Decomposition of HCN during Experimental Impacts in Dry and Wet Planetary Atmospheres
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38919854
PubMed Central
PMC11195306
DOI
10.1021/acsearthspacechem.4c00064
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Hydrogen cyanide (HCN), a key molecule of significant importance in contemporary perspectives on prebiotic chemistry, originates in planetary atmospheres from various processes, such as photochemistry, thermochemistry, and impact chemistry, as well as from delivery by impacts. The resilience of HCN during periods of heavy bombardment, a phenomenon caused by an influx of material on unstable trajectories after accretion, remains relatively understudied. This study extensively investigates the stability of HCN under impact conditions simulated using a laboratory Nd:YAG laser in the ELISE experimental setup. High-resolution infrared spectroscopy was employed to monitor the gas phase composition during these simulations. Impact chemistry was simulated in bulk nitrogen atmospheres with varying mixing ratios of HCN and water vapor. The probed range of compositions spans from ∼0 to 1.8% of HCN and 0 to 2.7% of H2O in a ∼1 bar nitrogen atmosphere. The primary decomposition products of HCN are CO and CO2 in the presence of water and unidentified solid phase products in dry conditions. Our experiments revealed a range of initial HCN decomposition rates between 2.43 × 1015 and 5.17 × 1017 molec J-1 of input energy depending on the initial composition. Notably, it is shown that the decomposition process induced by the laser spark simulating the impact plasma is nonlinear, with the duration of the irradiation markedly affecting the decomposition rate. These findings underscore the necessity for careful consideration and allowance for margins when applying these rates to chemical models of molecular synthesis and decomposition in planetary atmospheres.
Zobrazit více v PubMed
Moussa S. G.; Leithead A.; Li S.-M.; Chan T. W.; Wentzell J. J.; Stroud C.; Zhang J.; Lee P.; Lu G.; Brook J. R.; Hayden K.; Narayan J.; Liggio J. Emissions of hydrogen cyanide from on-road gasoline and diesel vehicles. Atmos. Environ. 2016, 131, 185–195. 10.1016/j.atmosenv.2016.01.050. DOI
Pandey K.; Patel A. K.; Singh M.; Vandana K. A.; Jalaluddin. Natural Bioactive Compounds; Sinha R. P., Häder D. P., Eds.; Academic Press, 2021; pp 19–40.
Hazarika S. N.; Thakur D.. Beneficial Microbes in Agro-Ecology; Amaresan N., Senthil Kumar M., Annapurna K., Kumar K., Sankaranarayanan A., Eds.; Academic Press, 2020; pp 443–476.
Marten A.; Gautier D.; Griffin M. J.; Matthews H. E.; Naylor D. A.; Davis G. R.; Owen T.; Orton G.; Bockelée-Morvan D.; Colom P.; et al. The collision of comet Shoemaker-Levy 9 with Jupiter: Detection and evolution of HCN in the stratosphere of the planet. Geophys. Res. Lett. 1995, 22, 1589–1592. 10.1029/95GL00949. DOI
Bezard B.; Griffith C. A.; Kelly D. M.; Lacy J. H.; Greathouse T.; Orton G. Thermal Infrared Imaging Spectroscopy of Shoemaker-Levy 9 Impact Sites: Temperature and HCN Retrievals. Icarus 1997, 125, 94–120. 10.1006/icar.1996.5610. DOI
Tanguy L.; Bézard B.; Marten A.; Gautier D.; Gérard E.; Paubert G.; Lecacheux A. Stratospheric profile of HCN on Titan from millimeter observations. Icarus 1990, 85, 43–57. 10.1016/0019-1035(90)90102-F. DOI
Mumma M. J.; Charnley S. B. The Chemical Composition of Comets–Emerging Taxonomies and Natal Heritage. Annu. Rev. Astron. Astrophys. 2011, 49, 471–524. 10.1146/annurev-astro-081309-130811. DOI
Dame T. M.; Lada C. J. A Complete HCN Survey of the Perseus Molecular Cloud. Astrophys. J. 2023, 944, 197.10.3847/1538-4357/acb438. DOI
Schmidt D. R.; Gold K. R.; Sinclair A.; Bergstrom S.; Ziurys L. M. HCN and HCO+ in Planetary Nebulae: The Next Level. Astrophys. J. 2022, 927, 46.10.3847/1538-4357/ac4474. DOI
Dutrey A.; Guilloteau S.; Guelin M. Chemistry of protosolar-like nebulae: The molecular content of the DM Tau and GG Tau disks. Astron. Astrophys. 1997, 317, L55–l58.
Sánchez-López A.; Landman R.; Mollière P.; Casasayas-Barris N.; Kesseli A. Y.; Snellen I. A. G. Searching for the origin of the Ehrenreich effect in ultra-hot Jupiters. Evidence for strong C/O gradients in the atmosphere of WASP-76 b?. Astron. Astrophys. 2022, 661, A78.10.1051/0004-6361/202142591. DOI
Baeyens R.; Désert J. M.; Petrignani A.; Carone L.; David Schneider A. Photodissociation and induced chemical asymmetries on ultra-hot gas giants. A case study of HCN on WASP-76 b. Astron. Astrophys. 2024, 10.1051/0004-6361/202348022. DOI
Cabot S. H. C.; Madhusudhan N.; Hawker G. A.; Gandhi S. On the robustness of analysis techniques for molecular detections using high-resolution exoplanet spectroscopy. Mon. Not. R. Astron. Soc. 2019, 482, 4422–4436. 10.1093/mnras/sty2994. DOI
Tsiaras A.; Rocchetto M.; Waldmann I. P.; Venot O.; Varley R.; Morello G.; Damiano M.; Tinetti G.; Barton E. J.; Yurchenko S. N.; Tennyson J. Detection of an atmosphere around the super-Earth 55 Cancri e. Astrophys. J. 2016, 820, 99.10.3847/0004-637X/820/2/99. DOI
Ruiz-Bermejo M.; de la Fuente J. L.; Pérez-Fernández C.; Mateo-Martí E. A Comprehensive Review of HCN-Derived Polymers. Processes 2021, 9, 597.10.3390/pr9040597. DOI
Ferus M.; Kubelík P.; Knížek A.; Pastorek A.; Sutherland J.; Civiš S. High Energy Radical Chemistry Formation of HCN-rich Atmospheres on early Earth. Sci. Rep. 2017, 7, 6275.10.1038/s41598-017-06489-1. PubMed DOI PMC
Patel B. H.; Percivalle C.; Ritson D. J.; Duffy C. D.; Sutherland J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 2015, 7, 301–307. 10.1038/nchem.2202. PubMed DOI PMC
Sutherland J. D. The Origin of Life–Out of the Blue. Angew. Chem., Int. Ed. 2016, 55, 104–121. 10.1002/anie.201506585. PubMed DOI
Sasselov D. D.; Grotzinger J. P.; Sutherland J. D. The origin of life as a planetary phenomenon. Sci. Adv. 2020, 6, eaax341910.1126/sciadv.aax3419. PubMed DOI PMC
Oro J.; Kamat S. Amino-acid synthesis from hydrogen cyanide under possible primitive Earth conditions. Nature 1961, 190, 442–443. 10.1038/190442a0. PubMed DOI
Yadav M.; Kumar R.; Krishnamurthy R. Chemistry of Abiotic Nucleotide Synthesis. Chem. Rev. 2020, 120, 4766–4805. 10.1021/acs.chemrev.9b00546. PubMed DOI
Ferus M.; Rimmer P.; Cassone G.; Knížek A.; Civiš S.; Šponer J. E.; Ivanek O.; Šponer J.; Saeidfirozeh H.; Kubelík P.; et al. One-Pot Hydrogen Cyanide-Based Prebiotic Synthesis of Canonical Nucleobases and Glycine Initiated by High-Velocity Impacts on Early Earth. Astrobiology 2020, 20, 1476–1488. 10.1089/ast.2020.2231. PubMed DOI
Sandford S. A.; Bera P. P.; Lee T. J.; Materese C. K.; Nuevo M.. Photoinduced Phenomena in Nucleic Acids II: DNA Fragments and Phenomenological Aspects; Barbatti M., Borin A. C., Ullrich S., Eds.; Springer International Publishing: Cham, 2015; pp 123–164.
Ritson D.; Sutherland J. D. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat. Chem. 2012, 4, 895–899. 10.1038/nchem.1467. PubMed DOI PMC
Ferus M.; Pietrucci F.; Saitta A. M.; Knížek A.; Kubelík P.; Ivanek O.; Shestivska V.; Civiš S. Formation of nucleobases in a Miller-Urey reducing atmosphere. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 4306–4311. 10.1073/pnas.1700010114. PubMed DOI PMC
Pearce B. K. D.; He C.; Hörst S. M. An Experimental and Theoretical Investigation of HCN Production in the Hadean Earth Atmosphere. ACS Earth Space Chem. 2022, 6, 2385–2399. 10.1021/acsearthspacechem.2c00138. DOI
Pearce B. K. D.; Molaverdikhani K.; Pudritz R. E.; Henning T.; Hébrard E. HCN Production in Titan’s Atmosphere: Coupling Quantum Chemistry and Disequilibrium Atmospheric Modeling. Astrophys. J. 2020, 901, 110.10.3847/1538-4357/abae5c. DOI
Pearce B. K. D.; Ayers P. W.; Pudritz R. E. A Consistent Reduced Network for HCN Chemistry in Early Earth and Titan Atmospheres: Quantum Calculations of Reaction Rate Coefficients. J. Phys. Chem. A 2019, 123, 1861–1873. 10.1021/acs.jpca.8b11323. PubMed DOI
Tian F.; Kasting J. F.; Zahnle K. Revisiting HCN formation in Earth’s early atmosphere. Earth Planet. Sci. Lett. 2011, 308, 417–423. 10.1016/j.epsl.2011.06.011. DOI
Zahnle K. J. Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth’s early atmosphere. J. Geophys. Res.: Atmos. 1986, 91, 2819–2834. 10.1029/JD091iD02p02819. DOI
Airapetian V. S.; Glocer A.; Gronoff G.; Hebrard E.; Danchi W. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat. Geosci. 2016, 9, 452–455. 10.1038/ngeo2719. DOI
Ardaseva A.; Rimmer P. B.; Waldmann I.; Rocchetto M.; Yurchenko S. N.; Helling C.; Tennyson J. Lightning chemistry on Earth-like exoplanets. Mon. Not. R. Astron. Soc. 2017, 470, 187–196. 10.1093/mnras/stx1012. DOI
Chameides W. L.; Walker J. C. G. Rates of fixation by lightning of carbon and nitrogen in possible primitive atmospheres. Origins Life Evol. Biosphere 1981, 11, 291–302. 10.1007/BF00931483. PubMed DOI
Moses J. I.; Visscher C.; Fortney J. J.; Showman A. P.; Lewis N. K.; Griffith C. A.; Klippenstein S. J.; Shabram M.; Friedson A. J.; Marley M. S.; Freedman R. S. Disequilibrium Carbon, Oxygen, and Nitrogen Chemistry in the Atmospheres of HD 189733b and HD 209458b. Astrophys. J. 2011, 737, 15.10.1088/0004-637X/737/1/15. DOI
Civiš M.; Ferus M.; Knížek A.; Kubelík P.; Kamas M.; Španěl P.; Dryahina K.; Shestivska V.; Juha L.; Skřehot P.; Laitl V.; Civiš S. Spectroscopic investigations of high-energy-density plasma transformations in a simulated early reducing atmosphere containing methane, nitrogen and water. Phys. Chem. Chem. Phys. 2016, 18, 27317–27325. 10.1039/C6CP05025E. PubMed DOI
Hill R. D. An efficient lightning energy-source on the early Earth. Origins Life Evol. Biosphere 1992, 22, 277–285. 10.1007/BF01810857. PubMed DOI
Chyba C.; Sagan C. Endogenous production, exogenous delivery and impact-shock synthesis of organic-molecules - an inventory for the origins of life. Nature 1992, 355, 125–132. 10.1038/355125a0. PubMed DOI
Rimmer P.; Rugheimer S. Hydrogen cyanide in nitrogen-rich atmospheres of rocky exoplanets. Icarus 2019, 329, 124–131. 10.1016/j.icarus.2019.02.020. DOI
Todd Z. R.; Oberg K. Cometary Delivery of Hydrogen Cyanide to the Early Earth. Astrobiology 2020, 20, 1109–1120. 10.1089/ast.2019.2187. PubMed DOI
Libourel G.; Nakamura A. M.; Beck P.; Potin S.; Ganino C.; Jacomet S.; Ogawa R.; Hasegawa S.; Michel P. Hypervelocity impacts as a source of deceiving surface signatures on iron-rich asteroids. Sci. Adv. 2019, 5, eaav397110.1126/sciadv.aav3971. PubMed DOI PMC
Mimura K.; Madono T.; Toyama S.; Sugitani K.; Sugisaki R.; Iwamatsu S. i.; Murata S. Shock-induced pyrolysis of naphthalene and related polycyclic aromatic hydrocarbons (anthracene, pyrene, and fluoranthene) at pressures of 12–33.7GPa. J. Anal. Appl. Pyrolysis 2004, 72, 273–278. 10.1016/j.jaap.2004.07.004. DOI
Dremin A. N. Shock wave chemistry. High Pressure Res. 1989, 1, 361–364. 10.1080/08957958908202498. DOI
Roy A.; Singh S. V.; Ambresh M.; Sahu D.; Meka J.; Ramachandran R.; Samarth P.; Pavithraa S.; Jayaram V.; Hill H.; et al. Shock processing of amorphous carbon nanodust. Adv. Space Res. 2022, 70, 2571–2581. 10.1016/j.asr.2022.06.068. DOI
Agrawal P.; Jenniskens P. M.; Stern E.; Arnold J.; Chen Y.-K.. 2018 Aerodynamic Measurement Technology and Ground Testing Conference.
Drouard A.; Vernazza P.; Loehle S.; Gattacceca J.; Vaubaillon J.; Zanda B.; Birlan M.; Bouley S.; Colas F.; Eberhart M.; et al. Probing the use of spectroscopy to determine the meteoritic analogues of meteors. Astron. Astrophys. 2018, 613, A54.10.1051/0004-6361/201732225. DOI
Helber B.; Dias B.; Bariselli F.; Zavalan L. F.; Pittarello L.; Goderis S.; Soens B.; McKibbin S. J.; Claeys P.; Magin T. E. Analysis of Meteoroid Ablation Based on Plasma Wind-tunnel Experiments, Surface Characterization, and Numerical Simulations. Astrophys. J. 2019, 876, 120.10.3847/1538-4357/ab16f0. DOI
Loehle S.; Zander F.; Hermann T.; Eberhart M.; Meindl A.; Oefele R.; Vaubaillon J.; Colas F.; Vernazza P.; Drouard A.; Gattacceca J. Experimental Simulation of Meteorite Ablation during Earth Entry using a Plasma Wind Tunnel. Astrophys. J. 2017, 837, 112.10.3847/1538-4357/aa5cb5. DOI
Loehle S.; Zander F.; Eberhart M.; Hermann T.; Meindl A.; Massuti-Ballester B.; Leiser D.; Hufgard F.; Pagan A. S.; Herdrich G.; Fasoulas S. Assessment of high enthalpy flow conditions for re-entry aerothermodynamics in the plasma wind tunnel facilities at IRS. CEAS Space J. 2022, 14, 395–406. 10.1007/s12567-021-00396-y. DOI
Rae J.; Hertzberg A.. On the Possibility of Simulating Meteoroid Impact by the Use of Lasers, 1964.
Hapke B.; Cassidy W.; Wells E. Effects of vapor-phase deposition processes on the optical, chemical, and magnetic properties OE the lunar regolith. Moon 1975, 13, 339–353. 10.1007/BF00567525. DOI
Civiš S.; Juha L.; Babánková D.; Cvačka J.; Frank O.; Jehlička J.; Králiková B.; Krása J.; Kubát P.; Muck A.; Pfeifer M.; Skála J.; Ullschmied J. Amino acid formation induced by high-power laser in CO2/CO−N2−H2O gas mixtures. Chem. Phys. Lett. 2004, 386, 169–173. 10.1016/j.cplett.2004.01.034. DOI
Paschotta R.Encyclopedia of Laser Physics and Technology, 1st ed.; Wiley-VCH, 2008; Chapter Laser-induced breakdown, p 856.
Kasting J. F. Earth’s Early Atmosphere. Science 1993, 259, 920–926. 10.1126/science.11536547. PubMed DOI
Hu R.; Diaz H. D. Stability of Nitrogen in Planetary Atmospheres in Contact with Liquid Water. Astrophys. J. 2019, 886, 126.10.3847/1538-4357/ab4cea. DOI
Schwieterman E. W.; Robinson T. D.; Meadows V. S.; Misra A.; Domagal-Goldman S. Detecting and Constraining N2 Abundances in Planetary Atmospheres Using Collisional Pairs. Astrophys. J. 2015, 810, 57.10.1088/0004-637X/810/1/57. DOI
Petera L.; Knížek A.; Laitl V.; Ferus M. Decomposition of Benzene during Impacts in N2-dominated Atmospheres. Astrophys. J. 2023, 945, 149.10.3847/1538-4357/acbd48. DOI
Heays A. N.spectr, 2022. https://github.com/aheays/spectr.git (accessed 5 May 2023).
Gordon I. E.; Rothman L.; Hargreaves R.; Hashemi R.; Karlovets E.; Skinner F.; Conway E.; Hill C.; Kochanov R.; Tan Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 2022, 277, 107949.10.1016/j.jqsrt.2021.107949. DOI
Baulch D. L.; Cobos C. J.; Cox R. A.; Esser C.; Frank P.; Just T.; Kerr J. A.; Pilling M. J.; Troe J.; Walker R. W.; Warnatz J. Evaluated Kinetic Data for Combustion Modelling. J. Phys. Chem. Ref. Data 1992, 21, 411.10.1063/1.555908. DOI
Vuitton V.; Bonnet J.-Y.; Frisari M.; Thissen R.; Quirico E.; Dutuit O.; Schmitt B.; Le Roy L.; Fray N.; Cottin H.; Sciamma-O’Brien E.; Carrasco N.; Szopa C. Very high resolution mass spectrometry of HCN polymers and tholins. Faraday Discuss. 2010, 147, 495–508. 10.1039/c003758c. PubMed DOI
Ferus M.; Kubelík P.; Kawaguchi K.; Dryahina K.; Španěl P.; Civiš S. HNC/HCN Ratio in Acetonitrile, Formamide, and BrCN Discharge. J. Phys. Chem. A 2011, 115, 1885–1899. 10.1021/jp1107872. PubMed DOI
Miller J. A.; Melius C. F. A theoretical analysis of the reaction between hydroxyl and hydrogen cyanide at high temperature. Symp. (Int.) Combust. 1988, 21, 919–927. 10.1016/S0082-0784(88)80324-2. DOI
Wang C. Y.; Zhang S.; Li Q. S. Ab initio study of rate constants of the reaction: HCN + OH → CN + H2O. Theor. Chem. Acc. 2002, 108, 341–346. 10.1007/s00214-002-0395-1. DOI
Mayer S.; Schieler L.; Johnston H. Computation of high-temperature rate constants for bimolecular reactions of combustion products. Symp. (Int.) Combust. 1967, 11, 837–844. 10.1016/S0082-0784(67)80209-1. DOI
Ferus M.; Michalčíková R.; Shestivská V.; Šponer J.; Šponer J. E.; Civiš S. High-Energy Chemistry of Formamide: A Simpler Way for Nucleobase Formation. J. Phys. Chem. A 2014, 118, 719–736. 10.1021/jp411415p. PubMed DOI
Shabanov S. V.; Gornushkin I. B. Modeling chemical reactions in laser-induced plasmas. Appl. Phys. A: Mater. Sci. Process. 2015, 121, 1087–1107. 10.1007/s00339-015-9445-0. DOI
McKay C. P.; Borucki W. J. Organic Synthesis in Experimental Impact Shocks. Science 1997, 276, 390–392. 10.1126/science.276.5311.390. PubMed DOI
Scattergood T. W.; McKay C. P.; Borucki W. J.; Giver L. P.; van Ghyseghem H.; Parris J. E.; Miller S. L. Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas, and UV light. Icarus 1989, 81, 413–428. 10.1016/0019-1035(89)90061-4. PubMed DOI
Rimmer P. B.; Ferus M.; Waldmann I. P.; Knížek A.; Kalvaitis D.; Ivanek O.; Kubelík P.; Yurchenko S. N.; Burian T.; Dostál J.; et al. Identifiable Acetylene Features Predicted for Young Earth-like Exoplanets with Reducing Atmospheres Undergoing Heavy Bombardment. Astrophys. J. 2020, 888, 21.10.3847/1538-4357/ab55e8. DOI
Ferus M.; Heays A. N.; Knížek A.. Prebiotic Photochemistry: From Ureyâ—Miller-like Experiments to Recent Findings; The Royal Society of Chemistry, 2021; pp 239–264.
Knížek A.; Petera L.; Laitl V.; Ferus M.. Survival of HCN during Impacts in N2-Dominated Planetary Atmospheres: Supplementary Information, 2023.10.5281/zenodo.8086773. DOI