Ameloblastin Peptides Modulates the Osteogenic Capacity of Human Mesenchymal Stem Cells

. 2017 ; 8 () : 58. [epub] 20170207

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28223942

During amelogenesis the extracellular enamel matrix protein AMBN is quickly processed into 17 kDa (N-terminus) and 23 kDa (C-terminus) fragments. In particular, alternatively spliced regions derived by exon 5/6 within the N-terminus region are known to be critical in biomineralization. Human mesenchymal stem cells (hMSC) also express and secrete AMBN, but it is unclear if this expression has effects on the hMSC themselves. If, as suggested from previous findings, AMBN act as a signaling molecule, such effects could influence hMSC growth and differentiation, as well as promoting the secretion of other signaling proteins like cytokines and chemokines. If AMBN is found to modulate stem cell behavior and fate, it will impact our understanding on how extracellular matrix molecules can have multiple roles during development ontogenesis, mineralization and healing of mesenchymal tissues. Here we show that synthetic peptides representing exon 5 promote hMSC proliferation. Interestingly, this effect is inhibited by the application of a 15 aa peptide representing the alternatively spliced start of exon 6. Both peptides also influence gene expression of RUNX2 and osteocalcin, and promote calcium deposition in cultures, indicating a positive influence on the osteogenic capacity of hMSC. We also show that the full-length AMBN-WT and N-terminus region enhance the secretion of RANTES, IP-10, and IL-8. In contrast, the AMBN C-terminus fragment and the exon 5 deleted AMBN (DelEx5) have no detectable effects on any of the parameters investigated. These findings suggest the signaling effect of AMBN is conveyed by processed products, whereas the effect on proliferation is differentially modulated through alternative splicing during gene expression.

Zobrazit více v PubMed

Brookes S. J., Kirkham J., Shore R. C., Wood S. R., Slaby I., Robinson C. (2001). Amelin extracellular processing and aggregation during rat incisor amelogenesis. Arch. Oral Biol. 46, 201–208. 10.1016/S0003-9969(00)00121-7 PubMed DOI

Cerný R., Slaby I., Hammarstrom L., Wurtz T. (1996). A novel gene expressed in rat ameloblasts codes for proteins with cell binding domains. J. Bone Miner. Res. 11, 883–891. 10.1002/jbmr.5650110703 PubMed DOI

Dahl L. K. (1952). A simple and sensitive histochemical method for calcium. Proc. Soc. Exp. Biol. Med. 80, 474–479. 10.3181/00379727-80-19661 PubMed DOI

Ducy P., Zhang R., Geoffroy V., Ridall A. L., Karsenty G. (1997). Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–754. 10.1016/S0092-8674(00)80257-3 PubMed DOI

Dufour J. H., Dziejman M., Liu M. T., Leung J. H., Lane T. E., Luster A. D. (2002). IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J. Immunol. 168, 3195–3204. 10.4049/jimmunol.168.7.3195 PubMed DOI

Fong C. D., Cerny R., Hammarstrom L., Slaby I. (1998). Sequential expression of an amelin gene in mesenchymal and epithelial cells during odontogenesis in rats. Eur. J. Oral Sci. 106(Suppl. 1), 324–330. 10.1111/j.1600-0722.1998.tb02193.x PubMed DOI

Fong C. D., Slaby I., Hammarstrom L. (1996). Amelin: an enamel-related protein, transcribed in the cells of epithelial root sheath. J. Bone Miner. Res. 11, 892–898. 10.1002/jbmr.5650110704 PubMed DOI

Fukae M., Kanazashi M., Nagano T., Tanabe T., Oida S., Gomi K. (2006). Porcine sheath proteins show periodontal ligament regeneration activity. Eur. J. Oral Sci. 114(Suppl. 1), 212–218. discussion: 254–216, 381–212. 10.1111/j.1600-0722.2006.00309.x PubMed DOI

Fukumoto S., Kiba T., Hall B., Iehara N., Nakamura T., Longenecker G., et al. . (2004). Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J. Cell Biol. 167, 973–983. 10.1083/jcb.200409077 PubMed DOI PMC

George S. R., O'Dowd B. F., Lee S. P. (2002). G-Protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug Discov. 1, 808–820. 10.1038/nrd913 PubMed DOI

Hu C. C., Fukae M., Uchida T., Qian Q., Zhang C. H., Ryu O. H., et al. . (1997). Sheathlin: cloning, cDNA/polypeptide sequences, and immunolocalization of porcine enamel sheath proteins. J. Dent. Res. 76, 648–657. 10.1177/00220345970760020501 PubMed DOI

Iizuka S., Kudo Y., Yoshida M., Tsunematsu T., Yoshiko Y., Uchida T., et al. . (2011). Ameloblastin regulates osteogenic differentiation by inhibiting Src kinase via cross talk between integrin beta1 and CD63. Mol. Cell. Biol. 31, 783–792. 10.1128/MCB.00912-10 PubMed DOI PMC

Iwata T., Yamakoshi Y., Hu J. C., Ishikawa I., Bartlett J. D., Krebsbach P. H., et al. . (2007). Processing of ameloblastin by MMP-20. J. Dent. Res. 86, 153–157. 10.1177/154405910708600209 PubMed DOI

Kern B., Shen J., Starbuck M., Karsenty G. (2001). Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. J. Biol. Chem. 276, 7101–7107. 10.1074/jbc.M006215200 PubMed DOI

Kim M. S., Day C. J., Morrison N. A. (2005). MCP-1 is induced by receptor activator of nuclear factor-{kappa}B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. J. Biol. Chem. 280, 16163–16169. 10.1074/jbc.M412713200 PubMed DOI

Kim M. S., Magno C. L., Day C. J., Morrison N. A. (2006). Induction of chemokines and chemokine receptors CCR2b and CCR4 in authentic human osteoclasts differentiated with RANKL and osteoclast like cells differentiated by MCP-1 and RANTES. J. Cell. Biochem. 97, 512–518. 10.1002/jcb.20649 PubMed DOI

Kitagawa M., Ando T., Subarnbhesaj A., Uchida T., Miyauchi M., Takata T. (2016). N-terminal region of human ameloblastin synthetic peptide promotes bone formation. Odontology 105, 116–121. 10.1007/s10266-016-0243-8 PubMed DOI

Kitagawa M., Kitagawa S., Nagasaki A., Miyauchi M., Uchida T., Takata T. (2011). Synthetic ameloblastin peptide stimulates differentiation of human periodontal ligament cells. Arch. Oral Biol. 56, 374–379. 10.1016/j.archoralbio.2010.10.012 PubMed DOI

Kotake S., Sato K., Kim K. J., Takahashi N., Udagawa N., Nakamura I., et al. . (1996). Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation. J. Bone Miner. Res. 11, 88–95. 10.1002/jbmr.5650110113 PubMed DOI

Lee S. K., Kim S. M., Lee Y. J., Yamada K. M., Yamada Y., Chi J. G. (2003). The structure of the rat ameloblastin gene and its expression in amelogenesis. Mol. Cells 15, 216–225. PubMed

Li A., Dubey S., Varney M. L., Dave B. J., Singh R. K. (2003). IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 170, 3369–3376. 10.4049/jimmunol.170.6.3369 PubMed DOI

Lu X., Fukumoto S., Yamada Y., Evans C. A., Diekwisch T. G., Luan X. (2016a). Ameloblastin, an extracellular matrix protein, affects long bone growth and mineralization. J. Bone Miner. Res. 31, 1235–1246. 10.1002/jbmr.2788 PubMed DOI

Lu X., Ito Y., Atsawasuwan P., Dangaria S., Yan X., Wu T., et al. . (2013). Ameloblastin modulates osteoclastogenesis through the integrin/ERK pathway. Bone 54, 157–168. 10.1016/j.bone.2013.01.041 PubMed DOI PMC

Lu X., Li W., Fukumoto S., Yamada Y., Evans C. A., Diekwisch T., et al. . (2016b). The ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing. Matrix Biol. 52–54, 113–126. 10.1016/j.matbio.2016.02.007 PubMed DOI PMC

Martinez-Martin N., Viejo-Borbolla A., Martin R., Blanco S., Benovic J. L., Thelen M., et al. . (2015). Herpes simplex virus enhances chemokine function through modulation of receptor trafficking and oligomerization. Nat. Commun. 6, 6163. 10.1038/ncomms7163 PubMed DOI

Mountziaris P. M., Mikos A. G. (2008). Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng. Part B Rev. 14, 179–186. 10.1089/ten.teb.2008.0038 PubMed DOI PMC

Nakamura Y., Slaby I., Spahr A., Pezeshki G., Matsumoto K., Lyngstadaas S. P. (2006). Ameloblastin fusion protein enhances pulpal healing and dentin formation in porcine teeth. Calcif. Tissue Int. 78, 278–284. 10.1007/s00223-005-0144-2 PubMed DOI

Peng Q., Lai D., Nguyen T. T., Chan V., Matsuda T., Hirst S. J. (2005). Multiple beta 1 integrins mediate enhancement of human airway smooth muscle cytokine secretion by fibronectin and type I collagen. J. Immunol. 174, 2258–2264. 10.4049/jimmunol.174.4.2258 PubMed DOI

Ravindranath R. M., Devarajan A., Uchida T. (2007). Spatiotemporal expression of ameloblastin isoforms during murine tooth development. J. Biol. Chem. 282, 36370–36376. 10.1074/jbc.M704731200 PubMed DOI

Schall T. J., Bacon K., Toy K. J., Goeddel D. V. (1990). Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347, 669–671. PubMed

Smith C. E., Wazen R., Hu Y., Zalzal S. F., Nanci A., Simmer J. P., et al. . (2009). Consequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin. Eur. J. Oral Sci. 117, 485–497. 10.1111/j.1600-0722.2009.00666.x PubMed DOI PMC

Sonoda A., Iwamoto T., Nakamura T., Fukumoto E., Yoshizaki K., Yamada A., et al. . (2009). Critical role of heparin binding domains of ameloblastin for dental epithelium cell adhesion and ameloblastoma proliferation. J. Biol. Chem. 284, 27176–27184. 10.1074/jbc.M109.033464 PubMed DOI PMC

Spahr A., Lyngstadaas S. P., Slaby I., Pezeshki G. (2006). Ameloblastin expression during craniofacial bone formation in rats. Eur. J. Oral Sci. 114, 504–511. 10.1111/j.1600-0722.2006.00403.x PubMed DOI

Stout B. M., Alent B. J., Pedalino P., Holbrook R., Gluhak-Heinrich J., Cui Y., et al. . (2014). Enamel matrix derivative: protein components and osteoinductive properties. J. Periodontol. 85, e9–e17. 10.1902/jop.2013.130264 PubMed DOI

Takahashi K., Shimonishi M., Wang R., Watanabe H., Kikuchi M. (2012). Epithelial-mesenchymal interactions induce enamel matrix proteins and proteases in the epithelial cells of the rests of Malassez in vitro. Eur. J. Oral Sci. 120, 475–483. 10.1111/j.1600-0722.2012.01002.x PubMed DOI

Tamburstuen M. V., Reppe S., Spahr A., Sabetrasekh R., Kvalheim G., Slaby I., et al. . (2010). Ameloblastin promotes bone growth by enhancing proliferation of progenitor cells and by stimulating immunoregulators. Eur. J. Oral Sci. 118, 451–459. 10.1111/j.1600-0722.2010.00760.x PubMed DOI

Tamburstuen M. V., Reseland J. E., Spahr A., Brookes S. J., Kvalheim G., Slaby I., et al. . (2011). Ameloblastin expression and putative autoregulation in mesenchymal cells suggest a role in early bone formation and repair. Bone 48, 406–413. 10.1016/j.bone.2010.09.007 PubMed DOI PMC

Toyosawa S., Fujiwara T., Ooshima T., Shintani S., Sato A., Ogawa Y., et al. . (2000). Cloning and characterization of the human ameloblastin gene. Gene 256, 1–11. 10.1016/S0378-1119(00)00379-6 PubMed DOI

Uchida T., Murakami C., Dohi N., Wakida K., Satoda T., Takahashi O. (1997). Synthesis, secretion, degradation, and fate of ameloblastin during the matrix formation stage of the rat incisor as shown by immunocytochemistry and immunochemistry using region-specific antibodies. J. Histochem. Cytochem. 45, 1329–1340. 10.1177/002215549704501002 PubMed DOI

Vymetal J., Slaby I., Spahr A., Vondrasek J., Lyngstadaas S. P. (2008). Bioinformatic analysis and molecular modelling of human ameloblastin suggest a two-domain intrinsically unstructured calcium-binding protein. Eur. J. Oral Sci. 116, 124–134. 10.1111/j.1600-0722.2008.00526.x PubMed DOI

Wald T., Osickova A., Sulc M., Benada O., Semeradtova A., Rezabkova L., et al. . (2013). Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5. J. Biol. Chem. 288, 22333–22345. 10.1074/jbc.M113.456012 PubMed DOI PMC

Watanabe T., Kukita T., Kukita A., Wada N., Toh K., Nagata K., et al. . (2004). Direct stimulation of osteoclastogenesis by MIP-1alpha: evidence obtained from studies using RAW264 cell clone highly responsive to RANKL. J. Endocrinol. 180, 193–201. 10.1677/joe.0.1800193 PubMed DOI

Wazen R. M., Moffatt P., Zalzal S. F., Yamada Y., Nanci A. (2009). A mouse model expressing a truncated form of ameloblastin exhibits dental and junctional epithelium defects. Matrix Biol. 28, 292–303. 10.1016/j.matbio.2009.04.004 PubMed DOI PMC

Zhang Y., Zhang X., Lu X. Y., Atsawasuwan P., Luan X. H. (2011). Ameloblastin regulates cell attachment and proliferation through RhoA and p27. Eur. J. Oral Sci. 119, 280–285. 10.1111/j.1600-0722.2011.00887.x PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...