From formamide to RNA, the path is tenuous but continuous

. 2015 Jan 30 ; 5 (1) : 372-84. [epub] 20150130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25647486

Reactions of formamide (NH2COH) in the presence of catalysts of both terrestrial and meteoritic origin yield, in plausible and variegated conditions, a large panel of precursors of (pre)genetic and (pre)metabolic interest. Formamide chemistry potentially satisfies all of the steps from the very initial precursors to RNA. Water chemistry enters the scene in RNA non-enzymatic synthesis and recombination.

Zobrazit více v PubMed

Lohrmann R. Formation of nucleoside 5'-phosphoramidates under potentially prebiological conditions. J. Mol. Evol. 1977;10:137–154. doi: 10.1007/BF01751807. PubMed DOI

Ferris J.P., Ertem G. Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J. Am. Chem. Soc. 1993;115:12270–12275. doi: 10.1021/ja00079a006. PubMed DOI

Kawamura K., Ferris J.P. Kinetic and Mechanistic Analysis of Dinucleotide and Oligonucleotide Formation from the 5'-Phosphorimidazolide of Adenosine on Na(+)-Montmorillonite. J. Am. Chem. Soc. 1994;116:7564–7572. doi: 10.1021/ja00096a013. PubMed DOI

Rohatgi R., Bartel D., Szostak J.W. Non-enzymatic, Template-Directed Ligation of Oligoribonucleotides is Highly Regioselective for the Formation of 3'-5' Phosphodiester Bonds. J. Am. Chem. Soc. 1996;118:3340–3334. doi: 10.1021/ja9537134. PubMed DOI

Johnston W.K., Unrau P.J., Lawrence M.S., Glasner M.E., Bartel D.P. RNA-Catalyzed RNA polymerization: Accurate and General RNA-Templated Primer Extension. Science. 2001;292:1319–1325. doi: 10.1126/science.1060786. PubMed DOI

Kanavarioti A., Monnard P.A., Deamer D.W. Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis. Astrobiology. 2001;1:271–281. doi: 10.1089/15311070152757465. PubMed DOI

Monnard P.A., Kanavarioti A., Deamer D.W. Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. J. Am. Chem. Soc. 2003;125:13734–13740. doi: 10.1021/ja036465h. PubMed DOI

Huang W., Ferris J.P. Synthesis of 35–40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem. Commun. 2003;12:1458–1459. doi: 10.1039/b303134a. PubMed DOI

Kim D.E., Joyce G.F. Cross-catalytic replication of an RNA ligase ribozyme. Chem. Biol. 2004;11:1505–1512. doi: 10.1016/j.chembiol.2004.08.021. PubMed DOI

Ferris J.P., Joshi P.C., Wang K.J., Miyakawa S., Huang W. Catalysis in prebiotic chemistry: Application to the synthesis of RNA oligomers. Adv. Space Res. 2004;33:100–105. doi: 10.1016/j.asr.2003.02.010. DOI

Mansy S.S., Schrum J.P., Krishnamurthy M., Tobé S., Treco D.A., Szostak J.W. Template-directed synthesis of a genetic polymer in a model protocell. Nature. 2008;454:122–125. PubMed PMC

Eckland E.H., Szostak J.W., Bartel D.P. Structurally complex and highly active RNA ligases derived from random RNA sequences. Science. 1995;269:364–370. doi: 10.1126/science.7618102. PubMed DOI

Wochner A., Attwater J., Coulson A., Holliger P. Ribozyme-catalyzed transcription of an active ribozyme. Science. 2011;332:209–212. doi: 10.1126/science.1200752. PubMed DOI

Attwater J., Wochner A., Holliger P. In-ice evolution of RNA polymerase ribozyme activity. Nat. Chem. 2013;5:1011–1018. doi: 10.1038/nchem.1781. PubMed DOI PMC

Lehman N. Origin of life: Cold-hearted RNA heats up life. Nat. Chem. 2013;12:987–989. doi: 10.1038/nchem.1811. PubMed DOI

Powner M.W., Gerland B., Sutherland J.D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459:239–242. doi: 10.1038/nature08013. PubMed DOI

Yamada H., Hirobe M., Higashiyama K., Takahashi H., Suzuki K.T. Reaction mechanism for purine ring formation as studied by 13C-15N coupling. Tetrahedron Lett. 1978;42:4039–4044. doi: 10.1016/S0040-4039(01)95134-2. DOI

Yamada H., Hirobe M., Higashiyama K., Takahashi H., Suzuki K.T. Detection of carbon-13-nitrogen-15 coupled units in adenine derived from doubly labeled hydrogen cyanide or formamide. J. Am. Chem. Soc. 1978;100:4617–4618. doi: 10.1021/ja00482a061. DOI

Saladino R., Crestini C., Costanzo G., Negri R., di Mauro E. A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: Implications for the origin of life. Biorg. Med. Chem. 2001;9:1249–1253. doi: 10.1016/S0968-0896(00)00340-0. PubMed DOI

Saladino R., Crestini C., Pino S., Costanzo G., di Mauro E. Formamide and the origin of life. Phys. Life Rev. 2012;9:84–104. doi: 10.1016/j.plrev.2011.12.002. PubMed DOI

Saladino R., Botta G., Pino S., Costanzo G., di Mauro E. Genetics first or metabolism first? The formamide clue. Chem. Soc. Rev. 2012;41:5526–5565. doi: 10.1039/c2cs35066a. PubMed DOI

Saladino R., Botta G., Delfino M., di Mauro E. Meteorites as Catalysts for Prebiotic Chemistry. Chemistry. 2013;19:16916–16922. doi: 10.1002/chem.201303690. PubMed DOI

Saladino R., Ciambecchini U., Crestini C., Costanzo G., Negri R., di Mauro E. One-pot TiO2-Catalyzed Synthesis of Nucleic Bases and Acyclonucleosides from Formamide: Implications for the Origin of Life. Chembiochem. 2003;4:514–521. doi: 10.1002/cbic.200300567. PubMed DOI

Barks H.L., Buckley R., Grieves G.A., di Mauro E., Hud N.V., Orlando T.M. Guanine, Adenine, and Hypoxanthine Production in UV-Irradiated Formamide Solutions: Relaxation of the Requirements for Prebiotic Purine Nucleobase Formation. Chembiochem. 2010;11:1240–1243. doi: 10.1002/cbic.201000074. PubMed DOI

Saladino R., Botta G., Delfino M., di Mauro E., Kapralov M., Timoshenko G., Krasavin E., Rozanov A. Production of Prebiotic Compounds by High-Energy Irradiation of formamide. JINR News. 2013;4:16–19.

Benner S.A., Kim H.J., Cardigan M.A. Asphalt, water, and prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem. Res. 2012;45:2025–2034. doi: 10.1021/ar200332w. PubMed DOI

Barras C. Primeval soup: Creating life without water. NewScientist Life. Apr 16, 2014. pp. 36–39.

Schoffstall A.M. Prebiotic phosphorylation of nucleosides in formamide. Orig. Life. 1976;7:399–412. doi: 10.1007/BF00927935. PubMed DOI

Schoffstall A.M., Mahone S.M. Formate ester formation in amide solutions. Orig. Life Evol. Biosph. 1988;18:389–396. doi: 10.1007/BF01808217. PubMed DOI

Costanzo G., Saladino R., Crestini C., Ciciriello F., di Mauro E. Nucleoside phosphorylation by phosphate minerals. J. Biol. Chem. 2007;282:16729–16735. doi: 10.1074/jbc.M611346200. PubMed DOI

Saladino R., Crestini C., Ciciriello F., Pino S., Costanzo G., di Mauro E. From formamide to RNA: The roles of formamide and water in the evolution of chemical information Special Issue on “The Origin of life and Microbiology”. Res. Microbiol. 2009;160:441–448. doi: 10.1016/j.resmic.2009.06.001. PubMed DOI

Costanzo G., Pino S., Ciciriello F., di Mauro E. Generation of long RNA chains in water. J. Biol. Chem. 2009;284:33206–33216. doi: 10.1074/jbc.M109.041905. PubMed DOI PMC

Costanzo G., Saladino R., Botta G., Giorgi A., Scipioni A., Pino S., di Mauro E. Generation of RNA molecules by base catalyzed click-like reaction. Chembiochem. 2012;13:999–1008. doi: 10.1002/cbic.201200068. PubMed DOI

Pino S., Costanzo G., Giorgi A., Šponer J., Šponer J.E., di Mauro E. Ribozyme activity of RNA nonenzymatically polymerized from 3',5'-cyclicGMP. Entropy. 2013;15:5362–5383. doi: 10.3390/e15125362. DOI

Morasch M., Mast C.B., Langer J.K., Schilcher P., Braun D. Dry polymerization of 3',5'-cyclic GMP to long strands of RNA. Chembiochem. 2014;15:879–883. doi: 10.1002/cbic.201300773. PubMed DOI

Van Holde K. In: The Origins of Life and Evolution. Halvorson H.O., van Holde K.E., editors. Alan R. Liss, Inc.; New York, NY, USA: 1980. p. 31.

Alberty R.A. Thermodynamic properties of enzyme-catalyzed reactions involving guanine, xanthine, and their nucleosides and nucleotides. Biophys. Chem. 2006;121:157–162. doi: 10.1016/j.bpc.2006.01.004. PubMed DOI

Saladino R., Crestini C., Busiello V., Ciciriello F., Costamzo G., di Mauro E. Origin of informational polymers: Differential stability of 3'- and 5'-phosphoester bonds in deoxy monomers and oligomers. J. Biol. Chem. 2005;280:35658–35669. doi: 10.1074/jbc.M504537200. PubMed DOI

Ciciriello F., Costanzo G., Pino S., Crestini C., Saladino R., di Mauro E. Molecular complexity favors the evolution of ribopolymers. Biochemistry. 2008;47:2732–2742. doi: 10.1021/bi7021014. PubMed DOI

Saladino R., Crestini C., Ciciriello F., di Mauro E., Costanzo G. Origin of Informational Polymers: Differential Stability of Phosphoester Bonds in Ribo Monomers and Oligomers. J. Biol. Chem. 2006;281:5790–5796. doi: 10.1074/jbc.M512545200. PubMed DOI

Joyce G.F., Orgel L.E. In: The RNA World. Gesteland R.F., Atkins J.F., editors. Cold Spring Harbor Press; New York, NY, USA: 1999. p. 48.

Gilbert W. Origin of life: The RNA world. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI

Spirin A.S. RNA world and its evolution. Mol. Biol. 2005;39:466–472. doi: 10.1007/s11008-005-0063-3. PubMed DOI

Orgel L.E. Some consequences of the RNA world hypothesis. Orig. Life Evol. Biosph. 2003;33:211–218. doi: 10.1023/A:1024616317965. PubMed DOI

Dworkin J.P., Lazcano A., Miller S.L. The roads to and from the RNA world. J. Theor. Biol. 2003;222:127–134. doi: 10.1016/S0022-5193(03)00020-1. PubMed DOI

Lehman N., Joyce G.F. Evolution in vitro of an RNA enzyme with altered metal dependence. Nature. 1993;361:182–185. doi: 10.1038/361182a0. PubMed DOI

Riley C.A., Lehman N. Generalized RNA-directed recombination of RNA. Chem. Biol. 2003;10:1233–1243. doi: 10.1016/j.chembiol.2003.11.015. PubMed DOI

Diaz Arenas C., Lehman N. Partitioning the fitness components of RNA populations evolving in vitro. PLoS One. 2013;8:e84454. doi: 10.1371/journal.pone.0084454. PubMed DOI PMC

Lutay A.V., Grigoriev I.V., Zenkova M.A., Chernolovskaya E.L., Vlassov V.V. Non-enzymatic recombination of RNA by means of transesterification. Russ. Chem. Bull. 2007;56:2499–2505. doi: 10.1007/s11172-007-0398-0. DOI

Chetverina H.V., Demidenko A.A., Ugarov V.I., Chetverin A.B. Spontaneous rearrangements in RNA sequences. FEBS Lett. 1999;450:89–94. doi: 10.1016/S0014-5793(99)00469-X. PubMed DOI

Chetverin A.B., Kopein D.S., Chetverina H.V., Demidenko A.A., Ugarov V.I. Viral RNA-directed RNA polymerases use diverse mechanisms to promote recombination between RNA molecules. J. Biol. Chem. 2005;280:8748–8755. doi: 10.1074/jbc.M412684200. PubMed DOI

Lutay A.V., Zenkova M.A., Vlassov V.V. Nonenzymatic recombination of RNA: Possible mechanism for the formation of novel sequences. Chem. Biodivers. 2007;4:762–767. doi: 10.1002/cbdv.200790062. PubMed DOI

Striggles J.C., Martin M.B., Schmidt F.J. Frequency of RNA-RNA interaction in a model of the RNA World. RNA. 2006;12:353–359. doi: 10.1261/rna.2204506. PubMed DOI PMC

Obermayer B., Krammer H., Braun D., Gerland U. Emergence of information transmission in a prebiotic RNA reactor. Phys. Rev. Lett. 2011;107:018101. doi: 10.1103/PhysRevLett.107.018101. PubMed DOI

Lehman N., Unrau P.J. Recombination during in vitro evolution. J. Mol. Evol. 2005;61:245–252. doi: 10.1007/s00239-004-0373-4. PubMed DOI

Burton A.S., Lehman N. Enhancing the prebiotic relevance of a set of covalently self-assembling, autorecombining RNAs through in vitro selection. J. Mol. Evol. 2010;70:233–241. doi: 10.1007/s00239-010-9325-3. PubMed DOI

Díaz Arenas C., Lehman N. Quasispecies-like behavior observed in catalytic RNA populations evolving in a test tube. BMC Evol. Biol. 2010;10 doi: 10.1186/1471-2148-10-80. PubMed DOI PMC

Yu W., Rusterholtz K.J., Krummel A.T., Lehman N. Detection of high levels of recombination generated during PCR amplification of RNA templates. Biotechniques. 2006;40:499–507. doi: 10.2144/000112124. PubMed DOI

Stephens R.M., Schneider T.D. Features of spliceosome evolution and function inferred from an analysis of the information at human splice sites. J. Mol. Biol. 1992;228:1124–1136. doi: 10.1016/0022-2836(92)90320-J. PubMed DOI

Yonath A. Polar bears, antibiotics, and the evolving ribosome (Nobel Lectures) Angew. Chem. Int. Ed. Engl. 2010;49:4341–4354. doi: 10.1002/anie.201001297. PubMed DOI

Turk R.M., Chumachenko N.V., Yarus M. Multiple translational products from a five-nucleotide ribozyme. Proc. Natl. Acad. Sci. USA. 2010;107:4585–4589. doi: 10.1073/pnas.0912895107. PubMed DOI PMC

Saladino R., Crestini C., Costanzo G., di Mauro E. On the Prebiotic Synthesis of Nucleobases, Nucleotides, Oligonucleotides, pre-RNA and pre-DNA Molecules. In: Walde P., editor. Prebiotic Chemistry. Volume 259. Springer; Berlin, Germany: 2005. pp. 29–68. Topics in Current Chemistry.

Cleaves H.J., II, Michalkova Scott A., Hill F.C., Leszczynski J., Sahai N., Hazen R. Mineral-organic interfacial processes: Potential roles in the origins of life. Chem. Soc. Rev. 2012;41:5502–5525. doi: 10.1039/c2cs35112a. PubMed DOI

Adande G.-R., Woolf N.-J., Ziurys L.-M. Observations of interstellar formamide: Availability of a prebiotic precursor in the galactic habitable zone. Astrobiology. 2013;13:439–453. doi: 10.1089/ast.2012.0912. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Formation of nucleobases in a Miller-Urey reducing atmosphere

. 2017 Apr 25 ; 114 (17) : 4306-4311. [epub] 20170410

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...