Stage dependence of Elton's biotic resistance hypothesis of biological invasions
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
32171588
National Natural Science Foundation of China (National Science Foundation of China)
32301386
National Natural Science Foundation of China (National Science Foundation of China)
67985939
Akademie Ved Ceské Republiky (Academy of Sciences of the Czech Republic)
19-28807X
Grantová Agentura Ceské Republiky (Grant Agency of the Czech Republic)
19-28491X
Grantová Agentura Ceské Republiky (Grant Agency of the Czech Republic)
SS02030018
Technologická Agentura Ceské Republiky (Technological Agency of the Czech Republic)
PubMed
39227727
DOI
10.1038/s41477-024-01790-0
PII: 10.1038/s41477-024-01790-0
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- fylogeneze MeSH
- rostliny MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Elton's biotic resistance hypothesis posits that species-rich communities are more resistant to invasion. However, it remains unknown how species, phylogenetic and functional richness, along with environmental and human-impact factors, collectively affect plant invasion as alien species progress along the introduction-naturalization-invasion continuum. Using data from 12,056 local plant communities of the Czech Republic, this study reveals varying effects of these factors on the presence and richness of alien species at different invasion stages, highlighting the complexity of the invasion process. Specifically, we demonstrate that although species richness and functional richness of resident communities had mostly negative effects on alien species presence and richness, the strength and sometimes also direction of these effects varied along the continuum. Our study not only underscores that evidence for or against Elton's biotic resistance hypothesis may be stage-dependent but also suggests that other invasion hypotheses should be carefully revisited given their potential stage-dependent nature.
Department of Agricultural and Environmental Sciences University of Milan Milan Italy
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Department of Geography Faculty of Science Masaryk University Brno Czech Republic
Ecology Department of Biology University of Konstanz Konstanz Germany
Zobrazit více v PubMed
Roy, H. E. et al. (eds) Summary for Policymakers of the Thematic Assessment Report on Invasive Alien Species and Their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2023).
Spatz, D. R. et al. Globally threatened vertebrates on islands with invasive species. Sci. Adv. 3, e1603080 (2017). PubMed PMC
Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl Acad. Sci. USA 113, 4081–4085 (2016). PubMed PMC
Liu, C. et al. Economic costs of biological invasions in Asia. NeoBiota 67, 53–78 (2021).
Capinha, C., Essl, F., Porto, M. & Seebens, H. The worldwide networks of spread of recorded alien species. Proc. Natl Acad. Sci. USA 120, e2201911120 (2023). PubMed
Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27, 970–982 (2021).
Richardson, D. M. & Pyšek, P. Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. 30, 409–431 (2006).
Elton, C. S. The Ecology of Invasions by Animals and Plants (Univ. Chicago Press, 1958).
Bach, W. et al. Phylogenetic composition of native island floras influences naturalized alien species richness. Ecography 2022, e06227 (2022).
Beaury, E. M., Finn, J. T., Corbin, J. D., Barr, V. & Bradley, B. A. Biotic resistance to invasion is ubiquitous across ecosystems of the United States. Ecol. Lett. 23, 476–482 (2020). PubMed
Lefebvre, S., Segar, J. & Staude, I. R. Non-natives are linked to higher plant diversity across spatial scales. J. Biogeogr. 51, 1290–1298 (2024).
Fridley, J. D. et al. The invasion paradox: reconciling pattern and process in species invasion. Ecology 88, 3–17 (2007). PubMed
Herben, T., Mandák, B., Bímová, K. & Münzbergová, Z. Invasibility and species richness of a community: a neutral model and a survey of published data. Ecology 85, 3223–3233 (2004).
Jeschke, J. M. et al. Taxonomic bias and lack of cross-taxonomic studies in invasion biology. Front. Ecol. Environ. 10, 349–350 (2012).
Jeschke, J. M. General hypotheses in invasion ecology. Divers. Distrib. 20, 1229–1234 (2014).
Stohlgren, T. J., Barnett, D. T. & Kartesz, J. T. The rich get richer: patterns of plant invasions in the United States. Front. Ecol. Environ. 1, 11–14 (2003).
Shea, K. & Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 17, 170–176 (2002).
Delavaux, C. S. et al. Native diversity buffers against severity of non-native tree invasions. Nature 621, 773–781 (2023). PubMed PMC
Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011). PubMed
Pyšek, P. & Richardson, D. M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 35, 25–55 (2010).
Daly, E. Z. et al. A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. Oikos 2023, e09645 (2023).
Guo, K. et al. Ruderals naturalize, competitors invade: varying roles of plant adaptive strategies along the invasion continuum. Funct. Ecol. 36, 2469–2479 (2022).
Pyšek, P. et al. Small genome size and variation in ploidy levels support the naturalization of vascular plants but constrain their invasive spread. N. Phytol. 239, 2389–2403 (2023).
Omer, A. et al. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants 8, 906–914 (2022). PubMed
Guo, K. et al. Plant invasion and naturalization are influenced by genome size, ecology and economic use globally. Nat. Commun. 15, 1330 (2024). PubMed PMC
Richardson, D. M. & Pyšek, P. Naturalization of introduced plants: ecological drivers of biogeographical patterns. N. Phytol. 196, 383–396 (2012).
Byun, C., De Blois, S. & Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J. Ecol. 101, 128–139 (2013).
Banerjee, A. K. et al. Not just with the natives, but phylogenetic relationship between stages of the invasion process determines invasion success of alien plant species. Preprint at https://doi.org/10.1101/2022.10.12.512006 (2022).
Cubino, J. P., Těšitel, J., Fibich, P., Lepš, J. & Chytrý, M. Alien plants tend to occur in species-poor communities. NeoBiota 73, 39–56 (2022).
Lannes, L. S. et al. Species richness both impedes and promotes alien plant invasions in the Brazilian Cerrado. Sci. Rep. 10, 11365 (2020). PubMed PMC
Stohlgren, T. J. et al. Exotic plant species invade hot spots of native plant diversity. Ecol. Monogr. 69, 25–46 (1999).
Davidson, A. M., Jennions, M. & Nicotra, A. B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 14, 419–431 (2011). PubMed
Lau, J. A. & Funk, J. L. How ecological and evolutionary theory expanded the ‘ideal weed’ concept. Oecologia 203, 251–266 (2023). PubMed PMC
Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant Sci. 13, 288–294 (2008). PubMed
Stohlgren, T., Jarnevich, C. S., Chong, G. W. & Evangelista, P. Scale and plant invasions: a theory of biotic acceptance. Preslia 78, 405–426 (2006).
Cavieres, L. A. Facilitation and the invasibility of plant communities. J. Ecol. 109, 2019–2028 (2021).
Catford, J. A., Vesk, P. A., Richardson, D. M. & Pyšek, P. Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Glob. Change Biol. 18, 44–62 (2012).
Su, G., Mertel, A., Brosse, S. & Calabrese, J. M. Species invasiveness and community invasibility of North American freshwater fish fauna revealed via trait-based analysis. Nat. Commun. 14, 2332 (2023). PubMed PMC
Parker, J. D. et al. Do invasive species perform better in their new ranges? Ecology 94, 985–994 (2013). PubMed
Iseli, E. et al. Rapid upwards spread of non-native plants in mountains across continents. Nat. Ecol. Evol. 7, 405–413 (2023). PubMed PMC
Pauchard, A. et al. Ain’t no mountain high enough: plant invasions reaching new elevations. Front. Ecol. Environ. 7, 479–486 (2009).
Zheng, M.-M., Pyšek, P., Guo, K., Hasigerili, H. & Guo, W.-Y. Clonal alien plants in the mountains spread upward more extensively and faster than non-clonal. Neobiota 91, 29–48 (2024).
Zu, K. et al. Elevational shift in seed plant distributions in China’s mountains over the last 70 years. Glob. Ecol. Biogeogr. 32, 1098–1112 (2023).
Reeve, S. et al. Rare, common, alien and native species follow different rules in an understory plant community. Ecol. Evol. 12, e8734 (2022). PubMed PMC
Hartemink, A. E. & Barrow, N. J. Soil pH–nutrient relationships: the diagram. Plant Soil 486, 209–215 (2023).
Dawson, W., Rohr, R. P., van Kleunen, M. & Fischer, M. Alien plant species with a wider global distribution are better able to capitalize on increased resource availability. N. Phytol. 194, 859–867 (2012).
Dawson, W. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1, 0186 (2017).
Pyšek, P. et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl Acad. Sci. USA 107, 12157–12162 (2010). PubMed PMC
Damgaard, C. A critique of the space-for-time substitution practice in community ecology. Trends Ecol. Evol. 34, 416–421 (2019). PubMed
Hejda, M., Pyšek, P. & Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).
Lovell, R. S. L., Collins, S., Martin, S. H., Pigot, A. L. & Phillimore, A. B. Space-for-time substitutions in climate change ecology and evolution. Biol. Rev. 98, 2243–2270 (2023). PubMed
Thomaz, S. M. et al. Using space-for-time substitution and time sequence approaches in invasion ecology. Freshw. Biol. 57, 2401–2410 (2012).
Wogan, G. O. U. & Wang, I. J. The value of space‐for‐time substitution for studying fine‐scale microevolutionary processes. Ecography 41, 1456–1468 (2018).
Chytrý, M. & Rafajová, M. Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 75, 1–15 (2003).
Pyšek, P. et al. Catalogue of alien plants of the Czech Republic (3rd edition): species richness, status, distributions, habitats, regional invasion levels, introduction pathways and impacts. Preslia 94, 447–577 (2022).
Divíšek, J. et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 9, 4631 (2018). PubMed PMC
Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography (Clarendon, 1934).
Chytrý, M. et al. Pladias Database of the Czech flora and vegetation. Preslia 93, 1–87 (2021).
Li, D. rtrees: an R package to assemble phylogenetic trees from megatrees. Ecography 2023, e06643 (2023).
Pierce, S. et al. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Funct. Ecol. 31, 444–457 (2017).
Díaz, S. et al. The global spectrum of plant form and function: enhanced species-level trait dataset. Sci. Data 9, 755 (2022). PubMed PMC
Guo, W.-Y. et al. The role of adaptive strategies in plant naturalization. Ecol. Lett. 21, 1380–1389 (2018). PubMed
Guo, W.-Y. et al. Domestic gardens play a dominant role in selecting alien species with adaptive strategies that facilitate naturalization. Glob. Ecol. Biogeogr. 28, 628–639 (2019).
Tavşanoǧlu, Ç. & Pausas, J. G. A functional trait database for Mediterranean Basin plants. Sci. Data 51, 180135 (2018).
Bjorkman, A. D. et al. Tundra Trait Team: a database of plant traits spanning the tundra biome. Glob. Ecol. Biogeogr. 27, 1402–1411 (2018).
Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).
Matthews, T. J. et al. A global analysis of avian island diversity–area relationships in the Anthropocene. Ecol. Lett. 26, 965–982 (2023). PubMed
Cardoso, P. et al. Calculating functional diversity metrics using neighbor-joining trees. Ecography https://doi.org/10.1101/2022.11.27.518065 (2022).
Cardoso, P., Rigal, F. & Carvalho, J. C. BAT—Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 6, 232–236 (2015).
Swenson, N. G. Functional and Phylogenetic Ecology in R (Springer, 2014).
Loiola, P. P. et al. Invaders among locals: alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. J. Ecol. 106, 2230–2241 (2018).
Tolasz, R. et al. Atlas Podnebí Česka—Climate Atlas of Czechia (Czech Hydrometeorological Institute and Palacký Univ., 2007).
Ballabio, C. et al. Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma 355, 113912 (2019). PubMed PMC
Digital Vector Database of Czech Republic ArcČR v.4.0 (ČÚZK, ČSÚ and ArcDATA Prague, 2021).
Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).
Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2023).
Guo, K. et al. Stage dependence of Elton’s biotic resistance hypothesis of biological invasions. Zenodo https://doi.org/10.5281/zenodo.12818669 (2024).