Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30536724
DOI
10.1111/gcb.14539
Knihovny.cz E-zdroje
- Klíčová slova
- cambium, chilling temperatures, conifers, forcing temperatures, phenological models, wood phenology,
- MeSH
- Bayesova věta MeSH
- biologické modely * MeSH
- cévnaté rostliny růst a vývoj MeSH
- dřevo růst a vývoj MeSH
- klimatické změny MeSH
- roční období MeSH
- teplota * MeSH
- xylém růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Kanada MeSH
The phenology of wood formation is a critical process to consider for predicting how trees from the temperate and boreal zones may react to climate change. Compared to leaf phenology, however, the determinism of wood phenology is still poorly known. Here, we compared for the first time three alternative ecophysiological model classes (threshold models, heat-sum models and chilling-influenced heat-sum models) and an empirical model in their ability to predict the starting date of xylem cell enlargement in spring, for four major Northern Hemisphere conifers (Larix decidua, Pinus sylvestris, Picea abies and Picea mariana). We fitted models with Bayesian inference to wood phenological data collected for 220 site-years over Europe and Canada. The chilling-influenced heat-sum model received most support for all the four studied species, predicting validation data with a 7.7-day error, which is within one day of the observed data resolution. We conclude that both chilling and forcing temperatures determine the onset of wood formation in Northern Hemisphere conifers. Importantly, the chilling-influenced heat-sum model showed virtually no spatial bias whichever the species, despite the large environmental gradients considered. This suggests that the spring onset of wood formation is far less affected by local adaptation than by environmentally driven plasticity. In a context of climate change, we therefore expect rising winter-spring temperature to exert ambivalent effects on the spring onset of wood formation, tending to hasten it through the accumulation of forcing temperature, but imposing a higher forcing temperature requirement through the lower accumulation of chilling.
Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
Département des Sciences Fondamentales Université du Québec à Chicoutimi Chicoutimi QC Canada
Department of Botany University of Innsbruck Innsbruck Austria
Department of Geography and Regional Planning University of Zaragoza Zaragoza Spain
Institut National de l'Information Géographique et Forestière Champigneulles France
Instituto Pirenaico de Ecología CSIC Zaragoza Spain
Natural Resources Institute Finland Espoo Finland
Slovenian Forestry Institute Ljubljana Slovenia
Swiss Federal Research Institute WSL Birmensdorf Switzerland
Theoretical Ecology University of Regensburg Regensburg Germany
Université de Lorraine AgroParisTech INRA UMR Silva Nancy France
Citace poskytuje Crossref.org
Forward Modeling Reveals Multidecadal Trends in Cambial Kinetics and Phenology at Treeline