Formation of nucleobases in a Miller-Urey reducing atmosphere
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28396441
PubMed Central
PMC5410828
DOI
10.1073/pnas.1700010114
PII: 1700010114
Knihovny.cz E-zdroje
- Klíčová slova
- asteroid impact, life origins, reducing atmosphere,
- MeSH
- amoniak chemie MeSH
- atmosféra MeSH
- chemické modely MeSH
- evoluce chemická MeSH
- formamidy chemie MeSH
- oxid uhelnatý chemie MeSH
- oxidace-redukce MeSH
- původ života MeSH
- RNA chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniak MeSH
- formamide MeSH Prohlížeč
- formamidy MeSH
- oxid uhelnatý MeSH
- RNA MeSH
The Miller-Urey experiments pioneered modern research on the molecular origins of life, but their actual relevance in this field was later questioned because the gas mixture used in their research is considered too reducing with respect to the most accepted hypotheses for the conditions on primordial Earth. In particular, the production of only amino acids has been taken as evidence of the limited relevance of the results. Here, we report an experimental work, combined with state-of-the-art computational methods, in which both electric discharge and laser-driven plasma impact simulations were carried out in a reducing atmosphere containing NH3 + CO. We show that RNA nucleobases are synthesized in these experiments, strongly supporting the possibility of the emergence of biologically relevant molecules in a reducing atmosphere. The reconstructed synthetic pathways indicate that small radicals and formamide play a crucial role, in agreement with a number of recent experimental and theoretical results.
Zobrazit více v PubMed
Miller SL. A production of amino acids under possible primitive Earth conditions. Science. 1953;117:528–529. PubMed
Wollrab E, et al. Chemical analysis of a “Miller-type” complex prebiotic broth: Part I: Chemical diversity, oxygen and nitrogen based polymers. Orig Life Evol Biosph. 2016;46:149–169. PubMed
McCollom TM. Miller–Urey and beyond: What have we learned about prebiotic organic synthesis reactions in the past 60 years? Annu Rev Earth Planet Sci. 2013;41:207–229.
Johnson A, Cleaves HJ, Bada JL, Lazcano A. The diversity of the original prebiotic soup: Re-analyzing the original Miller–Urey spark discharge experiments. Orig Life Evol Biosph. 2009;39:240–241.
Johnson AP, et al. The Miller volcanic spark discharge experiment. Science. 2008;322:404. PubMed
Kasting JF. Earths’ early atmosphere. Science. 1993;259:920–926. PubMed
Gilbert W. Origin of life: The RNA world. Nature. 1986;319(6055):618.
Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E. Genetics first or metabolism first? The formamide clue. Chem Soc Rev. 2012;41:5526–5565. PubMed
Saladino R, Crestini C, Ciciriello F, Costanzo G, Di Mauro E. Formamide chemistry and the origin of informational polymers. Chem Biodivers. 2007;4:694–720. PubMed
Lazcano A, Miller SL. The origin and early evolution of life: Prebiotic chemistry, the pre-RNA world, and time. Cell. 1996;85:793–798. PubMed
Maurel M-C, Haenni AL. In: Lectures in Astrobiology. Gargaud M, Martin H, Claeys P, editors. Vol II. Springer; Berlin: 2005. pp. 557–581.
Da Silva L, Maurel M-C, Deamer D. Salt-promoted synthesis of RNA-like molecules in simulated hydrothermal conditions. J Mol Evol. 2015;80:86–97. PubMed
Maurel M-C. Why does evolution matters? In: Trueba G, editor. The Importance of Understanding Evolution. Cambridge Publishing; Newcastle upon Tyne, UK: 2014. pp. 119–133.
Saladino R, Crestini C, Costanzo G, Negri R, Di Mauro E. A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: Implications for the origin of life. Bioorg Med Chem. 2001;9:1249–1253. PubMed
Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E. Formamide and the origin of life. Phys Life Rev. 2012;9:84–104. PubMed
Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E. From the one-carbon amide formamide to RNA all the steps are prebiotically possible. Biochimie. 2012;94:1451–1456. PubMed
Pino S, Sponer JE, Costanzo G, Saladino R, Mauro ED. From formamide to RNA, the path is tenuous but continuous. Life (Basel) 2015;5:372–384. PubMed PMC
Šponer JE, et al. Prebiotic synthesis of nucleic acids and their building blocks at the atomic level—merging models and mechanisms from advanced computations and experiments. Phys Chem Chem Phys. 2016;18:20047–20066. PubMed
Ferus M, et al. High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc Natl Acad Sci USA. 2015;112:657–662. PubMed PMC
Jeilani YA, Nguyen HT, Newallo D, Dimandja J-MD, Nguyen MT. Free radical routes for prebiotic formation of DNA nucleobases from formamide. Phys Chem Chem Phys. 2013;15:21084–21093. PubMed
Ferus M, et al. High-energy chemistry of formamide: A simpler way for nucleobase formation. J Phys Chem A. 2014;118:719–736. PubMed
Miller SL, Urey HC. Organic compound synthesis on the primitive Earth. Science. 1959;130:245–251. PubMed
Hudson JS, et al. A unified mechanism for abiotic adenine and purine synthesis in formamide. Angew Chem Int Ed Engl. 2012;51:5134–5137. PubMed
Saladino R, Botta G, Delfino M, Di Mauro E. Meteorites as catalysts for prebiotic chemistry. Chemistry. 2013;19:16916–16922. PubMed
Saladino R, et al. One-pot TiO2-catalyzed synthesis of nucleic bases and acyclonucleosides from formamide: Implications for the origin of life. ChemBioChem. 2003;4:514–521. PubMed
Saladino R, Crestini C, Cossetti C, Di Mauro E, Deamer D. Catalytic effects of Murchison material: Prebiotic synthesis and degradation of RNA precursors. Orig Life Evol Biosph. 2011;41:437–451. PubMed
Barks HL, et al. Guanine, adenine, and hypoxanthine production in UV-irradiated formamide solutions: Relaxation of the requirements for prebiotic purine nucleobase formation. ChemBioChem. 2010;11:1240–1243. PubMed
Saladino R, et al. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc Natl Acad Sci USA. 2015;112:E2746–E2755. PubMed PMC
Saladino R, et al. First evidence on the role of heavy ion irradiation of meteorites and formamide in the origin of biomolecules. Orig Life Evol Biosph. 2016;46:515–521. PubMed
Hörst SM, et al. Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment. Astrobiology. 2012;12:809–817. PubMed PMC
Chyba C, Sagan C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature. 1992;355:125–132. PubMed
Chyba CF, Thomas PJ, Brookshaw L, Sagan C. Cometary delivery of organic molecules to the early Earth. Science. 1990;249:366–373. PubMed
Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL. A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosph. 2008;38:105–115. PubMed
Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL. In: Chemical Evolution across Space and Time. Zaikowski L, Friedrich JM, editors. American Chemical Society; Washington, DC: 2008.
Civis S, et al. Amino acid formation induced by high-power laser in CO2/CO-N-2-H2O gas mixtures. Chem Phys Lett. 2004;386:169–173.
Levy M, Miller SL, Oró J. Production of guanine from NH4CN polymerizations. J Mol Evol. 1999;49:165–168. PubMed
Ferris JP, Wos JD, Nooner DW, Oró J. Chemical evolution. XXI. The amino acids released on hydrolysis of HCN oligomers. J Mol Evol. 1974;3:225–231. PubMed
Yuasa S, Flory D, Basile B, Oró J. Abiotic synthesis of purines and other heterocyclic compounds by the action of electrical discharges. J Mol Evol. 1984;21:76–80. PubMed
Brucato JR, Baratta GA, Strazzulla G. An infrared study of pure and ion irradiated frozen formamide. Astron Astrophys. 2006;455:395–399.
Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro E. Formamide as the main building block in the origin of nucleic acids. BMC Evol Biol. 2007;7(Suppl 2):S1. PubMed PMC
Raunier S, et al. Tentative identification of urea and formamide in ISO-SWS infrared spectra of interstellar ices. Astron Astrophys. 2004;416:165–169.
Saitta AM, Saija F. Miller experiments in atomistic computer simulations. Proc Natl Acad Sci USA. 2014;111:13768–13773. PubMed PMC
Šponer JE, et al. Emergence of the first catalytic oligonucleotides in a formamide-based origin scenario. Chemistry. 2016;22:3572–3586. PubMed
Bottke WF, et al. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature. 2012;485:78–81. PubMed
Hill RD. An efficient lightning energy source on the early Earth. Orig Life Evol Biosph. 1992;22:277–285. PubMed
Abelson PH. Amino acids formed in primitive atmospheres. Science. 1956;124(3228):935. PubMed
Rode BM. Peptides and the origin of life. Peptides. 1999;20:773–786. PubMed
Pietrucci F, Saitta AM. Formamide reaction network in gas phase and solution via a unified theoretical approach: Toward a reconciliation of different prebiotic scenarios. Proc Natl Acad Sci USA. 2015;112:15030–15035. PubMed PMC
Kasting JF, Ackerman TP. Climatic consequences of very high carbon dioxide levels in the Earth’s early atmosphere. Science. 1986;234:1383–1385. PubMed
Kasting JF, Howard MT. Atmospheric composition and climate on the early Earth. Philos Trans R Soc Lond B Biol Sci. 2006;361:1733–1741. PubMed PMC
Trail D, Watson EB, Tailby ND. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature. 2011;480:79–82. PubMed
Yang X, Gaillard F, Scaillet B. A relatively reduced Hadean continental crust and implications for the early atmosphere and crustal rheology. Earth Planet Sci Lett. 2014;393:210–219.
Schaefer L, Fegley B., Jr Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus. 2007;186:462–483.
Hazen RM, Sverjensky DA. Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb Perspect Biol. 2010;2(5):a002162. PubMed PMC
Hashimoto GL, Abe Y, Sugita S. The chemical composition of the early terrestrial atmosphere: Formation of a reducing atmosphere from CI-like material. J Geophys Res. 2007;112(E5):E05010.
Bell EA, Boehnke P, Harrison TM, Mao WL. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci USA. 2015;112:14518–14521. PubMed PMC
Dodd MS, et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature. 2017;543:60–64. PubMed
Cavosie AJ, Valley JW, Wilde SA. Magmatic delta O-18 in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth Planet Sci Lett. 2005;235:663–681.
Martins Z. Organic chemistry of carbonaceous meteorites. Elements. 2011;7:35–40.
Martins Z, Modica P, Zanda B, D’Hendecourt LLS. The amino acid and hydrocarbon contents of the Paris meteorite: Insights into the most primitive CM chondrite. Meteorit Planet Sci. 2015;50:926–943.
Martins Z, et al. Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet Sci Lett. 2008;270:130–136.
Civiš S, Kubelík P, Ferus M. Time-resolved Fourier transform emission spectroscopy of He/CH4 in a positive column discharge. J Phys Chem A. 2012;116:3137–3147. PubMed
Ferus M, et al. HNC/HCN ratio in acetonitrile, formamide, and BrCN discharge. J Phys Chem A. 2011;115:1885–1899. PubMed
Nguyen VS, et al. Theoretical study of formamide decomposition pathways. J Phys Chem A. 2011;115:841–851. PubMed
Chen H-T, Chang J-G, Chen H-L. A computational study on the decomposition of formic acid catalyzed by (H2O)x, x = 0–3: Comparison of the gas-phase and aqueous-phase results. J Phys Chem A. 2008;112:8093–8099. PubMed
Ferus M, et al. On the road from formamide ices to nucleobases: IR-spectroscopic observation of a direct reaction between cyano radicals and formamide in a high-energy impact event. J Am Chem Soc. 2012;134:20788–20796. PubMed
Mojzsis SJ, et al. Evidence for life on Earth before 3,800 million years ago. Nature. 1996;384:55–59. PubMed
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. PubMed
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27(15):1787–1799. PubMed
Barone V, et al. Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. J Comput Chem. 2009;30:934–939. PubMed
Giannozzi P, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21(39):395502. PubMed
Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci. 2002;99(20):12562–12566. PubMed PMC
Bonomi M, et al. PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun. 2009;180(10):1961–1972.
Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J Comput Phys. 1977;23(2):187–199.
Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13(8):1011–1021.
The evolution of organic material on Asteroid 162173 Ryugu and its delivery to Earth
Decomposition of HCN during Experimental Impacts in Dry and Wet Planetary Atmospheres
A Computational Quantum-Based Perspective on the Molecular Origins of Life's Building Blocks