Plant invasion and naturalization are influenced by genome size, ecology and economic use globally
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
32171588
National Natural Science Foundation of China (National Science Foundation of China)
PubMed
38351066
PubMed Central
PMC10864296
DOI
10.1038/s41467-024-45667-4
PII: 10.1038/s41467-024-45667-4
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- délka genomu MeSH
- ekologie MeSH
- ekosystém * MeSH
- lidé MeSH
- rostliny genetika MeSH
- státní občanství * MeSH
- zavlečené druhy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.
Biodiversity Macroecology and Biogeography University of Goettingen Göttingen Germany
Campus Institute Data Science Göttingen Germany
Centre of Biodiversity and Sustainable Land Use University of Goettingen Göttingen Germany
Department of Biosciences Durham University Durham UK
Department of Ecology Faculty of Science Charles University Viničná 7 Prague CZ 12844 Czech Republic
Ecology Department of Biology University of Konstanz Universitätsstrasse 10 D 78457 Konstanz Germany
Zobrazit více v PubMed
Bellard C, Cassey P, Blackburn TM. Alien species as a driver of recent extinctions. Biol. Lett. 2016;12:20150623. doi: 10.1098/rsbl.2015.0623. PubMed DOI PMC
Blackburn TM, Bellard C, Ricciardi A. Alien versus native species as drivers of recent extinctions. Front. Ecol. Environ. 2019;17:203–207. doi: 10.1002/fee.2020. DOI
Sax DF, Gaines SD. Species invasions and extinction: The future of native biodiversity on islands. Proc. Natl Acad. Sci. USA. 2008;105:11490–11497. doi: 10.1073/pnas.0802290105. PubMed DOI PMC
Capinha C, Essl F, Seebens H, Moser D, Pereira HM. The dispersal of alien species redefines biogeography in the Anthropocene. Science. 2015;348:1248–1251. doi: 10.1126/science.aaa8913. PubMed DOI
Yang Q, et al. The global loss of floristic uniqueness. Nat. Commun. 2021;12:7290. doi: 10.1038/s41467-021-27603-y. PubMed DOI PMC
Diagne C, et al. High and rising economic costs of biological invasions worldwide. Nature. 2021;592:571–576. doi: 10.1038/s41586-021-03405-6. PubMed DOI
IPBES. Summary for policymakers of the thematic assessment report on invasive alien species and their control of the intergovernmental science-policy platform on biodiversity and ecosystem services. In (eds. Roy, H. E. et al.) 10.5281/zenodo.7430692 (IPBES Secretariat, 2023).
Novoa A, et al. Global costs of plant invasions must not be underestimated. NeoBiota. 2021;69:75–78. doi: 10.3897/neobiota.69.74121. DOI
Seebens H, et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:14435. doi: 10.1038/ncomms14435. PubMed DOI PMC
Seebens H, et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 2021;27:970–982. doi: 10.1111/gcb.15333. PubMed DOI
van Kleunen M, et al. Economic use of plants is key to their naturalization success. Nat. Commun. 2020;11:3201. doi: 10.1038/s41467-020-16982-3. PubMed DOI PMC
Balestri E, Vallerini F, Menicagli V, Barnaba S, Lardicci C. Biotic resistance and vegetative propagule pressure co-regulate the invasion success of a marine clonal macrophyte. Sci. Rep. 2018;8:16621. doi: 10.1038/s41598-018-35015-0. PubMed DOI PMC
Lockwood JL, Cassey P, Blackburn TM. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers. Distrib. 2009;15:904–910. doi: 10.1111/j.1472-4642.2009.00594.x. DOI
Kubešová M, Moravcová L, Suda J, Jarošík V, Pyšek P. Naturalized plants have smaller genomes than their non-invading relatives: A flow cytometric analysis of the Czech alien flora. Preslia. 2010;82:81–96.
Lopes S, et al. Genome size variation in Cactaceae and its relationship with invasiveness and seed traits. Biol. Invasions. 2021;23:3047–3062. doi: 10.1007/s10530-021-02557-w. DOI
Pyšek P, et al. Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology. 2018;99:79–90. doi: 10.1002/ecy.2068. PubMed DOI
Pyšek P, et al. Small genome size and variation in ploidy levels support the naturalization of vascular plants but constrain their invasive spread. New Phytol. 2023;239:2389–2403. doi: 10.1111/nph.19135. PubMed DOI
Knight CA, Molinari NA, Petrov DA. The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 2005;95:177–190. doi: 10.1093/aob/mci011. PubMed DOI PMC
Simonin KA, Roddy AB. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLOS Biol. 2018;16:e2003706. doi: 10.1371/journal.pbio.2003706. PubMed DOI PMC
Beaulieu JM, et al. Correlated evolution of genome size and seed mass. New Phytol. 2007;173:422–437. doi: 10.1111/j.1469-8137.2006.01919.x. PubMed DOI
Carta A, Mattana E, Dickie J, Vandelook F. Correlated evolution of seed mass and genome size varies among life forms in flowering plants. Seed Sci. Res. 2022;32:46–52. doi: 10.1017/S0960258522000071. DOI
Bennett MD. Nuclear DNA content and minimum generation time in herbaceous plants. Proc. R. Soc. Lond. B Biol. Sci. 1972;181:109–135. doi: 10.1098/rspb.1972.0042. PubMed DOI
Sinjushin AA. The duration of the life cycle is associated with C-value and affects reproductive features in the Fabeae, the tribe with largest genomes in Fabaceae. Flora. 2021;285:151954. doi: 10.1016/j.flora.2021.151954. DOI
Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. Genome size diversity and its impact on the evolution of land plants. Genes. 2018;9:88. doi: 10.3390/genes9020088. PubMed DOI PMC
Suda J, Meyerson LA, Leitch IJ, Pyšek P. The hidden side of plant invasions: The role of genome size. New Phytol. 2015;205:994–1007. doi: 10.1111/nph.13107. PubMed DOI
te Beest M, et al. The more the better? the role of polyploidy in facilitating plant invasions. Ann. Bot. 2012;109:19–45. doi: 10.1093/aob/mcr277. PubMed DOI PMC
Parker JD. Do invasive species perform better in their new ranges? Ecology. 2013;94:985–994. doi: 10.1890/12-1810.1. PubMed DOI
van Kleunen M, Weber E, Fischer M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 2010;13:235–245. doi: 10.1111/j.1461-0248.2009.01418.x. PubMed DOI
Jenkins C, Keller SR. A phylogenetic comparative study of preadaptation for invasiveness in the genus Silene (Caryophyllaceae) Biol. Invasions. 2011;13:1471–1486. doi: 10.1007/s10530-010-9907-4. DOI
Fristoe TS, et al. Dimensions of invasiveness: Links between local abundance, geographic range size, and habitat breadth in Europe’s alien and native floras. Proc. Natl Acad. Sci. USA. 2021;118:1–11. doi: 10.1073/pnas.2021173118. PubMed DOI PMC
Pierce S, et al. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Funct. Ecol. 2017;31:444–457. doi: 10.1111/1365-2435.12722. DOI
Pierce S, Maffi D, Faoro F, Cerabolini BEL, Spada A. The leaf anatomical trade-offs associated with plant ecological strategy variation. Plant Ecol. 2022;223:1233–1246. doi: 10.1007/s11258-022-01270-5. DOI
Díaz S, et al. The global spectrum of plant form and function. Nature. 2016;529:167–171. doi: 10.1038/nature16489. PubMed DOI
Guo W-Y, et al. Domestic gardens play a dominant role in selecting alien species with adaptive strategies that facilitate naturalization. Glob. Ecol. Biogeogr. 2019;28:628–639. doi: 10.1111/geb.12882. DOI
Guo W, et al. The role of adaptive strategies in plant naturalization. Ecol. Lett. 2018;21:1380–1389. doi: 10.1111/ele.13104. PubMed DOI
Freckleton RP, Watkinson AR. Asymmetric competition between plant species. Funct. Ecol. 2001;15:615–623. doi: 10.1046/j.0269-8463.2001.00558.x. DOI
Grime, J. P. & Pierce, S. The Evolutionary Strategies that Shape Ecosystems. 10.1002/9781118223246 (John Wiley & Sons, Ltd, 2012).
Wingler A, Sandel B. Relationships of the competitor, stress tolerator, ruderal functional strategies of grass species with lifespan, photosynthetic type, naturalization and climate. AoB PLANTS. 2023;15:1–10. doi: 10.1093/aobpla/plad021. PubMed DOI PMC
Pyšek P, Křivánek M, Jarošík V. Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology. 2009;90:2734–2744. doi: 10.1890/08-0857.1. PubMed DOI
Pyšek P, et al. Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology. 2015;96:762–774. doi: 10.1890/14-1005.1. PubMed DOI
Rejmánek M. A theory of seed plant invasiveness: The first sketch. Biol. Conserv. 1996;78:171–181. doi: 10.1016/0006-3207(96)00026-2. DOI
Liao H, et al. The role of functional strategies in global plant distribution. Ecography. 2021;44:493–503. doi: 10.1111/ecog.05476. DOI
van Kleunen M, Johnson SD, Fischer M. Predicting naturalization of southern African Iridaceae in other regions. J. Appl. Ecol. 2007;44:594–603. doi: 10.1111/j.1365-2664.2007.01304.x. DOI
Dawson W, Burslem DFRP, Hulme PE. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 2009;97:657–665. doi: 10.1111/j.1365-2745.2009.01519.x. DOI
Divíšek J, et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 2018;9:4631. doi: 10.1038/s41467-018-06995-4. PubMed DOI PMC
Essl F, et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB PLANTS. 2019;11:1–13. doi: 10.1093/aobpla/plz051. PubMed DOI PMC
Omer A, et al. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants. 2022;8:906–914. doi: 10.1038/s41477-022-01216-9. PubMed DOI
Blackburn TM, et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 2011;26:333–339. doi: 10.1016/j.tree.2011.03.023. PubMed DOI
Pyšek P, et al. Catalogue of alien plants of the Czech Republic (2nd edition): Checklist update, taxonomic diversity and invasion patterns. Preslia. 2012;84:155–255.
Richardson, D. M., Pyšek, P. & Carlton, J. T. A Compendium of Essential Concepts and Terminology in Invasion Ecology. In Fifty Years of Invasion Ecology: The Legacy of Charles Elton 409–420 10.1002/9781444329988.ch30 (Wiley-Blackwell, 2010).
Richardson DM, Pyšek P. Naturalization of introduced plants: Ecological drivers of biogeographical patterns. New Phytol. 2012;196:383–396. doi: 10.1111/j.1469-8137.2012.04292.x. PubMed DOI
Pyšek P, et al. MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota. 2020;62:407–461. doi: 10.3897/neobiota.62.52787. DOI
van Kleunen M, Dawson W, Maurel N. Characteristics of successful alien plants. Mol. Ecol. 2015;24:1954–1968. doi: 10.1111/mec.13013. PubMed DOI
Palma E, Vesk PA, White M, Baumgartner JB, Catford JA. Plant functional traits reflect different dimensions of species invasiveness. Ecology. 2021;102:1–14. doi: 10.1002/ecy.3317. PubMed DOI
Banerjee AK, Prajapati J, Bhowmick AR, Huang Y, Mukherjee A. Different factors influence naturalization and invasion processes – A case study of Indian alien flora provides management insights. J. Environ. Manag. 2021;294:113054. doi: 10.1016/j.jenvman.2021.113054. PubMed DOI
Guo K, et al. Ruderals naturalize, competitors invade: Varying roles of plant adaptive strategies along the invasion continuum. Funct. Ecol. 2022;36:2469–2479. doi: 10.1111/1365-2435.14145. DOI
Moodley D, Geerts S, Richardson DM, Wilson JRU. Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a Test Case. PLoS ONE. 2013;8:e75078. doi: 10.1371/journal.pone.0075078. PubMed DOI PMC
Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
Grace JB, et al. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere. 2012;3:art73. doi: 10.1890/ES12-00048.1. DOI
Gioria M, et al. Persistent soil seed banks promote naturalisation and invasiveness in flowering plants. Ecol. Lett. 2021;24:1655–1667. doi: 10.1111/ele.13783. PubMed DOI PMC
Razanajatovo M, et al. Plants capable of selfing are more likely to become naturalized. Nat. Commun. 2016;7:1–9. doi: 10.1038/ncomms13313. PubMed DOI PMC
The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical J. Linn. Soc.181, 1–20 (2016).
Pandit MK, White SM, Pocock MJO. The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol. 2014;203:697–703. doi: 10.1111/nph.12799. PubMed DOI
Dong B. et al. Naturalization of introduced plants is driven by life‐form‐dependent cultivation biases. Divers. Distrib. 30, 55–70 (2023).
Bradley BA, et al. Global change, global trade, and the next wave of plant invasions. Front. Ecol. Environ. 2012;10:20–28. doi: 10.1890/110145. DOI
Essl F, et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA. 2011;108:203–207. doi: 10.1073/pnas.1011728108. PubMed DOI PMC
Seebens H, et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Change Biol. 2015;21:4128–4140. doi: 10.1111/gcb.13021. PubMed DOI
Bjorkman AD, et al. Tundra Trait Team: A database of plant traits spanning the tundra biome. Glob. Ecol. Biogeogr. 2018;27:1402–1411. doi: 10.1111/geb.12821. DOI
Brym ZT, Lake JK, Allen D, Ostling A. Plant functional traits suggest novel ecological strategy for an invasive shrub in an understorey woody plant community. J. Appl. Ecol. 2011;48:1098–1106. doi: 10.1111/j.1365-2664.2011.02049.x. DOI
Dayrell RLC, et al. Ontogenetic shifts in plant ecological strategies. Funct. Ecol. 2018;32:2730–2741. doi: 10.1111/1365-2435.13221. DOI
Tavşanoǧlu Ç, Pausas JG. A functional trait database for Mediterranean Basin plants. Sci. Data. 2018;5:1–18. doi: 10.1038/sdata.2018.135. PubMed DOI PMC
Wang H, et al. The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology. 2018;99:500. doi: 10.1002/ecy.2091. PubMed DOI
Cayuela L, Granzow-de la Cerda Í, Albuquerque FS, Golicher DJ. taxonstand: An r package for species names standardisation in vegetation databases. Methods Ecol. Evol. 2012;3:1078–1083. doi: 10.1111/j.2041-210X.2012.00232.x. DOI
Pellicer J, Leitch IJ. The Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytol. 2020;226:301–305. doi: 10.1111/nph.16261. PubMed DOI
Greilhuber J, Doležel J, Lysák MA, Bennett MD. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann. Bot. 2005;95:255–260. doi: 10.1093/aob/mci019. PubMed DOI PMC
Diazgranados, M. et al. World Checklist of Useful Plant Species. Knowl. Netw. Biocomplexity10.5063/F1CV4G34 (2020).
POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/ (2023).
Govaerts R, Nic Lughadha E, Black N, Turner R, Paton A. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data. 2021;8:215. doi: 10.1038/s41597-021-00997-6. PubMed DOI PMC
Compositae Working Group. Global Compositae Database. https://www.compositae.org (2023).
GRIN. Germplasm resource information network. https://www.ars-grin.gov/ (2023).
IUCN. The IUCN Red List of Threatened Species. https://www.iucnredlist.org/ (2023).
Richardson DM, et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 2000;6:93–107. doi: 10.1046/j.1472-4642.2000.00083.x. DOI
van Kleunen M, et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology. 2019;100:e02542. doi: 10.1002/ecy.2542. PubMed DOI
CBD. Alien species that threaten ecosystems, habitats or species. https://www.cbd.int/kb/record/decision/7197?RecordType=decisionSubject=IAS (2000).
IUCN Species Survival Commission (SSC), Invasive Species Specialist Group. Guidelines for the prevention of biodiversity loss caused by alien invasive species. (2000).
CABI. CABI Compendium. CABI Compendium. Wallingford, UK:CAB International. www.cabi.org/isc (2023).
Global Invasive Species Database. GISD. The Global Invasive Species Databasehttp://www.iucngisd.org/gisd/ (2015).
Weber, E. Invasive Plant Species of the World: A Reference Guide to Environmental Weeds(2nd edition)10.1108/rr-06-2017-0133 (2017).
Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018;105:302–314. doi: 10.1002/ajb2.1019. PubMed DOI
Zanne AE, et al. Three keys to the radiation of angiosperms into freezing environments. Nature. 2014;506:89–92. doi: 10.1038/nature12872. PubMed DOI
Jin Y, Qian H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography. 2019;42:1353–1359. doi: 10.1111/ecog.04434. PubMed DOI PMC
Yu, G. Data integration, manipulation and visualization of phylogenetic trees. (Chapman and Hall/CRC, 2022).
R Core Team. R: A language and environment for statistical computing. (2022).
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
Bürkner, P. Estimating Phylogenetic Multilevel Models with BRMS. https://cran.r-project.org/web/packages/brms/vignettes/brms_phylogenetics.html (2021).
Byrnes J. Structural Equation Modeling for Ecology and Evolutionary Biology. https://jebyrnes.github.io/semclass/ (2019).
Guo, K. et al. Plant invasion and naturalization are influenced by genome size, ecology and economic use globally. 10.5281/zenodo.10113291 (2023). PubMed PMC