Characterization of AMBN I and II Isoforms and Study of Their Ca2+-Binding Properties
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO: 61388963
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
No. CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund; OP RDE; Project: "ChemBioDrug"
PubMed
33291486
PubMed Central
PMC7730623
DOI
10.3390/ijms21239293
PII: ijms21239293
Knihovny.cz E-zdroje
- Klíčová slova
- ameloblastin, biomineralization, calcium binding, intrinsically disordered protein (IDPs), oligomerization,
- MeSH
- biologické modely MeSH
- hydrodynamika MeSH
- lidé MeSH
- multimerizace proteinu MeSH
- protein - isoformy MeSH
- proteiny vázající vápník chemie metabolismus MeSH
- proteiny zubní skloviny chemie metabolismus MeSH
- spektrální analýza MeSH
- teplota MeSH
- vápník metabolismus MeSH
- vazba proteinů MeSH
- vnitřně neuspořádané proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AMBN protein, human MeSH Prohlížeč
- protein - isoformy MeSH
- proteiny vázající vápník MeSH
- proteiny zubní skloviny MeSH
- vápník MeSH
- vnitřně neuspořádané proteiny MeSH
Ameloblastin (Ambn) as an intrinsically disordered protein (IDP) stands for an important role in the formation of enamel-the hardest biomineralized tissue commonly formed in vertebrates. The human ameloblastin (AMBN) is expressed in two isoforms: full-length isoform I (AMBN ISO I) and isoform II (AMBN ISO II), which is about 15 amino acid residues shorter than AMBN ISO I. The significant feature of AMBN-its oligomerization ability-is enabled due to a specific sequence encoded by exon 5 present at the N-terminal part in both known isoforms. In this study, we characterized AMBN ISO I and AMBN ISO II by biochemical and biophysical methods to determine their common features and differences. We confirmed that both AMBN ISO I and AMBN ISO II form oligomers in in vitro conditions. Due to an important role of AMBN in biomineralization, we further addressed the calcium (Ca2+)-binding properties of AMBN ISO I and ISO II. The binding properties of AMBN to Ca2+ may explain the role of AMBN in biomineralization and more generally in Ca2+ homeostasis processes.
2nd Faculty of Medicine Charles University 5 Uvalu 84 150 06 Prague 5 Czech Republic
Department of Biomaterials Institute of Clinical Dentistry University of Oslo 0317 Oslo Norway
Zobrazit více v PubMed
Wald T., Bednarova L., Osicka R., Pachl P., Sulc M., Lyngstadaas S.P., Slaby I., Vondrasek J. Biophysical characterization of recombinant human ameloblastin. Eur. J. Oral Sci. 2011;119:261–269. doi: 10.1111/j.1600-0722.2011.00913.x. PubMed DOI
Wald T., Osickova A., Sulc M., Benada O., Semeradtova A., Rezabkova L., Veverka V., Bednarova L., Maly J., Macek P., et al. Intrinsically Disordered Enamel Matrix Protein Ameloblastin Forms Ribbon-like Supramolecular Structures via an N-terminal Segment Encoded by Exon 5. J. Biol. Chem. 2013;288:22333–22345. doi: 10.1074/jbc.M113.456012. PubMed DOI PMC
Stakkestad O., Lyngstadaas S.P., Thiede B., Vondrasek J., Skalhegg B.S., Reseland J.E. Phosphorylation Modulates Ameloblastin Self-assembly and Ca2+ Binding. Front. Physiol. 2017;8:10. doi: 10.3389/fphys.2017.00531. PubMed DOI PMC
Boskey A.L., Villarreal-Ramirez E. Intrinsically disordered proteins and biomineralization. Matrix Biol. 2016;52–54:43–59. doi: 10.1016/j.matbio.2016.01.007. PubMed DOI PMC
Kalmar L., Homola D., Varga G., Tompa P. Structural disorder in proteins brings order to crystal growth in biomineralization. Bone. 2012;51:528–534. doi: 10.1016/j.bone.2012.05.009. PubMed DOI
Grzybowska E.A. Calcium-Binding Proteins with Disordered Structure and Their Role in Secretion, Storage, and Cellular Signaling. Biomolecules. 2018;8:42. doi: 10.3390/biom8020042. PubMed DOI PMC
Paine M.L., Snead M.L. Protein Interactions During Assembly of the Enamel Organic Extracellular Matrix. J. Bone Min. Res. 1997;12:221–227. doi: 10.1359/jbmr.1997.12.2.221. PubMed DOI
Ravindranath H.H., Chen L.-S., Zeichner-David M., Ishima R., Ravindranath R.M.H. Interaction between the enamel matrix proteins amelogenin and ameloblastin. Biochem. Biophys. Res. Commun. 2004;323:1075–1083. doi: 10.1016/j.bbrc.2004.08.207. PubMed DOI
Deutsch D., Haze-Filderman A., Blumenfeld A., Dafni L., Leiser Y., Shay B., Gruenbaum-Cohen Y., Rosenfeld E., Fermon E., Zimmermann B. Amelogenin, a major structural protein in mineralizing enamel, is also expressed in soft tissues: Brain and cells of the hematopoietic system. Eur. J. Oral Sci. 2006;114:183–189. doi: 10.1111/j.1600-0722.2006.00301.x. PubMed DOI
Deutsch D., Leiser Y., Shay B., Fermon E., Taylor A., Rosenfeld E., Dafni L., Charuvi K., Cohen Y., Haze A. The human tuftelin gene and the expression of tuftelin in mineralizing and nonmineralizing tissues. Connect. Tissue Res. 2002;43:425–434. doi: 10.1080/03008200290001186. PubMed DOI
Hu J.C.-C., Hu Y., Lu Y., Smith C.E., Lertlam R., Wright J.T., Suggs C., McKee M.D., Beniash E., Kabir M.E. Enamelin is critical for ameloblast integrity and enamel ultrastructure formation. PloS ONE. 2014;9:e89303. doi: 10.1371/journal.pone.0089303. PubMed DOI PMC
Lu Y., Papagerakis P., Yamakoshi Y., Hu J., Bartlett J., Simmer J. Functions of KLK4 and MMP-20 in dental enamel formation. Biol. Chem. 2008;389:695–700. doi: 10.1515/BC.2008.080. PubMed DOI PMC
Ruff K.M., Roberts S., Chilkoti A., Pappu R.V. Advances in understanding stimulus-responsive phase behavior of intrinsically disordered protein polymers. J. Mol. Biol. 2018;430:4619–4635. doi: 10.1016/j.jmb.2018.06.031. PubMed DOI
Sharma R., Raduly Z., Miskei M., Fuxreiter M. Fuzzy complexes: Specific binding without complete folding. FEBS Lett. 2015;589:2533–2542. doi: 10.1016/j.febslet.2015.07.022. PubMed DOI
MacDougall M., Simmons D., Gu T.T., Forsman-Semb K., Kärrman Mårdh C., Mesbah M., Forest N., Krebsbach P.H., Yamada Y., Berdal A. Cloning, characterization and immunolocalization of human ameloblastin. Eur. J. Oral Sci. 2000;108:303–310. doi: 10.1034/j.1600-0722.2000.108004303.x. PubMed DOI
Vymětal J., Slabý I., Spahr A., Vondrášek J., Lyngstadaas S.P. Bioinformatic analysis and molecular modelling of human ameloblastin suggest a two-domain intrinsically unstructured calcium-binding protein. Eur. J. Oral Sci. 2008;116:124–134. doi: 10.1111/j.1600-0722.2008.00526.x. PubMed DOI
Kärrman Mårdh C., Bäckman B., Simmons D., Golovleva I., Gu T.T., Holmgren G., MacDougall M., Forsman-Semb K. Human ameloblastin gene: Genomic organization and mutation analysis in amelogenesis imperfecta patients. Eur. J. Oral Sci. 2001;109:8–13. doi: 10.1034/j.1600-0722.2001.00979.x. PubMed DOI
Putnam C. PROTEIN CALCULATOR v3.4. The Scripps Research Institute; La Jolla, CA, USA: 2013.
Simmer J.P., Fincham A.G. Molecular Mechanisms of Dental Enamel Formation. Crit. Rev. Oral Biol. Med. 1995;6:84–108. doi: 10.1177/10454411950060020701. PubMed DOI
Margolis H.C., Beniash E., Fowler C.E. Role of Macromolecular Assembly of Enamel Matrix Proteins in Enamel Formation. J. Dent. Res. 2006;85:775–793. doi: 10.1177/154405910608500902. PubMed DOI
Paine M.L., White S.N., Luo W., Fong H., Sarikaya M., Snead M.L. Regulated gene expression dictates enamel structure and tooth function. Matrix Biol. 2001;20:273–292. doi: 10.1016/S0945-053X(01)00153-6. PubMed DOI
Mazumder P., Prajapati S., Lokappa S.B., Gallon V., Moradian-Oldak J. Analysis of co-assembly and co-localization of ameloblastin and amelogenin. Front. Physiol. 2014;5:274. doi: 10.3389/fphys.2014.00274. PubMed DOI PMC
Hatakeyama J., Fukumoto S., Nakamura T., Haruyama N., Suzuki S., Hatakeyama Y., Shum L., Gibson C.W., Yamada Y., Kulkarni A.B. Synergistic Roles of Amelogenin and Ameloblastin. J. Dent. Res. 2009;88:318–322. doi: 10.1177/0022034509334749. PubMed DOI PMC
Su J., Kegulian N.C., Bapat R.A., Moradian-Oldak J. Ameloblastin Binds to Phospholipid Bilayers via a Helix-Forming Motif within the Sequence Encoded by Exon 5. ACS Omega. 2019;4:4405–4416. doi: 10.1021/acsomega.8b03582. PubMed DOI PMC
Wald T., Spoutil F., Osickova A., Prochazkova M., Benada O., Kasparek P., Bumba L., Klein O.D., Sedlacek R., Sebo P., et al. Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif. Proc. Natl. Acad. Sci. USA. 2017;114:E1641–E1650. doi: 10.1073/pnas.1615334114. PubMed DOI PMC
Su J., Chandrababu K.B., Moradian-Oldak J. Ameloblastin peptide encoded by exon 5 interacts with amelogenin N-terminus. Biochem. Biophys. Rep. 2016;7:26–32. doi: 10.1016/j.bbrep.2016.05.007. PubMed DOI PMC
Lu T., Li M., Xu X., Xiong J., Huang C., Zhang X., Hu A., Peng L., Cai D., Zhang L., et al. Whole exome sequencing identifies an AMBN missense mutation causing severe autosomal-dominant amelogenesis imperfecta and dentin disorders. Int. J. Oral Sci. 2018;10:26. doi: 10.1038/s41368-018-0027-9. PubMed DOI PMC
Delgado S., Davit-Béal T., Allizard F., Sire J.-Y. Tooth development in a scincid lizard, Chalcides viridanus (Squamata), with particular attention to enamel formation. Cell Tissue Res. 2005;319:71–89. doi: 10.1007/s00441-004-0950-2. PubMed DOI
Delgado S., Casane D., Bonnaud L., Laurin M., Sire J.-Y., Girondot M. Molecular Evidence for Precambrian Origin of Amelogenin, the Major Protein of Vertebrate Enamel. Mol. Biol. Evol. 2001;18:2146–2153. doi: 10.1093/oxfordjournals.molbev.a003760. PubMed DOI
Girondot M., Sire J.-Y. Evolution of the amelogenin gene in toothed and toothless vertebrates. Eur. J. Oral Sci. 1998;106:501–508. doi: 10.1111/j.1600-0722.1998.tb02213.x. PubMed DOI
Fernàndez-Busquets X., Körnig A., Bucior I., Burger M.M., Anselmetti D. Self-Recognition and Ca2+-Dependent Carbohydrate–Carbohydrate Cell Adhesion Provide Clues to the Cambrian Explosion. Mol. Biol. Evol. 2009;26:2551–2561. doi: 10.1093/molbev/msp170. PubMed DOI
Evans J.S. “Liquid-like” biomineralization protein assemblies: A key to the regulation of non-classical nucleation. CrystEngComm. 2013;15:8388–8394. doi: 10.1039/c3ce40803e. DOI
Kobayashi K., Yamakoshi Y., Hu J.C.-C., Gomi K., Arai T., Fukae M., Krebsbach P.H., Simmer J.P. Splicing Determines the Glycosylation State of Ameloblastin. J. Dent. Res. 2007;86:962–967. doi: 10.1177/154405910708601009. PubMed DOI
Yamakoshi Y., Richardson A.S., Nunez S.M., Yamakoshi F., Milkovich R.N., Hu J.C.C., Bartlett J.D., Simmer J.P. Enamel proteins and proteases in Mmp20 and Klk4 null and double-null mice. Eur. J. Oral Sci. 2011;119:206–216. doi: 10.1111/j.1600-0722.2011.00866.x. PubMed DOI PMC
Uversky V.N. Intrinsically disordered proteins and their environment: Effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Protein J. 2009;28:305–325. doi: 10.1007/s10930-009-9201-4. PubMed DOI
Oates M.E., Romero P., Ishida T., Ghalwash M., Mizianty M.J., Xue B., Dosztányi Z., Uversky V.N., Obradovic Z., Kurgan L., et al. D2P2: Database of disordered protein predictions. Nucleic Acids Res. 2012;41:D508–D516. doi: 10.1093/nar/gks1226. PubMed DOI PMC
Kjaergaard M., Nørholm A.-B., Hendus-Altenburger R., Pedersen S.F., Poulsen F.M., Kragelund B.B. Temperature-dependent structural changes in intrinsically disordered proteins: Formation of alpha-helices or loss of polyproline II? Protein Sci. 2010;19:1555–1564. doi: 10.1002/pro.435. PubMed DOI PMC
Erickson H.P. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biol. Proced. Online. 2009;11:32. doi: 10.1007/s12575-009-9008-x. PubMed DOI PMC
Heegaard N.H.H., Robey F.A. A capillary electrophoresis-based assay for the binding of Ca2+ and phosphorylcholine to human C-reactive protein. J. Immunol. Methods. 1993;166:103–110. doi: 10.1016/0022-1759(93)90333-3. PubMed DOI
Clapham D.E. Calcium Signaling. Cell. 2007;131:1047–1058. doi: 10.1016/j.cell.2007.11.028. PubMed DOI
Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 1996;21:14–17. doi: 10.1016/S0968-0004(06)80021-6. PubMed DOI
Sheng Z.-H., Rettig J., Cook T., Catterall W.A. Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature. 1996;379:451–454. doi: 10.1038/379451a0. PubMed DOI
Christopeit T., Gossas T., Danielson U.H. Characterization of Ca2+ and phosphocholine interactions with C-reactive protein using a surface plasmon resonance biosensor. Anal. Biochem. 2009;391:39–44. doi: 10.1016/j.ab.2009.04.037. PubMed DOI
Beyeler M., Schild C., Lutz R., Chiquet M., Trueb B. Identification of a fibronectin interaction site in the extracellular matrix protein ameloblastin. Exp. Cell Res. 2010;316:1202–1212. doi: 10.1016/j.yexcr.2009.12.019. PubMed DOI
Ravindranath R.M., Devarajan A., Uchida T. Spatiotemporal expression of ameloblastin isoforms during murine tooth development. J. Biol. Chem. 2007;282:36370–36376. doi: 10.1074/jbc.M704731200. PubMed DOI
Stakkestad Ø., Lyngstadaas S.P., Vondrasek J., Gordeladze J.O., Reseland J.E. Ameloblastin peptides modulates the osteogenic capacity of human mesenchymal stem cells. Front. Physiol. 2017;8:58. doi: 10.3389/fphys.2017.00058. PubMed DOI PMC
Chattopadhyay G., Varadarajan R. Facile measurement of protein stability and folding kinetics using a nano differential scanning fluorimeter. Protein Sci. 2019;28:1127–1134. doi: 10.1002/pro.3622. PubMed DOI PMC
Rozbeský D., Kavan D., Chmelík J., Novák P., Vaněk O., Bezouška K. High-level expression of soluble form of mouse natural killer cell receptor NKR-P1C (B6) in Escherichia coli. Protein Expr. Purif. 2011;77:178–184. doi: 10.1016/j.pep.2011.01.013. PubMed DOI
Hayes D., Laue T., Philo J. Program Sednterp: Sedimentation Interpretation Program. Alliance Protein Laboratories; Thousand Oaks, CA, USA: 1995.
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Brautigam C.A. Methods in Enzymology. Volume 562. Elsevier; Amsterdam, The Netherlands: 2015. Calculations and publication-quality illustrations for analytical ultracentrifugation data; pp. 109–133. PubMed
Štěpánová S., Václav K. Capillary Electrophoretic Methods Applied to the Investigation of Peptide Complexes. J. Sep. Sci. 2015;38:2708–2721. doi: 10.1002/jssc.201500399. PubMed DOI
Hunter J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI