Characterization of AMBN I and II Isoforms and Study of Their Ca2+-Binding Properties

. 2020 Dec 05 ; 21 (23) : . [epub] 20201205

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33291486

Grantová podpora
RVO: 61388963 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
No. CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund; OP RDE; Project: "ChemBioDrug"

Ameloblastin (Ambn) as an intrinsically disordered protein (IDP) stands for an important role in the formation of enamel-the hardest biomineralized tissue commonly formed in vertebrates. The human ameloblastin (AMBN) is expressed in two isoforms: full-length isoform I (AMBN ISO I) and isoform II (AMBN ISO II), which is about 15 amino acid residues shorter than AMBN ISO I. The significant feature of AMBN-its oligomerization ability-is enabled due to a specific sequence encoded by exon 5 present at the N-terminal part in both known isoforms. In this study, we characterized AMBN ISO I and AMBN ISO II by biochemical and biophysical methods to determine their common features and differences. We confirmed that both AMBN ISO I and AMBN ISO II form oligomers in in vitro conditions. Due to an important role of AMBN in biomineralization, we further addressed the calcium (Ca2+)-binding properties of AMBN ISO I and ISO II. The binding properties of AMBN to Ca2+ may explain the role of AMBN in biomineralization and more generally in Ca2+ homeostasis processes.

Zobrazit více v PubMed

Wald T., Bednarova L., Osicka R., Pachl P., Sulc M., Lyngstadaas S.P., Slaby I., Vondrasek J. Biophysical characterization of recombinant human ameloblastin. Eur. J. Oral Sci. 2011;119:261–269. doi: 10.1111/j.1600-0722.2011.00913.x. PubMed DOI

Wald T., Osickova A., Sulc M., Benada O., Semeradtova A., Rezabkova L., Veverka V., Bednarova L., Maly J., Macek P., et al. Intrinsically Disordered Enamel Matrix Protein Ameloblastin Forms Ribbon-like Supramolecular Structures via an N-terminal Segment Encoded by Exon 5. J. Biol. Chem. 2013;288:22333–22345. doi: 10.1074/jbc.M113.456012. PubMed DOI PMC

Stakkestad O., Lyngstadaas S.P., Thiede B., Vondrasek J., Skalhegg B.S., Reseland J.E. Phosphorylation Modulates Ameloblastin Self-assembly and Ca2+ Binding. Front. Physiol. 2017;8:10. doi: 10.3389/fphys.2017.00531. PubMed DOI PMC

Boskey A.L., Villarreal-Ramirez E. Intrinsically disordered proteins and biomineralization. Matrix Biol. 2016;52–54:43–59. doi: 10.1016/j.matbio.2016.01.007. PubMed DOI PMC

Kalmar L., Homola D., Varga G., Tompa P. Structural disorder in proteins brings order to crystal growth in biomineralization. Bone. 2012;51:528–534. doi: 10.1016/j.bone.2012.05.009. PubMed DOI

Grzybowska E.A. Calcium-Binding Proteins with Disordered Structure and Their Role in Secretion, Storage, and Cellular Signaling. Biomolecules. 2018;8:42. doi: 10.3390/biom8020042. PubMed DOI PMC

Paine M.L., Snead M.L. Protein Interactions During Assembly of the Enamel Organic Extracellular Matrix. J. Bone Min. Res. 1997;12:221–227. doi: 10.1359/jbmr.1997.12.2.221. PubMed DOI

Ravindranath H.H., Chen L.-S., Zeichner-David M., Ishima R., Ravindranath R.M.H. Interaction between the enamel matrix proteins amelogenin and ameloblastin. Biochem. Biophys. Res. Commun. 2004;323:1075–1083. doi: 10.1016/j.bbrc.2004.08.207. PubMed DOI

Deutsch D., Haze-Filderman A., Blumenfeld A., Dafni L., Leiser Y., Shay B., Gruenbaum-Cohen Y., Rosenfeld E., Fermon E., Zimmermann B. Amelogenin, a major structural protein in mineralizing enamel, is also expressed in soft tissues: Brain and cells of the hematopoietic system. Eur. J. Oral Sci. 2006;114:183–189. doi: 10.1111/j.1600-0722.2006.00301.x. PubMed DOI

Deutsch D., Leiser Y., Shay B., Fermon E., Taylor A., Rosenfeld E., Dafni L., Charuvi K., Cohen Y., Haze A. The human tuftelin gene and the expression of tuftelin in mineralizing and nonmineralizing tissues. Connect. Tissue Res. 2002;43:425–434. doi: 10.1080/03008200290001186. PubMed DOI

Hu J.C.-C., Hu Y., Lu Y., Smith C.E., Lertlam R., Wright J.T., Suggs C., McKee M.D., Beniash E., Kabir M.E. Enamelin is critical for ameloblast integrity and enamel ultrastructure formation. PloS ONE. 2014;9:e89303. doi: 10.1371/journal.pone.0089303. PubMed DOI PMC

Lu Y., Papagerakis P., Yamakoshi Y., Hu J., Bartlett J., Simmer J. Functions of KLK4 and MMP-20 in dental enamel formation. Biol. Chem. 2008;389:695–700. doi: 10.1515/BC.2008.080. PubMed DOI PMC

Ruff K.M., Roberts S., Chilkoti A., Pappu R.V. Advances in understanding stimulus-responsive phase behavior of intrinsically disordered protein polymers. J. Mol. Biol. 2018;430:4619–4635. doi: 10.1016/j.jmb.2018.06.031. PubMed DOI

Sharma R., Raduly Z., Miskei M., Fuxreiter M. Fuzzy complexes: Specific binding without complete folding. FEBS Lett. 2015;589:2533–2542. doi: 10.1016/j.febslet.2015.07.022. PubMed DOI

MacDougall M., Simmons D., Gu T.T., Forsman-Semb K., Kärrman Mårdh C., Mesbah M., Forest N., Krebsbach P.H., Yamada Y., Berdal A. Cloning, characterization and immunolocalization of human ameloblastin. Eur. J. Oral Sci. 2000;108:303–310. doi: 10.1034/j.1600-0722.2000.108004303.x. PubMed DOI

Vymětal J., Slabý I., Spahr A., Vondrášek J., Lyngstadaas S.P. Bioinformatic analysis and molecular modelling of human ameloblastin suggest a two-domain intrinsically unstructured calcium-binding protein. Eur. J. Oral Sci. 2008;116:124–134. doi: 10.1111/j.1600-0722.2008.00526.x. PubMed DOI

Kärrman Mårdh C., Bäckman B., Simmons D., Golovleva I., Gu T.T., Holmgren G., MacDougall M., Forsman-Semb K. Human ameloblastin gene: Genomic organization and mutation analysis in amelogenesis imperfecta patients. Eur. J. Oral Sci. 2001;109:8–13. doi: 10.1034/j.1600-0722.2001.00979.x. PubMed DOI

Putnam C. PROTEIN CALCULATOR v3.4. The Scripps Research Institute; La Jolla, CA, USA: 2013.

Simmer J.P., Fincham A.G. Molecular Mechanisms of Dental Enamel Formation. Crit. Rev. Oral Biol. Med. 1995;6:84–108. doi: 10.1177/10454411950060020701. PubMed DOI

Margolis H.C., Beniash E., Fowler C.E. Role of Macromolecular Assembly of Enamel Matrix Proteins in Enamel Formation. J. Dent. Res. 2006;85:775–793. doi: 10.1177/154405910608500902. PubMed DOI

Paine M.L., White S.N., Luo W., Fong H., Sarikaya M., Snead M.L. Regulated gene expression dictates enamel structure and tooth function. Matrix Biol. 2001;20:273–292. doi: 10.1016/S0945-053X(01)00153-6. PubMed DOI

Mazumder P., Prajapati S., Lokappa S.B., Gallon V., Moradian-Oldak J. Analysis of co-assembly and co-localization of ameloblastin and amelogenin. Front. Physiol. 2014;5:274. doi: 10.3389/fphys.2014.00274. PubMed DOI PMC

Hatakeyama J., Fukumoto S., Nakamura T., Haruyama N., Suzuki S., Hatakeyama Y., Shum L., Gibson C.W., Yamada Y., Kulkarni A.B. Synergistic Roles of Amelogenin and Ameloblastin. J. Dent. Res. 2009;88:318–322. doi: 10.1177/0022034509334749. PubMed DOI PMC

Su J., Kegulian N.C., Bapat R.A., Moradian-Oldak J. Ameloblastin Binds to Phospholipid Bilayers via a Helix-Forming Motif within the Sequence Encoded by Exon 5. ACS Omega. 2019;4:4405–4416. doi: 10.1021/acsomega.8b03582. PubMed DOI PMC

Wald T., Spoutil F., Osickova A., Prochazkova M., Benada O., Kasparek P., Bumba L., Klein O.D., Sedlacek R., Sebo P., et al. Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif. Proc. Natl. Acad. Sci. USA. 2017;114:E1641–E1650. doi: 10.1073/pnas.1615334114. PubMed DOI PMC

Su J., Chandrababu K.B., Moradian-Oldak J. Ameloblastin peptide encoded by exon 5 interacts with amelogenin N-terminus. Biochem. Biophys. Rep. 2016;7:26–32. doi: 10.1016/j.bbrep.2016.05.007. PubMed DOI PMC

Lu T., Li M., Xu X., Xiong J., Huang C., Zhang X., Hu A., Peng L., Cai D., Zhang L., et al. Whole exome sequencing identifies an AMBN missense mutation causing severe autosomal-dominant amelogenesis imperfecta and dentin disorders. Int. J. Oral Sci. 2018;10:26. doi: 10.1038/s41368-018-0027-9. PubMed DOI PMC

Delgado S., Davit-Béal T., Allizard F., Sire J.-Y. Tooth development in a scincid lizard, Chalcides viridanus (Squamata), with particular attention to enamel formation. Cell Tissue Res. 2005;319:71–89. doi: 10.1007/s00441-004-0950-2. PubMed DOI

Delgado S., Casane D., Bonnaud L., Laurin M., Sire J.-Y., Girondot M. Molecular Evidence for Precambrian Origin of Amelogenin, the Major Protein of Vertebrate Enamel. Mol. Biol. Evol. 2001;18:2146–2153. doi: 10.1093/oxfordjournals.molbev.a003760. PubMed DOI

Girondot M., Sire J.-Y. Evolution of the amelogenin gene in toothed and toothless vertebrates. Eur. J. Oral Sci. 1998;106:501–508. doi: 10.1111/j.1600-0722.1998.tb02213.x. PubMed DOI

Fernàndez-Busquets X., Körnig A., Bucior I., Burger M.M., Anselmetti D. Self-Recognition and Ca2+-Dependent Carbohydrate–Carbohydrate Cell Adhesion Provide Clues to the Cambrian Explosion. Mol. Biol. Evol. 2009;26:2551–2561. doi: 10.1093/molbev/msp170. PubMed DOI

Evans J.S. “Liquid-like” biomineralization protein assemblies: A key to the regulation of non-classical nucleation. CrystEngComm. 2013;15:8388–8394. doi: 10.1039/c3ce40803e. DOI

Kobayashi K., Yamakoshi Y., Hu J.C.-C., Gomi K., Arai T., Fukae M., Krebsbach P.H., Simmer J.P. Splicing Determines the Glycosylation State of Ameloblastin. J. Dent. Res. 2007;86:962–967. doi: 10.1177/154405910708601009. PubMed DOI

Yamakoshi Y., Richardson A.S., Nunez S.M., Yamakoshi F., Milkovich R.N., Hu J.C.C., Bartlett J.D., Simmer J.P. Enamel proteins and proteases in Mmp20 and Klk4 null and double-null mice. Eur. J. Oral Sci. 2011;119:206–216. doi: 10.1111/j.1600-0722.2011.00866.x. PubMed DOI PMC

Uversky V.N. Intrinsically disordered proteins and their environment: Effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Protein J. 2009;28:305–325. doi: 10.1007/s10930-009-9201-4. PubMed DOI

Oates M.E., Romero P., Ishida T., Ghalwash M., Mizianty M.J., Xue B., Dosztányi Z., Uversky V.N., Obradovic Z., Kurgan L., et al. D2P2: Database of disordered protein predictions. Nucleic Acids Res. 2012;41:D508–D516. doi: 10.1093/nar/gks1226. PubMed DOI PMC

Kjaergaard M., Nørholm A.-B., Hendus-Altenburger R., Pedersen S.F., Poulsen F.M., Kragelund B.B. Temperature-dependent structural changes in intrinsically disordered proteins: Formation of alpha-helices or loss of polyproline II? Protein Sci. 2010;19:1555–1564. doi: 10.1002/pro.435. PubMed DOI PMC

Erickson H.P. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biol. Proced. Online. 2009;11:32. doi: 10.1007/s12575-009-9008-x. PubMed DOI PMC

Heegaard N.H.H., Robey F.A. A capillary electrophoresis-based assay for the binding of Ca2+ and phosphorylcholine to human C-reactive protein. J. Immunol. Methods. 1993;166:103–110. doi: 10.1016/0022-1759(93)90333-3. PubMed DOI

Clapham D.E. Calcium Signaling. Cell. 2007;131:1047–1058. doi: 10.1016/j.cell.2007.11.028. PubMed DOI

Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 1996;21:14–17. doi: 10.1016/S0968-0004(06)80021-6. PubMed DOI

Sheng Z.-H., Rettig J., Cook T., Catterall W.A. Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature. 1996;379:451–454. doi: 10.1038/379451a0. PubMed DOI

Christopeit T., Gossas T., Danielson U.H. Characterization of Ca2+ and phosphocholine interactions with C-reactive protein using a surface plasmon resonance biosensor. Anal. Biochem. 2009;391:39–44. doi: 10.1016/j.ab.2009.04.037. PubMed DOI

Beyeler M., Schild C., Lutz R., Chiquet M., Trueb B. Identification of a fibronectin interaction site in the extracellular matrix protein ameloblastin. Exp. Cell Res. 2010;316:1202–1212. doi: 10.1016/j.yexcr.2009.12.019. PubMed DOI

Ravindranath R.M., Devarajan A., Uchida T. Spatiotemporal expression of ameloblastin isoforms during murine tooth development. J. Biol. Chem. 2007;282:36370–36376. doi: 10.1074/jbc.M704731200. PubMed DOI

Stakkestad Ø., Lyngstadaas S.P., Vondrasek J., Gordeladze J.O., Reseland J.E. Ameloblastin peptides modulates the osteogenic capacity of human mesenchymal stem cells. Front. Physiol. 2017;8:58. doi: 10.3389/fphys.2017.00058. PubMed DOI PMC

Chattopadhyay G., Varadarajan R. Facile measurement of protein stability and folding kinetics using a nano differential scanning fluorimeter. Protein Sci. 2019;28:1127–1134. doi: 10.1002/pro.3622. PubMed DOI PMC

Rozbeský D., Kavan D., Chmelík J., Novák P., Vaněk O., Bezouška K. High-level expression of soluble form of mouse natural killer cell receptor NKR-P1C (B6) in Escherichia coli. Protein Expr. Purif. 2011;77:178–184. doi: 10.1016/j.pep.2011.01.013. PubMed DOI

Hayes D., Laue T., Philo J. Program Sednterp: Sedimentation Interpretation Program. Alliance Protein Laboratories; Thousand Oaks, CA, USA: 1995.

Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC

Brautigam C.A. Methods in Enzymology. Volume 562. Elsevier; Amsterdam, The Netherlands: 2015. Calculations and publication-quality illustrations for analytical ultracentrifugation data; pp. 109–133. PubMed

Štěpánová S., Václav K. Capillary Electrophoretic Methods Applied to the Investigation of Peptide Complexes. J. Sep. Sci. 2015;38:2708–2721. doi: 10.1002/jssc.201500399. PubMed DOI

Hunter J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...