From formamide to RNA, the path is tenuous but continuous
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
25647486
PubMed Central
PMC4390857
DOI
10.3390/life5010372
PII: life5010372
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Reactions of formamide (NH2COH) in the presence of catalysts of both terrestrial and meteoritic origin yield, in plausible and variegated conditions, a large panel of precursors of (pre)genetic and (pre)metabolic interest. Formamide chemistry potentially satisfies all of the steps from the very initial precursors to RNA. Water chemistry enters the scene in RNA non-enzymatic synthesis and recombination.
Zobrazit více v PubMed
Lohrmann R. Formation of nucleoside 5'-phosphoramidates under potentially prebiological conditions. J. Mol. Evol. 1977;10:137–154. doi: 10.1007/BF01751807. PubMed DOI
Ferris J.P., Ertem G. Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J. Am. Chem. Soc. 1993;115:12270–12275. doi: 10.1021/ja00079a006. PubMed DOI
Kawamura K., Ferris J.P. Kinetic and Mechanistic Analysis of Dinucleotide and Oligonucleotide Formation from the 5'-Phosphorimidazolide of Adenosine on Na(+)-Montmorillonite. J. Am. Chem. Soc. 1994;116:7564–7572. doi: 10.1021/ja00096a013. PubMed DOI
Rohatgi R., Bartel D., Szostak J.W. Non-enzymatic, Template-Directed Ligation of Oligoribonucleotides is Highly Regioselective for the Formation of 3'-5' Phosphodiester Bonds. J. Am. Chem. Soc. 1996;118:3340–3334. doi: 10.1021/ja9537134. PubMed DOI
Johnston W.K., Unrau P.J., Lawrence M.S., Glasner M.E., Bartel D.P. RNA-Catalyzed RNA polymerization: Accurate and General RNA-Templated Primer Extension. Science. 2001;292:1319–1325. doi: 10.1126/science.1060786. PubMed DOI
Kanavarioti A., Monnard P.A., Deamer D.W. Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis. Astrobiology. 2001;1:271–281. doi: 10.1089/15311070152757465. PubMed DOI
Monnard P.A., Kanavarioti A., Deamer D.W. Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. J. Am. Chem. Soc. 2003;125:13734–13740. doi: 10.1021/ja036465h. PubMed DOI
Huang W., Ferris J.P. Synthesis of 35–40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem. Commun. 2003;12:1458–1459. doi: 10.1039/b303134a. PubMed DOI
Kim D.E., Joyce G.F. Cross-catalytic replication of an RNA ligase ribozyme. Chem. Biol. 2004;11:1505–1512. doi: 10.1016/j.chembiol.2004.08.021. PubMed DOI
Ferris J.P., Joshi P.C., Wang K.J., Miyakawa S., Huang W. Catalysis in prebiotic chemistry: Application to the synthesis of RNA oligomers. Adv. Space Res. 2004;33:100–105. doi: 10.1016/j.asr.2003.02.010. DOI
Mansy S.S., Schrum J.P., Krishnamurthy M., Tobé S., Treco D.A., Szostak J.W. Template-directed synthesis of a genetic polymer in a model protocell. Nature. 2008;454:122–125. PubMed PMC
Eckland E.H., Szostak J.W., Bartel D.P. Structurally complex and highly active RNA ligases derived from random RNA sequences. Science. 1995;269:364–370. doi: 10.1126/science.7618102. PubMed DOI
Wochner A., Attwater J., Coulson A., Holliger P. Ribozyme-catalyzed transcription of an active ribozyme. Science. 2011;332:209–212. doi: 10.1126/science.1200752. PubMed DOI
Attwater J., Wochner A., Holliger P. In-ice evolution of RNA polymerase ribozyme activity. Nat. Chem. 2013;5:1011–1018. doi: 10.1038/nchem.1781. PubMed DOI PMC
Lehman N. Origin of life: Cold-hearted RNA heats up life. Nat. Chem. 2013;12:987–989. doi: 10.1038/nchem.1811. PubMed DOI
Powner M.W., Gerland B., Sutherland J.D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459:239–242. doi: 10.1038/nature08013. PubMed DOI
Yamada H., Hirobe M., Higashiyama K., Takahashi H., Suzuki K.T. Reaction mechanism for purine ring formation as studied by 13C-15N coupling. Tetrahedron Lett. 1978;42:4039–4044. doi: 10.1016/S0040-4039(01)95134-2. DOI
Yamada H., Hirobe M., Higashiyama K., Takahashi H., Suzuki K.T. Detection of carbon-13-nitrogen-15 coupled units in adenine derived from doubly labeled hydrogen cyanide or formamide. J. Am. Chem. Soc. 1978;100:4617–4618. doi: 10.1021/ja00482a061. DOI
Saladino R., Crestini C., Costanzo G., Negri R., di Mauro E. A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: Implications for the origin of life. Biorg. Med. Chem. 2001;9:1249–1253. doi: 10.1016/S0968-0896(00)00340-0. PubMed DOI
Saladino R., Crestini C., Pino S., Costanzo G., di Mauro E. Formamide and the origin of life. Phys. Life Rev. 2012;9:84–104. doi: 10.1016/j.plrev.2011.12.002. PubMed DOI
Saladino R., Botta G., Pino S., Costanzo G., di Mauro E. Genetics first or metabolism first? The formamide clue. Chem. Soc. Rev. 2012;41:5526–5565. doi: 10.1039/c2cs35066a. PubMed DOI
Saladino R., Botta G., Delfino M., di Mauro E. Meteorites as Catalysts for Prebiotic Chemistry. Chemistry. 2013;19:16916–16922. doi: 10.1002/chem.201303690. PubMed DOI
Saladino R., Ciambecchini U., Crestini C., Costanzo G., Negri R., di Mauro E. One-pot TiO2-Catalyzed Synthesis of Nucleic Bases and Acyclonucleosides from Formamide: Implications for the Origin of Life. Chembiochem. 2003;4:514–521. doi: 10.1002/cbic.200300567. PubMed DOI
Barks H.L., Buckley R., Grieves G.A., di Mauro E., Hud N.V., Orlando T.M. Guanine, Adenine, and Hypoxanthine Production in UV-Irradiated Formamide Solutions: Relaxation of the Requirements for Prebiotic Purine Nucleobase Formation. Chembiochem. 2010;11:1240–1243. doi: 10.1002/cbic.201000074. PubMed DOI
Saladino R., Botta G., Delfino M., di Mauro E., Kapralov M., Timoshenko G., Krasavin E., Rozanov A. Production of Prebiotic Compounds by High-Energy Irradiation of formamide. JINR News. 2013;4:16–19.
Benner S.A., Kim H.J., Cardigan M.A. Asphalt, water, and prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem. Res. 2012;45:2025–2034. doi: 10.1021/ar200332w. PubMed DOI
Barras C. Primeval soup: Creating life without water. NewScientist Life. Apr 16, 2014. pp. 36–39.
Schoffstall A.M. Prebiotic phosphorylation of nucleosides in formamide. Orig. Life. 1976;7:399–412. doi: 10.1007/BF00927935. PubMed DOI
Schoffstall A.M., Mahone S.M. Formate ester formation in amide solutions. Orig. Life Evol. Biosph. 1988;18:389–396. doi: 10.1007/BF01808217. PubMed DOI
Costanzo G., Saladino R., Crestini C., Ciciriello F., di Mauro E. Nucleoside phosphorylation by phosphate minerals. J. Biol. Chem. 2007;282:16729–16735. doi: 10.1074/jbc.M611346200. PubMed DOI
Saladino R., Crestini C., Ciciriello F., Pino S., Costanzo G., di Mauro E. From formamide to RNA: The roles of formamide and water in the evolution of chemical information Special Issue on “The Origin of life and Microbiology”. Res. Microbiol. 2009;160:441–448. doi: 10.1016/j.resmic.2009.06.001. PubMed DOI
Costanzo G., Pino S., Ciciriello F., di Mauro E. Generation of long RNA chains in water. J. Biol. Chem. 2009;284:33206–33216. doi: 10.1074/jbc.M109.041905. PubMed DOI PMC
Costanzo G., Saladino R., Botta G., Giorgi A., Scipioni A., Pino S., di Mauro E. Generation of RNA molecules by base catalyzed click-like reaction. Chembiochem. 2012;13:999–1008. doi: 10.1002/cbic.201200068. PubMed DOI
Pino S., Costanzo G., Giorgi A., Šponer J., Šponer J.E., di Mauro E. Ribozyme activity of RNA nonenzymatically polymerized from 3',5'-cyclicGMP. Entropy. 2013;15:5362–5383. doi: 10.3390/e15125362. DOI
Morasch M., Mast C.B., Langer J.K., Schilcher P., Braun D. Dry polymerization of 3',5'-cyclic GMP to long strands of RNA. Chembiochem. 2014;15:879–883. doi: 10.1002/cbic.201300773. PubMed DOI
Van Holde K. In: The Origins of Life and Evolution. Halvorson H.O., van Holde K.E., editors. Alan R. Liss, Inc.; New York, NY, USA: 1980. p. 31.
Alberty R.A. Thermodynamic properties of enzyme-catalyzed reactions involving guanine, xanthine, and their nucleosides and nucleotides. Biophys. Chem. 2006;121:157–162. doi: 10.1016/j.bpc.2006.01.004. PubMed DOI
Saladino R., Crestini C., Busiello V., Ciciriello F., Costamzo G., di Mauro E. Origin of informational polymers: Differential stability of 3'- and 5'-phosphoester bonds in deoxy monomers and oligomers. J. Biol. Chem. 2005;280:35658–35669. doi: 10.1074/jbc.M504537200. PubMed DOI
Ciciriello F., Costanzo G., Pino S., Crestini C., Saladino R., di Mauro E. Molecular complexity favors the evolution of ribopolymers. Biochemistry. 2008;47:2732–2742. doi: 10.1021/bi7021014. PubMed DOI
Saladino R., Crestini C., Ciciriello F., di Mauro E., Costanzo G. Origin of Informational Polymers: Differential Stability of Phosphoester Bonds in Ribo Monomers and Oligomers. J. Biol. Chem. 2006;281:5790–5796. doi: 10.1074/jbc.M512545200. PubMed DOI
Joyce G.F., Orgel L.E. In: The RNA World. Gesteland R.F., Atkins J.F., editors. Cold Spring Harbor Press; New York, NY, USA: 1999. p. 48.
Gilbert W. Origin of life: The RNA world. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI
Spirin A.S. RNA world and its evolution. Mol. Biol. 2005;39:466–472. doi: 10.1007/s11008-005-0063-3. PubMed DOI
Orgel L.E. Some consequences of the RNA world hypothesis. Orig. Life Evol. Biosph. 2003;33:211–218. doi: 10.1023/A:1024616317965. PubMed DOI
Dworkin J.P., Lazcano A., Miller S.L. The roads to and from the RNA world. J. Theor. Biol. 2003;222:127–134. doi: 10.1016/S0022-5193(03)00020-1. PubMed DOI
Lehman N., Joyce G.F. Evolution in vitro of an RNA enzyme with altered metal dependence. Nature. 1993;361:182–185. doi: 10.1038/361182a0. PubMed DOI
Riley C.A., Lehman N. Generalized RNA-directed recombination of RNA. Chem. Biol. 2003;10:1233–1243. doi: 10.1016/j.chembiol.2003.11.015. PubMed DOI
Diaz Arenas C., Lehman N. Partitioning the fitness components of RNA populations evolving in vitro. PLoS One. 2013;8:e84454. doi: 10.1371/journal.pone.0084454. PubMed DOI PMC
Lutay A.V., Grigoriev I.V., Zenkova M.A., Chernolovskaya E.L., Vlassov V.V. Non-enzymatic recombination of RNA by means of transesterification. Russ. Chem. Bull. 2007;56:2499–2505. doi: 10.1007/s11172-007-0398-0. DOI
Chetverina H.V., Demidenko A.A., Ugarov V.I., Chetverin A.B. Spontaneous rearrangements in RNA sequences. FEBS Lett. 1999;450:89–94. doi: 10.1016/S0014-5793(99)00469-X. PubMed DOI
Chetverin A.B., Kopein D.S., Chetverina H.V., Demidenko A.A., Ugarov V.I. Viral RNA-directed RNA polymerases use diverse mechanisms to promote recombination between RNA molecules. J. Biol. Chem. 2005;280:8748–8755. doi: 10.1074/jbc.M412684200. PubMed DOI
Lutay A.V., Zenkova M.A., Vlassov V.V. Nonenzymatic recombination of RNA: Possible mechanism for the formation of novel sequences. Chem. Biodivers. 2007;4:762–767. doi: 10.1002/cbdv.200790062. PubMed DOI
Striggles J.C., Martin M.B., Schmidt F.J. Frequency of RNA-RNA interaction in a model of the RNA World. RNA. 2006;12:353–359. doi: 10.1261/rna.2204506. PubMed DOI PMC
Obermayer B., Krammer H., Braun D., Gerland U. Emergence of information transmission in a prebiotic RNA reactor. Phys. Rev. Lett. 2011;107:018101. doi: 10.1103/PhysRevLett.107.018101. PubMed DOI
Lehman N., Unrau P.J. Recombination during in vitro evolution. J. Mol. Evol. 2005;61:245–252. doi: 10.1007/s00239-004-0373-4. PubMed DOI
Burton A.S., Lehman N. Enhancing the prebiotic relevance of a set of covalently self-assembling, autorecombining RNAs through in vitro selection. J. Mol. Evol. 2010;70:233–241. doi: 10.1007/s00239-010-9325-3. PubMed DOI
Díaz Arenas C., Lehman N. Quasispecies-like behavior observed in catalytic RNA populations evolving in a test tube. BMC Evol. Biol. 2010;10 doi: 10.1186/1471-2148-10-80. PubMed DOI PMC
Yu W., Rusterholtz K.J., Krummel A.T., Lehman N. Detection of high levels of recombination generated during PCR amplification of RNA templates. Biotechniques. 2006;40:499–507. doi: 10.2144/000112124. PubMed DOI
Stephens R.M., Schneider T.D. Features of spliceosome evolution and function inferred from an analysis of the information at human splice sites. J. Mol. Biol. 1992;228:1124–1136. doi: 10.1016/0022-2836(92)90320-J. PubMed DOI
Yonath A. Polar bears, antibiotics, and the evolving ribosome (Nobel Lectures) Angew. Chem. Int. Ed. Engl. 2010;49:4341–4354. doi: 10.1002/anie.201001297. PubMed DOI
Turk R.M., Chumachenko N.V., Yarus M. Multiple translational products from a five-nucleotide ribozyme. Proc. Natl. Acad. Sci. USA. 2010;107:4585–4589. doi: 10.1073/pnas.0912895107. PubMed DOI PMC
Saladino R., Crestini C., Costanzo G., di Mauro E. On the Prebiotic Synthesis of Nucleobases, Nucleotides, Oligonucleotides, pre-RNA and pre-DNA Molecules. In: Walde P., editor. Prebiotic Chemistry. Volume 259. Springer; Berlin, Germany: 2005. pp. 29–68. Topics in Current Chemistry.
Cleaves H.J., II, Michalkova Scott A., Hill F.C., Leszczynski J., Sahai N., Hazen R. Mineral-organic interfacial processes: Potential roles in the origins of life. Chem. Soc. Rev. 2012;41:5502–5525. doi: 10.1039/c2cs35112a. PubMed DOI
Adande G.-R., Woolf N.-J., Ziurys L.-M. Observations of interstellar formamide: Availability of a prebiotic precursor in the galactic habitable zone. Astrobiology. 2013;13:439–453. doi: 10.1089/ast.2012.0912. PubMed DOI PMC
Formation of nucleobases in a Miller-Urey reducing atmosphere