The role of phylogenetic relatedness on alien plant success depends on the stage of invasion
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
I 3757
Austrian Science Fund FWF - Austria
PubMed
35953709
DOI
10.1038/s41477-022-01216-9
PII: 10.1038/s41477-022-01216-9
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- fyziologická adaptace MeSH
- rostliny MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
Darwin's naturalization hypothesis predicts successful alien invaders to be distantly related to native species, whereas his pre-adaptation hypothesis predicts the opposite. It has been suggested that depending on the invasion stage (that is, introduction, naturalization and invasiveness), both hypotheses, now known as Darwin's naturalization conundrum, could hold true. We tested this by analysing whether the likelihood of introduction for cultivation, as well as the subsequent stages of naturalization and spread (that is, becoming invasive) of species alien to Southern Africa are correlated with their phylogenetic distance to the native flora of this region. Although species are more likely to be introduced for cultivation if they are distantly related to the native flora, the probability of subsequent naturalization was higher for species closely related to the native flora. Furthermore, the probability of becoming invasive was higher for naturalized species distantly related to the native flora. These results were consistent across three different metrics of phylogenetic distance. Our study reveals that the relationship between phylogenetic distance to the native flora and the success of an alien species changes from one invasion stage to the other.
Biodiversity Macroecology and Biogeography University of Goettingen Göttingen Germany
Campus Institut Data Science Göttingen Germany
Centre of Biodiversity and Sustainable Land Use University of Goettingen Göttingen Germany
Department of Biosciences Durham University Durham UK
Department of Ecology Charles University Prague Czech Republic
Department of Forest Management University of Khartoum North Khartoum Sudan
Ecology Department of Biology University of Konstanz Konstanz Germany
Institute of Landscape and Plant Ecology University of Hohenheim Stuttgart Germany
Zobrazit více v PubMed
Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000). DOI
van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015). PubMed DOI
Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015). PubMed DOI
Vilà, M. & Hulme, P. E. in Impact of Biological Invasions on Ecosystem Services Vol. 12 Invading Nature – Springer Series in Invasion Ecology (eds Vilà, M. & Hulme, P. E.) 1–14 (Springer, 2017).
Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18, 1725–1737 (2012). DOI PMC
Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020). PubMed DOI
Bacher, S. et al. Socio-economic impact classification of alien taxa (SEICAT). Methods Ecol. Evol. 9, 159–168 (2018). DOI
Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017). PubMed DOI PMC
Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 27, 970–982 (2021). DOI
Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. W. & Maywald, G. F. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40, 111–124 (2003). DOI
Thuiller, W., Richardson, D. M. & Midgley, G. F. in Biological Invasions (ed. Nentwig, W.) 197–211 (Springer, 2007).
Hobbs, R. J. in Invasive Species in a Changing World (eds Mooney, H. A. & Hobbs, R. J.) 55–64 (Island Press, 2000).
Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 21, 4128–4140 (2015). PubMed DOI
Razanajatovo, M. et al. Plants capable of selfing are more likely to become naturalized. Nat. Commun. 7, 13313 (2016). PubMed DOI PMC
Bucharova, A. & van Kleunen, M. Introduction history and species characteristics partly explain naturalization success of North American woody species in Europe. J. Ecol. 97, 230–238 (2009). DOI
Ordonez, A., Wright, I. J. & Olff, H. Functional differences between native and alien species: a global-scale comparison. Funct. Ecol. 24, 1353–1361 (2010). DOI
van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245 (2010). PubMed DOI
van Kleunen, M., Dawson, W. & Maurel, N. Characteristics of successful alien plants. Mol. Ecol. 24, 1954–1968 (2015). PubMed DOI
Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants 11, plz051 (2019). PubMed DOI PMC
Winkler, D. E., Gremer, J. R., Chapin, K. J., Kao, M. & Huxman, T. E. Rapid alignment of functional trait variation with locality across the invaded range of Sahara mustard (Brassica tournefortii). Am. J. Bot. 105, 1188–1197 (2018). PubMed DOI
Divíšek, J. et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 9, 4631 (2018). PubMed DOI PMC
Banerjee, A. K., Prajapati, J., Bhowmick, A. R., Huang, Y. & Mukherjee, A. Different factors influence naturalization and invasion processes – a case study of Indian alien flora provides management insights. J. Environ. Manag. 294, 113054 (2021). DOI
Ni, M. et al. Invasion success and impacts depend on different characteristics in non-native plants. Divers. Distrib. 27, 1194–1207 (2021). DOI
Fristoe, T. S. et al. Dimensions of invasiveness: links between local abundance, geographic range size, and habitat breadth in Europe’s alien and native floras. Proc. Natl Acad. Sci. USA 118, e2021173118 (2021). PubMed DOI PMC
Omer, A. et al. Characteristics of the naturalized flora of Southern Africa largely reflect the non-random introduction of alien species for cultivation. Ecography 44, 1812–1825 (2021). DOI
Pyšek, P. et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774 (2015). PubMed DOI
Omer, A., Kordofani, M., Gibreel, H. H., Pyšek, P. & van Kleunen, M. The alien flora of Sudan and South Sudan: taxonomic and biogeographical composition. Biol. Invasions 23, 2033–2045 (2021). DOI
Duncan, R. P. & Williams, P. A. Darwin’s naturalization hypothesis challenged. Nature 417, 608–609 (2002). PubMed DOI
Daehler, C. C. Darwin’s naturalization hypothesis revisited. Am. Nat. 158, 324–330 (2001). PubMed DOI
Pyšek, P. Is there a taxonomic pattern to plant invasions? Oikos 82, 282–294 (1998). DOI
Tan, J., Pu, Z., Ryberg, W. A. & Jiang, L. Resident–invader phylogenetic relatedness, not resident phylogenetic diversity, controls community invasibility. Am. Nat. 186, 59–71 (2015). PubMed DOI
Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010). DOI
Loiola, P. P. et al. Invaders among locals: alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. J. Ecol. 106, 2230–2241 (2018). DOI
Lososová, Z. et al. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 24, 786–794 (2015). DOI
Marx, H. E., Giblin, D. E., Dunwiddie, P. W. & Tank, D. C. Deconstructing Darwin’s naturalization conundrum in the San Juan Islands using community phylogenetics and functional traits. Divers. Distrib. 22, 318–331 (2016). DOI
Darwin, C. On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).
Procheş, Ş., Wilson, J. R. U., Richardson, D. M. & Rejmánek, M. Searching for phylogenetic pattern in biological invasions. Glob. Ecol. Biogeogr. 17, 5–10 (2008).
Diez, J. M., Sullivan, J. J., Hulme, P. E., Edwards, G. & Duncan, R. P. Darwin’s naturalization conundrum: dissecting taxonomic patterns of species invasions. Ecol. Lett. 11, 674–681 (2008). PubMed DOI
Cadotte, M. W., Campbell, S. E., Li, S. P., Sodhi, D. S. & Mandrak, N. E. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu Rev. Plant Biol. 69, 661–684 (2018). PubMed DOI
van Kleunen, M., Bossdorf, O. & Dawson, W. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. 49, 25–47 (2018). DOI
Park, D. S., Feng, X., Maitner, B. S., Ernst, K. C. & Enquist, B. J. Darwin’s naturalization conundrum can be explained by spatial scale. Proc. Natl Acad. Sci. USA 117, 10904–10910 (2020). PubMed DOI PMC
Diez, J. M. et al. Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol. Lett. 12, 1174–1183 (2009). PubMed DOI
Malecore, E. M., Dawson, W., Kempel, A., Müller, G. & van Kleunen, M. Nonlinear effects of phylogenetic distance on early-stage establishment of experimentally introduced plants in grassland communities. J. Ecol. 107, 781–793 (2019). DOI
Schaefer, H., Hardy, O. J., Silva, L., Barraclough, T. G. & Savolainen, V. Testing Darwin’s naturalization hypothesis in the Azores. Ecol. Lett. 14, 389–396 (2011). PubMed DOI
Strauss, S. Y., Webb, C. O. & Salamin, N. Exotic taxa less related to native species are more invasive. Proc. Natl Acad. Sci. USA 103, 5841–5845 (2006). PubMed DOI PMC
Li, S.-p. et al. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin’s naturalisation conundrum. Ecol. Lett. 18, 1285–1292 (2015). PubMed DOI
Pellock, S., Thompson, A., He, K., Mecklin, C. & Yang, J. Validity of Darwin’s naturalization hypothesis relates to the stages of invasion. Community Ecol. 14, 172–179 (2013). DOI
Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011). PubMed DOI
van Kleunen, M. et al. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020). PubMed DOI PMC
Broennimann, O. et al. Distance to native climatic niche margins explains establishment success of alien mammals. Nat. Commun. 12, 2353 (2021). PubMed DOI PMC
Carboni, M. et al. What it takes to invade grassland ecosystems: traits, introduction history and filtering processes. Ecol. Lett. 19, 219–229 (2016). PubMed DOI
Milbau, A. & Stout, J. C. Factors associated with alien plants transitioning from casual, to naturalized, to invasive. Conserv. Biol. 22, 308–317 (2008). PubMed DOI
Dawson, W., Burslem, D. F. R. P. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665 (2009). DOI
Rejmánek, M. in Invasive Species and Biodiversity Management (eds Schei, P. J. & Vilken, A.) 79–102 (Kluwer Academic, 1998).
Rejmánek, M. A theory of seed plant invasiveness: the first sketch. Biol. Conserv. 78, 171–181 (1996). DOI
Maurel, N., Hanspach, J., Kuhn, I., Pysek, P. & van Kleunen, M. Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Glob. Ecol. Biogeogr. 25, 1500–1509 (2016). DOI
Glen, H. F. Cultivated Plants of Southern Africa: Botanical Names, Common Names, Origins, Literature (National Botanical Institute, 2002).
Reichard, S. H. & White, P. Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51, 103–113 (2001). DOI
Faulkner, K. T., Robertson, M. P., Rouget, M. & Wilson, J. R. U. Understanding and managing the introduction pathways of alien taxa: South Africa as a case study. Biol. Invasions 18, 73–87 (2016). DOI
Dodd, A. J., Burgman, M. A., McCarthy, M. A. & Ainsworth, N. The changing patterns of plant naturalization in Australia. Divers. Distrib. 21, 1038–1050 (2015). DOI
Lambdon, P.-W. et al. Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80, 101–149 (2008).
Bennett, B. M. Naturalising Australian trees in South Africa: climate, exotics and experimentation. J. South. Afr. Stud. 37, 265–280 (2011). DOI
Richardson, D. M. et al. in Biological Invasions in South Africa (eds van Wilgen, B. W. et al.) 67–96 (Springer, 2020).
Li, S.-p. et al. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. J. Appl. Ecol. 52, 89–99 (2015). DOI
Duarte, M., Verdú, M., Cavieres, L. A. & Bustamante, R. O. Plant–plant facilitation increases with reduced phylogenetic relatedness along an elevation gradient. Oikos 130, 248–259 (2021). DOI
Verdú, M., Rey, P. J., Alcántara, J. M., Siles, G. & Valiente-Banuet, A. Phylogenetic signatures of facilitation and competition in successional communities. J. Ecol. 97, 1171–1180 (2009). DOI
Valiente-Banuet, A. & Verdu, M. Plant facilitation and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44, 347–366 (2013). DOI
Anacker, B. L. & Strauss, S. Y. Ecological similarity is related to phylogenetic distance between species in a cross-niche field transplant experiment. Ecology 97, 1807–1818 (2016). PubMed DOI
Dostál, P. Plant competitive interactions and invasiveness: searching for the effects of phylogenetic relatedness and origin on competition intensity. Am. Nat. 177, 655–667 (2011). PubMed DOI
Levin, S. C., Crandall, R. M., Pokoski, T., Stein, C. & Knight, T. M. Phylogenetic and functional distinctiveness explain alien plant population responses to competition. Proc. R. Soc. B 287, 20201070 (2020). PubMed DOI PMC
Williams, E. W., Zeldin, J., Semski, W. R., Hipp, A. L. & Larkin, D. J. Phylogenetic distance and resource availability mediate direction and strength of plant interactions in a competition experiment. Oecologia 197, 459–469 (2021). PubMed DOI
Bezeng, S. B., Davies, J. T., Yessoufou, K., Maurin, O. & Van der Bank, M. Revisiting Darwin’s naturalization conundrum: explaining invasion success of non-native trees and shrubs in Southern Africa. J. Ecol. 103, 871–879 (2015). DOI
Trotta, L. B., Siders, Z. A., Sessa, E. B. & Baiser, B. The role of phylogenetic scale in Darwin’s naturalization conundrum in the critically imperilled pine rockland ecosystem. Divers. Distrib. 27, 618–631 (2021). DOI
Sol, D. et al. A test of Darwin’s naturalization conundrum in birds reveals enhanced invasion success in the presence of close relatives. Ecol. Lett. 25, 661–672 (2022). PubMed DOI
Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018). PubMed DOI
Henderson, L. Comparisons of invasive plants in Southern Africa originating from southern temperate, northern temperate and tropical regions. Bothalia 36, 201–222 (2006). DOI
Cayuela, L., Stein, A. & Oksanen, J. Taxonstand: Taxonomic Standardization of Plant Species Names. R package version 2.2. https://CRAN.R-project.org/package=Taxonstand (R Foundation for Statistical Computing, Vienna, 2019).
Weigelt, P., König, C. & Kreft, H. GIFT – A Global Inventory of Floras and Traits for macroecology and biogeography. J. Biogeogr. 47, 16–43 (2020). DOI
van Kleunen, M. et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100, e02542 (2019). PubMed DOI
Zengeya, T. A. & Wilson, J. R. (eds) The Status of Biological Invasions and Their Management in South Africa in 2019 (South African National Biodiversity Institute and DSI-NRF Centre of Excellence for Invasion Biology, 2021).
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012). DOI
R: A Language and Environment for Statistical Computing v.3.6.1 (R Foundation for Statistical Computing, 2019).
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Vol. 574 (Springer, 2009).
Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010). DOI
Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991). DOI
rcompanion: Functions to support extension education program evaluation v. 2.4.1 (R Foundation for Statistical Computing, 2021).
Tung Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014). DOI