingly contradictory hypotheses regarding whether alien species closely or distantly related to native species should be more likely to naturalize in regional floras. Both expectations have accumulated empirical support, and whether such apparent inconsistency can be reconciled at the global scale is unclear. Here, using 219,520 native and 9,531 naturalized alien plant species across 487 globally distributed regions, we found a latitudinal gradient in Darwin's naturalization conundrum. Naturalized alien plant species are more closely related to native species at higher latitudes than they are at lower latitudes, indicating a greater influence of preadaptation in harsher climates. Human landscape modification resulted in even steeper latitudinal clines by selecting aliens distantly related to natives in warmer and drier regions. Our results demonstrate that joint consideration of climatic and anthropogenic conditions is critical to reconciling Darwin's naturalization conundrum.
Biodiversity Macroecology and Biogeography University of Göttingen Göttingen 37077 Germany
Biota of North America Program Chapel Hill 27516 NC USA
Campus Institut Data Science Göttingen 37077 Germany
Centre of Biodiversity and Sustainable Land Use University of Göttingen Göttingen 37077 Germany
Department of Biological Sciences University of Toronto Scarborough Toronto ON M1C 1A4 Canada
Department of Biology University of Puerto Rico Río Piedras San Juan 00925 Puerto Rico
Department of Ecology Faculty of Science Charles University Prague CZ 12844 Czech Republic
Ecology Department of Biology University of Konstanz Konstanz 78464 Germany
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig 04103 Germany
Institute of Biology Martin Luther University Halle Wittenberg Halle 06108 Germany
Naturalis Biodiversity Centre Darwinweg 2 2333 CR Leiden Leiden The Netherlands
Zobrazit více v PubMed
Dawson W, et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 2017;1:0186.
Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. Human domination of Earth’s ecosystems. Science. 1997;277:494–499.
Seebens H, et al. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 2021;27:970–982. PubMed
van Kleunen M, et al. Global exchange and accumulation of non-native plants. Nature. 2015;525:100–103. PubMed
Yang Q, et al. The global loss of floristic uniqueness. Nat. Commun. 2021;12:7290. PubMed PMC
Daru BH, et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 2021;12:6983. PubMed PMC
Bellard C, Cassey P, Blackburn TM. Alien species as a driver of recent extinctions. Biol. Lett. 2016;12:20150623. PubMed PMC
Diagne C, et al. High and rising economic costs of biological invasions worldwide. Nature. 2021;592:571–576. PubMed
Vila M, et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 2010;8:135–144.
Pyšek P, et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia. 2017;89:203–274.
Darwin, C. On the Origin of Species. (J. Murray, 1859).
Ricciardi A, Mottiar M. Does Darwin’s naturalization hypothesis explain fish invasions? Biol. Invasions. 2006;8:1403–1407.
Daehler CC. Darwin’s naturalization hypothesis revisited. Am. Nat. 2001;158:324–330. PubMed
Thuiller W, et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 2010;16:461–475.
Cadotte MW, Campbell SE, Li SP, Sodhi DS, Mandrak NE. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu. Rev. Plant Biol. 2018;69:661–684. PubMed
Ma C, et al. Different effects of invader-native phylogenetic relatedness on invasion success and impact: a meta-analysis of Darwin’s naturalization hypothesis. Proc. R. Soc. B-Biol. Sci. 2016;283:20160663. PubMed PMC
Park DS, Feng X, Maitner BS, Ernst KC, Enquist BJ. Darwin’s naturalization conundrum can be explained by spatial scale. Proc. Natl Acad. Sci. USA. 2020;117:10904–10910. PubMed PMC
Diez JM, et al. Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol. Lett. 2009;12:1174–1183. PubMed
Li SP, et al. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. J. Appl. Ecol. 2015;52:89–99.
Li SP, et al. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin’s naturalisation conundrum. Ecol. Lett. 2015;18:1285–1292. PubMed
Procheş Ş, Wilson JR, Richardson DM, Rejmánek M. Searching for phylogenetic pattern in biological invasions. Glob. Ecol. Biogeogr. 2008;17:5–10.
Kempel A, Rindisbacher A, Fischer M, Allan E. Plant soil feedback strength in relation to large-scale plant rarity and phylogenetic relatedness. Ecology. 2018;99:597–606. PubMed
Jiang Y, Wang Z, Chu C, Kembel SW, He F. Phylogenetic dependence of plant–soil feedback promotes rare species in a subtropical forest. J. Ecol. 2022;110:1237–1246.
Ness JH, Rollinson EJ, Whitney KD. Phylogenetic distance can predict susceptibility to attack by natural enemies. Oikos. 2011;120:1327–1334.
Ødegaard F, Diserud OH, Østbye K. The importance of plant relatedness for host utilization among phytophagous insects. Ecol. Lett. 2005;8:612–617.
Zvereva EL, Kozlov MV. Latitudinal gradient in the intensity of biotic interactions in terrestrial ecosystems: sources of variation and differences from the diversity gradient revealed by meta-analysis. Ecol. Lett. 2021;24:2506–2520. PubMed
Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 2009;40:245–269.
Dobzhansky T. Evolution in the tropics. Am. Sci. 1950;38:208–221.
Louthan AM, Doak DF, Angert AL. Where and when do species interactions set range limits? Trends Ecol. Evol. 2015;30:780–792. PubMed
Qian H, Zhang J, Sandel B, Jin Y. Phylogenetic structure of angiosperm trees in local forest communities along latitudinal and elevational gradients in eastern North America. Ecography. 2020;43:419–430.
Qian H, Zhang Y, Zhang J, Wang X. Latitudinal gradients in phylogenetic relatedness of angiosperm trees in North America. Glob. Ecol. Biogeogr. 2013;22:1183–1191.
Qian H, Sandel B. Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Glob. Ecol. Biogeogr. 2017;26:1258–1269.
Kusumoto B, Kubota Y, Shiono T, Villalobos F. Biogeographical origin effects on exotic plants colonization in the insular flora of Japan. Biol. Invasions. 2021;23:2973–2984.
Davis MA, Grime JP, Thompson K. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 2000;88:528–534.
Kempel A, Chrobock T, Fischer M, Rohr RP, van Kleunen M. Determinants of plant establishment success in a multispecies introduction experiment with native and alien species. Proc. Natl Acad. Sci. USA. 2013;110:12727–12732. PubMed PMC
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315.
Coley PD, Barone JA. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 1996;27:305–335.
Coley, P. D. & Aide, T. M. In Plant–animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions (eds Price, P. W., Lewinsohm, T. M., Fernandes, G. W., & Benson, W. W.) 25–49 (Wiley, 1991).
Janzen DH. Herbivores and the number of tree species in tropical forests. Am. Nat. 1970;104:501–528.
Connell, J. H. In Dynamics of Populations (eds den Boer, P. J. & Gradwell, G. R.) 298–312 (Centre for Agricultural Publishing and Documentation, 1971).
Cai L, et al. Global models and predictions of plant diversity based on advanced machine learning techniques. N. Phytol. 2023;237:1432–1445. PubMed
Udy K, et al. Environmental heterogeneity predicts global species richness patterns better than area. Glob. Ecol. Biogeogr. 2021;30:842–851.
Cain, S. A. Foundations of plant geography. (Harper and Brothers, New York, 1944).
Kennedy CM, Oakleaf JR, Theobald DM, Baruch-Mordo S, Kiesecker J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Chang. Biol. 2019;25:811–826. PubMed
Shea K, Chesson P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 2002;17:170–176.
di Castri, F. In Biological invasions: a global perspective (eds J. Drake et al.) 1–30 (Wiley, 1989).
Malecore EM, Dawson W, Kempel A, Müller G, van Kleunen M. Nonlinear effects of phylogenetic distance on early-stage establishment of experimentally introduced plants in grassland communities. J. Ecol. 2019;107:781–793.
Cadotte MW. Phylogenetic diversity–ecosystem function relationships are insensitive to phylogenetic edge lengths. Funct. Ecol. 2015;29:718–723.
Cadotte MW, Cardinale BJ, Oakley TH. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. USA. 2008;105:17012–17017. PubMed PMC
Cadotte MW, Hamilton MA, Murray BR. Phylogenetic relatedness and plant invader success across two spatial scales. Divers. Distrib. 2009;15:481–488.
Li D, et al. For common community phylogenetic analyses, go ahead and use synthesis phylogenies. Ecology. 2019;100:e02788. PubMed PMC
Qian H, Jin Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. 2021;43:255–263. PubMed PMC
Wiens JJ, Graham CH. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 2005;36:519–539.
Kattge J, et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 2020;26:119–188. PubMed
Omer A, et al. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants (Lond., U. K.) 2022;8:906–914. PubMed
van Kleunen M, et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology. 2019;100:2. PubMed
Weigelt P, König C, Kreft H. GIFT - A Global Inventory of Floras and Traits for macroecology and biogeography. J. Biogeogr. 2020;47:16–43.
Denelle P, Weigelt P, Kreft H. GIFT – an R package to access the Global Inventory of Floras and Traits. bioRxiv. 2023;2023:546704.
Cayuela L, Granzow-de la Cerda Í, Albuquerque FS, Golicher DJ. Taxonstand: an R package for species names standardisation in vegetation databases. Methods Ecol. Evol. 2012;3:1078–1083.
Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018;105:302–314. PubMed
Strauss SY, Webb CO, Salamin N. Exotic taxa less related to native species are more invasive. Proc. Natl Acad. Sci. USA. 2006;103:5841–5845. PubMed PMC
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 2002;33:475–505.
Tucker CM, et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 2017;92:698–715. PubMed PMC
Sandel B. Richness-dependence of phylogenetic diversity indices. Ecography. 2018;41:837–844.
Kalusová V, et al. Phylogenetic structure of alien plant species pools from European donor habitats. Glob. Ecol. Biogeogr. 2021;30:2354–2367.
Kembel SW, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–1464. PubMed
Cadotte, M. W. & Davies, T. J. Phylogenies in ecology: a guide to concepts and methods. (Princeton University Press, 2016).
van Kleunen M, et al. Economic use of plants is key to their naturalization success. Nat. Commun. 2020;11:3201. PubMed PMC
Diazgranados, M. et al. World Checklist of Useful Plant Species. (Royal Botanic Gardens, Kew & Knowledge Network for Biocomplexity, 2020).
Kinlock NL, et al. Introduction history mediates naturalization and invasiveness of cultivated plants. Glob. Ecol. Biogeogr. 2022;31:1104–1119.
Maurel N, Hanspach J, Kühn I, Pyšek P, van Kleunen M. Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Glob. Ecol. Biogeogr. 2016;25:1500–1509.
Carta A, Peruzzi L, Ramírez-Barahona S. A global phylogenetic regionalization of vascular plants reveals a deep split between Gondwanan and Laurasian biotas. N. Phytol. 2022;233:1494–1504. PubMed PMC
Hijmans RJ, Phillips S, Leathwick J, Elith J. dismo: species distribution modeling. R. package version. 2021;1:3–5.
Dormann CF, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36:27–46.
van Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N. Minimum required number of specimen records to develop accurate species distribution models. Ecography. 2016;39:542–552.
Phillips SJ, Dudik M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 2008;31:161–175.
Vilela, B. Normalizer: making data normal again. R package version 0.1.0. (2020).
Zomer RJ, Xu J, Trabucco A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data. 2022;9:409. PubMed PMC
Center for International Earth Science Information Network - CIESIN - Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC). (2018) Available at 10.7927/H49C6VHW. Accessed 28/12/2022.
Breheny P, Burchett W. Visualization of regression models using visreg. R. J. 2017;9:56–71.
Bates D, Machler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48.
Ben-Shachar M, Lüdecke D, Makowski D. Effectsize: estimation of effect size indices and standardized parameters. J. Open Source Softw. 2020;5:2815.
R. Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, 2009).
Fan, S. et al. Data and R codes for A latitudinal gradient in Darwin’s naturalization conundrum at the global scale for vascular plants. 10.6084/m9.figshare.20055611.v5 (2022). PubMed PMC
A latitudinal gradient in Darwin's naturalization conundrum at the global scale for flowering plants
figshare
10.6084/m9.figshare.20055611.v5