Forward Modeling Reveals Multidecadal Trends in Cambial Kinetics and Phenology at Treeline

. 2021 ; 12 () : 613643. [epub] 20210128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33584770

Significant alterations of cambial activity might be expected due to climate warming, leading to growing season extension and higher growth rates especially in cold-limited forests. However, assessment of climate-change-driven trends in intra-annual wood formation suffers from the lack of direct observations with a timespan exceeding a few years. We used the Vaganov-Shashkin process-based model to: (i) simulate daily resolved numbers of cambial and differentiating cells; and (ii) develop chronologies of the onset and termination of specific phases of cambial phenology during 1961-2017. We also determined the dominant climatic factor limiting cambial activity for each day. To asses intra-annual model validity, we used 8 years of direct xylogenesis monitoring from the treeline region of the Krkonoše Mts. (Czechia). The model exhibits high validity in case of spring phenological phases and a seasonal dynamics of tracheid production, but its precision declines for estimates of autumn phenological phases and growing season duration. The simulations reveal an increasing trend in the number of tracheids produced by cambium each year by 0.42 cells/year. Spring phenological phases (onset of cambial cell growth and tracheid enlargement) show significant shifts toward earlier occurrence in the year (for 0.28-0.34 days/year). In addition, there is a significant increase in simulated growth rates during entire growing season associated with the intra-annual redistribution of the dominant climatic controls over cambial activity. Results suggest that higher growth rates at treeline are driven by (i) temperature-stimulated intensification of spring cambial kinetics, and (ii) decoupling of summer growth rates from the limiting effect of low summer temperature due to higher frequency of climatically optimal days. Our results highlight that the cambial kinetics stimulation by increasing spring and summer temperatures and shifting spring phenology determine the recent growth trends of treeline ecosystems. Redistribution of individual climatic factors controlling cambial activity during the growing season questions the temporal stability of climatic signal of cold forest chronologies under ongoing climate change.

Zobrazit více v PubMed

Anchukaitis K. J., Evans M. N., Hughes M. K., Vaganov E. A. (2020). An interpreted language implementation of the Vaganov–Shashkin tree-ring proxy system model. Dendrochronologia 60:125677 10.1016/j.dendro.2020.125677 DOI

Anchukaitis K. J., Evans M. N., Kaplan A., Vaganov E. A., Hughes M. K., Grissino-Mayer H. D., et al. (2006). Forward modeling of regional scale tree-ring patterns in the southeastern United States and the recent influence of summer drought. Geophys. Res. Lett. 33:L04705 10.1029/2005GL025050 DOI

Björklund J., Rydval M., Schurman J. S., Seftigen K., Trotsiuk V., Janda P., et al. (2019). Disentangling the multi-faceted growth patterns of primary Picea abies forests in the Carpathian arc. Agric. For. Meteorol. 271 214–224. 10.1016/j.agrformet.2019.03.002 DOI

Breitenmoser P., Brönnimann S., Frank D. (2014). Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies. Clim. Past 10 437–449. 10.5194/cp-10-437-2014 DOI

Bunn A. G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia 26 115–124. 10.1016/J.DENDRO.2008.01.002 DOI

Büntgen U., Frank D. C., Schmidhalter M., Neuwirth B., Seifert M., Esper J. (2006). Growth/climate response shift in a long subalpine spruce chronology. Trees Struct. Funct. 20 99–110. 10.1007/s00468-005-0017-3 DOI

Buras A., Zang C., Menzel A. (2017). Testing the stability of transfer functions. Dendrochronologia 42 56–62. 10.1016/j.dendro.2017.01.005 DOI

Buttò V., Shishov V., Tychkov I., Popkova M., He M., Rossi S., et al. (2020). Comparing the cell dynamics of tree-ring formation observed in microcores and as predicted by the Vaganov – Shashkin model. Front. Plant Sci. 11:1268. 10.3389/fpls.2020.01268 PubMed DOI PMC

Cabon A., Peters R. L., Fonti P., Martínez−Vilalta J., De Cáceres M. (2020). Temperature and water potential co−limit stem cambial activity along a steep elevational gradient. New Phytol. 226 1325–1340. 10.1111/nph.16456 PubMed DOI

Carrer M., Castagneri D., Prendin A. L., Petit G., von Arx G. (2017). Retrospective analysis of wood anatomical traits reveals a recent extension in tree cambial activity in two high-elevation conifers. Front. Plant Sci. 8:737. 10.3389/fpls.2017.00737 PubMed DOI PMC

Castagneri D., Fonti P., von Arx G., Carrer M. (2017). How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies. Ann. Bot. 119 1011–1020. 10.1093/aob/mcw274 PubMed DOI PMC

Chen L., Huang J.-G., Ma Q., Hänninen H., Tremblay F., Bergeron Y. (2019). Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Glob. Chang. Biol. 25 997–1004. 10.1111/gcb.14496 PubMed DOI

Cleland E. E., Chuine I., Menzel A., Mooney H. A., Schwartz M. D. (2007). Shifting plant phenology in response to global change. Trends Ecol. Evol. 22 357–365. 10.1016/j.tree.2007.04.003 PubMed DOI

Cook E. R., Kairiukstis L. (1990). Methods of Dendrochronology — Applications in the Environmental Sciences. Dordrecht: Springer, 10.2307/1551446 DOI

Cook E. R., Peters K. (1981). The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull. 41 45–53.

Cornes R. C., Jones P. D., Qian C. (2017). Twentieth-century trends in the annual cycle of temperature across the Northern Hemisphere. J. Clim. 30 5755–5773. 10.1175/JCLI-D-16-0315.1 DOI

Cuny H. E., Rathgeber C. B. K., Frank D., Fonti P., Fournier M. (2014). Kinetics of tracheid development explain conifer tree-ring structure. New Phytol. 203 1231–1241. 10.1111/nph.12871 PubMed DOI

Cuny H. E., Rathgeber C. B. K., Frank D., Fonti P., Mäkinen H., Prislan P., et al. (2015). Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1:15160. 10.1038/nplants.2015.160 PubMed DOI

D’Arrigo R., Wilson R., Liepert B., Cherubini P. (2008). On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob. Planet. Change 60 289–305. 10.1016/J.GLOPLACHA.2007.03.004 DOI

Delpierre N., Lireux S., Hartig F., Camarero J. J., Cheaib A., Čufar K., et al. (2019). Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers. Glob. Chang. Biol. 25 1089–1105. 10.1111/gcb.14539 PubMed DOI

Deslauriers A., Morin H. (2005). Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19 402–408. 10.1007/s00468-004-0398-8 DOI

Deslauriers A., Rossi S., Anfodillo T., Saracino A. (2008). Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol. 28 863–871. 10.1093/treephys/28.6.863 PubMed DOI

Dubicka M., Głowicki B. (2000). A long-term view on the ecoclimate of the Karkonosze mountains in the light of complex indices. Opera Corcon. 37 55–61.

Friend A. D., Eckes-Shephard A. H., Fonti P., Rademacher T. T., Rathgeber C. B. K., Richardson A. D., et al. (2019). On the need to consider wood formation processes in global vegetation models and a suggested approach. Ann. For. Sci. 76:49 10.1007/s13595-019-0819-x DOI

Froelich N., Croft H., Chen J. M., Gonsamo A., Staebler R. M. (2015). Trends of carbon fluxes and climate over a mixed temperate–boreal transition forest in southern Ontario, Canada. Agric. For. Meteorol. 21 72–84. 10.1016/J.AGRFORMET.2015.05.009 DOI

Furze M. E., Huggett B. A., Aubrecht D. M., Stolz C. D., Carbone M. S., Richardson A. D. (2019). Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytol. 221 1466–1477. 10.1111/nph.15462 PubMed DOI PMC

Gärtner H., Schweingruber F. H. (2013). Microscopic Preparation Techniques for Plant Stem Analysis. Remagen-Oberwinter: Verlag Dr. Kessel.

Gennaretti F., Gea-Izquierdo G., Boucher E., Berninger F., Arseneault D., Guiot J. (2017). Ecophysiological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest. Biogeosciences 14 4851–4866. 10.5194/bg-14-4851-2017 DOI

Gričar J., Zupanič M., Čufar K., Koch G., Schmitt U., Oven P. (2006). Effect of local heating and cooling on cambial activity and cell differentiation in the stem of norway spruce (Picea abies). Ann. Bot. 97 943–951. 10.1093/aob/mcl050 PubMed DOI PMC

Gu H., Wang J., Ma L., Shang Z., Zhang Q. (2019). Insights into the BRT (boosted regression trees) method in the study of the climate-growth relationship of masson pine in subtropical China. Forests 10:228 10.3390/f10030228 DOI

Guiot J., Boucher E., Gea-Izquierdo G. (2014). Process models and model-data fusion in dendroecology. Front. Ecol. Evol. 2:52 10.3389/fevo.2014.00052 DOI

Hartmann F. P., Rathgeber C. B. K., Fournier M., Moulia B. (2017). Modelling wood formation and structure: power and limits of a morphogenetic gradient in controlling xylem cell proliferation and growth. Ann. For. Sci. 74:14 10.1007/s13595-016-0613-y DOI

He M., Shishov V., Kaparova N., Yang B., Bräuning A., Grießinger J. (2017). Process-based modeling of tree-ring formation and its relationships with climate on the Tibetan Plateau. Dendrochronologia 42 31–41. 10.1016/j.dendro.2017.01.002 DOI

He M., Yang B., Shishov V., Rossi S., Bräuning A., Ljungqvist F. C., et al. (2018a). Projections for the changes in growing season length of tree-ring formation on the Tibetan Plateau based on CMIP5 model simulations. Int. J. Biometeorol. 62 631–641. 10.1007/s00484-017-1472-4 PubMed DOI

He M., Yang B., Shishov V., Rossi S., Bräuning A., Ljungqvist F. C., et al. (2018b). Relationships between wood formation and cambium phenology on the Tibetan Plateau during 1960–2014. Forests 9:86 10.3390/f9020086 DOI

Huang J.-G., Ma Q., Rossi S., Biondi F., Deslauriers A., Fonti P., et al. (2020). Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl. Acad. Sci. U.S.A. 117:202007058. 10.1073/pnas.2007058117 PubMed DOI PMC

Jevšenak J., Levanič T. (2016). Should artificial neural networks replace linear models in tree ring based climate reconstructions? Dendrochronologia 40 102–109. 10.1016/J.DENDRO.2016.08.002 DOI

Jevšenak J., Tychkov I., Gričar J., Levanič T., Tumajer J., Prislan P., et al. (2020). Growth-limiting factors and climate response variability in Norway spruce (Picea abies L.) along an elevation and precipitation gradients in Slovenia. Int. J. Biometeorol. 10.1007/s00484-020-02033-5 PubMed DOI

Jin H., Jönsson A. M., Olsson C., Lindström J., Jönsson P., Eklundh L. (2019). New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes. Int. J. Biometeorol. 63 763–775. 10.1007/s00484-019-01690-5 PubMed DOI

Knibbe B. (2004). Personal Analysis System for Tree-ring Research 4 – Instruction Manual. Vienna: SCIEM.

Kolář T., Čermák P., Oulehle F., Trnka M., Štěpánek P., Cudlín P., et al. (2015). Pollution control enhanced spruce growth in the “Black Triangle” near the Czech–Polish border. Sci. Total Environ. 538 703–711. 10.1016/j.scitotenv.2015.08.105 PubMed DOI

Körner C. (2003). Carbon limitation in trees. J. Ecol. 91 4–17. 10.1046/j.1365-2745.2003.00742.x DOI

Körner C. (2012). Alpine Treelines. Basel: Springer Basel, 10.1007/978-3-0348-0396-0 DOI

Lloyd A. H., Duffy P. A., Mann D. H. (2013). Nonlinear responses of white spruce growth to climate variability in interior Alaska. Can. J. For. Res. 43 331–343. 10.1139/cjfr-2012-0372 DOI

Lupi C., Morin H., Deslauriers A., Rossi S. (2010). Xylem phenology and wood production: resolving the chicken-or-egg dilemma. Plant. Cell Environ. 33 1721–1730. 10.1111/j.1365-3040.2010.02176.x PubMed DOI

Mann M. E., Park J. (1996). Greenhouse warming and changes in the seasonal cycle of temperature: model versus observations. Geophys. Res. Lett. 23 1111–1114. 10.1029/96GL01066 DOI

Misson L. (2004). MAIDEN: a model for analyzing ecosystem processes in dendroecology. Can. J. For. Res. 34 874–887. 10.1139/x03-252 DOI

Oishi A. C., Oren R., Novick K. A., Palmroth S., Katul G. G. (2010). Interannual invariability of forest evapotranspiration and its consequence to water flow downstream. Ecosystems 13 421–436. 10.1007/s10021-010-9328-3 DOI

Peters R. L., Steppe K., Cuny H. E., De Pauw D. J. W., Frank D. C., Schaub M., et al. (2020). Turgor – a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytol. 229 213–229. 10.1111/nph.16872 PubMed DOI

Ponocná T., Chuman T., Rydval M., Urban G., Migała K., Treml V. (2018). Deviations of treeline Norway spruce radial growth from summer temperatures in east-central Europe. Agric. For. Meteorol. 253–254 62–70. 10.1016/j.agrformet.2018.02.001 DOI

Ponocná T., Spyt B., Kaczka R., Büntgen U., Treml V. (2016). Growth trends and climate responses of Norway spruce along elevational gradients in East-Central Europe. Trees Struct. Funct. 30 1633–1646. 10.1007/s00468-016-1396-3 DOI

Popkova M. I., Vaganov E. A., Shishov V. V., Babushkina E. A., Rossi S., Fonti M. V., et al. (2018). Modeled tracheidograms disclose drought influence on Pinus sylvestris tree-rings structure from siberian forest-steppe. Front. Plant Sci. 9:1144. 10.3389/fpls.2018.01144 PubMed DOI PMC

Price K., Storn R. M., Lampinen J. A. (2005). Differential Evolution: A Practical Approach to Global Optimization. Berlin: Springer-Verlag, 10.1007/3-540-31306-0 DOI

Prislan P., Gričar J., Čufar K., de Luis M., Merela M., Rossi S. (2019). Growing season and radial growth predicted for Fagus sylvatica under climate change. Clim. Change 153 181–197. 10.1007/s10584-019-02374-0 DOI

Puhe J. (2003). Growth and development of the root systern of Norway spruce (Picea abies) in forest stands-a review. For. Ecol. Manage. 175 253–273. 10.1016/s0378-1127(02)00134-2 DOI

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Rathgeber C. B. K., Cuny H. E., Fonti P. (2016). Biological basis of tree-ring formation: a crash course. Front. Plant Sci. 7:734. 10.3389/fpls.2016.00734 PubMed DOI PMC

Rathgeber C. B. K., Santenoise P., Cuny H. E. (2018). CAVIAR: an R package for checking, displaying and processing wood-formation-monitoring data. Tree Physiol. 38 1246–1260. 10.1093/treephys/tpy054 PubMed DOI

Ren P., Ziaco E., Rossi S., Biondi F., Prislan P., Liang E. (2019). Growth rate rather than growing season length determines wood biomass in dry environments. Agric. For. Meteorol. 271 46–53. 10.1016/j.agrformet.2019.02.031 DOI

Rezsöhazy J., Goosse H., Guiot J., Gennaretti F., Boucher E., André F., et al. (2020). Application and evaluation of the dendroclimatic process-based model MAIDEN during the last century in Canada and Europe. Clim. Past 16 1043–1059. 10.5194/cp-16-1043-2020 DOI

Rossi S., Anfodillo T., Čufar K., Cuny H. E., Deslauriers A., Fonti P., et al. (2016). Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Chang. Biol. 22 3804–3813. 10.1111/gcb.13317 PubMed DOI

Rossi S., Anfodillo T., Menardi R. (2006). Trephor: a new tool for sampling microcores from tree stems. IAWA J. 27 89–97. 10.1163/22941932-90000139 DOI

Rossi S., Deslauriers A., Anfodillo T., Carraro V. (2007). Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152 1–12. 10.1007/s00442-006-0625-7 PubMed DOI

Rossi S., Deslauriers A., Gričar J., Seo J. W., Rathgeber C. B. K., Anfodillo T., et al. (2008). Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 17 696–707. 10.1111/j.1466-8238.2008.00417.x DOI

Rossi S., Deslauriers A., Morin H. (2003). Application of the gompertz equation for the study of xylem cell development. Dendrochronologia 21 33–39. 10.1078/1125-7865-00034 DOI

Rydval M., Druckenbrod D., Anchukaitis K. J., Wilson R. (2016). Detection and removal of disturbance trends in tree-ring series for dendroclimatology. Can. J. For. Res. 46 387–401. 10.1139/cjfr-2015-0366 DOI

Sánchez-Salguero R., Camarero J. J., Gutiérrez E., González Rouco F., Gazol A., Sangüesa-Barreda G., et al. (2017). Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges. Glob. Chang. Biol. 23 2705–2719. 10.1111/gcb.13541 PubMed DOI

Schmid I., Kazda M. (2002). Root distribution of Norway spruce in monospecific and mixed stands on different soils. For. Ecol. Manage. 159 37–47. 10.1016/S0378-1127(01)00708-3 DOI

Shishov V. V., Tychkov I. I., Popkova M. I., Ilyin V. A., Bryukhanova M. V., Kirdyanov A. V. (2016). VS-oscilloscope: a new tool to parameterize tree radial growth based on climate conditions. Dendrochronologia 39 42–50. 10.1016/j.dendro.2015.10.001 DOI

Stine A. R., Huybers P., Fung I. Y. (2009). Changes in the phase of the annual cycle of surface temperature. Nature 457 435–440. 10.1038/nature07675 PubMed DOI

Sun Y., Bekker M. F., DeRose R. J., Kjelgren R., Wang S.-Y. S. (2017). Statistical treatment for the wet bias in tree-ring chronologies: a case study from the Interior West, USA. Environ. Ecol. Stat. 24 131–150. 10.1007/s10651-016-0363-x DOI

Thornthwaite C., Mather J. (1955). The Water Balance (Publications in Climatology), Vol. 1 Philadelphia, PA: Drexel Institute of Technology.

Touchan R., Shishov V. V., Meko D. M., Nouiri I., Grachev A. (2012). Process based model sheds light on climate sensitivity of Mediterranean tree-ring width. Biogeosciences 9 965–972. 10.5194/bg-9-965-2012 DOI

Treml V., Hejda T., Kašpar J. (2019). Differences in growth between shrubs and trees: how does the stature of woody plants influence their ability to thrive in cold regions? Agric. For. Meteorol. 271 54–63. 10.1016/J.AGRFORMET.2019.02.036 DOI

Treml V., Kašpar J., Kuželová H., Gryc V. (2015). Differences in intra-annual wood formation in Picea abies across the treeline ecotone, giant mountains, czech republic. Trees Struct. Funct. 29 515–526. 10.1007/s00468-014-1129-4 DOI

Treml V., Migoń P. (2015). Controlling factors limiting timberline position and shifts in the sudetes: a review. Geogr. Pol. 88 55–70. 10.7163/GPol.0015 DOI

Tumajer J., Altman J., Štěpánek P., Treml V., Doležal J., Cienciala E. (2017). Increasing moisture limitation of norway spruce in central Europe revealed by forward modelling of tree growth in tree-ring network. Agric. For. Meteorol. 247 56–64. 10.1016/j.agrformet.2017.07.015 DOI

Tychkov I. I., Sviderskaya I. V., Babushkina E. A., Popkova M. I., Vaganov E. A., Shishov V. V. (2019). How can the parameterization of a process-based model help us understand real tree-ring growth? Trees 33 345–357. 10.1007/s00468-018-1780-2 DOI

Vaganov E. A., Hughes M. K., Shashkin A. V. (2006). Growth Dynamics of Conifer Tree Rings. Ecological. Berlin: Springer-Verlag, 10.1007/3-540-31298-6 DOI

Wieser G., Oberhuber W., Gruber A. (2019). Effects of climate change at treeline: lessons from space-for-time studies, manipulative experiments, and long-term observational records in the central Austrian Alps. Forests 10:508 10.3390/f10060508 DOI

Wigley T. M. L., Briffa K. R., Jones P. D. (1984). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23 201–213. 10.1175/1520-04501984023<0201:OTAVOC<2.0.CO;2 DOI

Xu C., Liu H., Williams A. P., Yin Y., Wu X. (2016). Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes. Glob. Chang. Biol. 22 2852–2860. 10.1111/gcb.13224 PubMed DOI

Yang B., He M., Shishov V., Tychkov I., Vaganov E. A., Rossi S., et al. (2017). New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc. Natl. Acad. Sci. U.S.A. 114 6966–6971. 10.1073/pnas.1616608114 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace