Proteolytic profiles of two isoforms of human AMBN expressed in E. coli by MMP-20 and KLK-4 proteases
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
    PubMed
          
           38298721
           
          
          
    PubMed Central
          
           PMC10828707
           
          
          
    DOI
          
           10.1016/j.heliyon.2024.e24564
           
          
          
      PII:  S2405-8440(24)00595-4
  
    Knihovny.cz E-resources
    
  
              
      
- Keywords
- Ameloblastin, Enzymatic cleavage products, KLK-4, MMP-20, Proteolytic analysis,
- Publication type
- Journal Article MeSH
Ameloblastin is a protein in biomineralization of tooth enamel. However recent results indicate that this is probably not its only role in an organism. Enamel matrix formation represents a complex process enabled via specific crosslinking of two proteins - the most abundant amelogenin and the ameloblastin (AMBN). The human AMBN (hAMBN) gene possesses 13 protein coding exons with alternatively spliced transcripts and the longest isoform about 447 amino acid residues. It has been described that AMBN molecules in vitro assemble into oligomers via a sequence encoded by exon 5. Enamel is formed by the processing of enamel proteins by two specific proteases - enamelysin (MMP-20) and kallikrein 4 (KLK-4). The scaffold made of AMEL and non-amelogenin proteins is cleaved and removed from the developed tooth enamel. The hAMBN is expressed in two isoforms (ISO I and II), which could lead to their different utilization determined by distinct proteolytic profiles. In this study, we compared proteolytic profiles of both isoforms of hAMBN expressed in E. coli after proteolysis by MMP-20, KLK-4, and their 1:2 mixture. Proteolysis products were analysed and cleavage sites were identified by mass spectrometry. The proteolytic profiles of two AMBN isoforms showed different results, although we have to determine that the analysed AMBN was not post-translationally modified as expressed in prokaryotic cells. These results may lead to the suggestion of potentially divergent roles of AMBN isoforms cleavage products in various cell signalling pathways such as calcium buffering or signalling cascades.
See more in PubMed
Gil-Bona A., Bidlack F.B. Tooth enamel and its dynamic protein matrix. Int. J. Mol. Sci. 2020;21(12):4458. PubMed PMC
Lacruz R.S., Habelitz S., Wright J.T., Paine M.L. Dental enamel formation and implications for oral health and disease. Physiol. Rev. 2017;97(3):939–993. PubMed PMC
Heller D., Helmerhorst E.J., Oppenheim F.G. Saliva and serum protein exchange at the tooth enamel surface. J. Dent. Res. 2017;96(4):437–443. PubMed PMC
Margolis H., Beniash E., Fowler C. Role of macromolecular assembly of enamel matrix proteins in enamel formation. J. Dent. Res. 2006;85(9):775–793. PubMed
Zeichner-David M. Is there more to enamel matrix proteins than biomineralization? Matrix Biol. 2001;20(5–6):307–316. PubMed
Thompson V.P., Silva N.R.F.A. In: 1 - Structure and properties of enamel and dentin. Vallittu P., editor. Woodhead Publishing; 2013. pp. 3–19. (Non-Metallic Biomaterials for Tooth Repair and Replacement).
Sire J.-Y., Delgado S., Fromentin D., Girondot M. Amelogenin: lessons from evolution. Arch. Oral Biol. 2005;50(2):205–212. PubMed
Wald T., Spoutil F., Osickova A., Prochazkova M., Benada O., Kasparek P., Bumba L., Klein O.D., Sedlacek R., Sebo P., Prochazka J., Osicka R. Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif. Proc. Natl. Acad. Sci. USA. 2017;114(9):E1641–E1650. PubMed PMC
Vetyskova V., Zouharova M., Bednarova L., Vaněk O., Sázelová P., Kašička V., Vymetal J., Srp J., Rumlová M., Charnavets T., Postulkova K., Reseland J.E., Bousova K., Vondrasek J. Characterization of AMBN I and II isoforms and study of their Ca2+-binding properties. Int. J. Mol. Sci. 2020;21(23):9293. PubMed PMC
Stakkestad O., Lyngstadaas S.P., Thiede B., Vondrasek J., Skalhegg B.S., Reseland J.E. Phosphorylation modulates ameloblastin self-assembly and Ca2+ binding. Front. Physiol. 2017;8:10. PubMed PMC
Lu T., Li M., Xu X., Xiong J., Huang C., Zhang X., Hu A., Peng L., Cai D., Zhang L. Whole exome sequencing identifies an AMBN missense mutation causing severe autosomal-dominant amelogenesis imperfecta and dentin disorders. Int. J. Oral Sci. 2018;10(3):1–9. PubMed PMC
Wazen R.M., Moffatt P., Zalzal S.F., Yamada Y., Nanci A. A mouse model expressing a truncated form of ameloblastin exhibits dental and junctional epithelium defects. Matrix Biol. 2009;28(5):292–303. PubMed PMC
Geng T., Heyward C.A., Chen X., Zheng M., Yang Y., Reseland J.E. Comprehensive analysis identifies ameloblastin-related competitive endogenous RNA as a prognostic biomarker for testicular germ cell tumour. Cancers. 2022;14(8):1870. PubMed PMC
Ozdemir D., Hart P., Ryu O., Choi S., Ozdemir-Karatas M., Firatli E., Piesco N., Hart T. MMP20 active-site mutation in hypomaturation amelogenesis imperfecta. J. Dent. Res. 2005;84(11):1031–1035. PubMed PMC
Sabandal M.M.I., Schäfer E. Amelogenesis imperfecta: review of diagnostic findings and treatment concepts. Odontology. 2016;104(3):245–256. PubMed
Simancas-Escorcia V., Natera A., Acosta-de-Camargo M.G. Genes involved in amelogenesis imperfecta. Part I. Rev. Fac. Odontol. Univ. Antioquia. 2018;30(1):105–120.
Poulter J.A., Murillo G., Brookes S.J., Smith C.E.L., Parry D.A., Silva S., Kirkham J., Inglehearn C.F., Mighell A.J. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta. Hum. Mol. Genet. 2014;23(20):5317–5324. PubMed PMC
Wald T., Osickova A., Sulc M., Benada O., Semeradtova A., Rezabkova L., Veverka V., Bednarova L., Maly J., Macek P. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5. J. Biol. Chem. 2013;288(31):22333–22345. PubMed PMC
Wald T., Bednarova L., Osicka R., Pachl P., Sulc M., Lyngstadaas S.P., Slaby I., Vondrasek J. Biophysical characterization of recombinant human ameloblastin. Eur. J. Oral Sci. 2011;119:261–269. PubMed
MacDougall M., Simmons D., Gu T.T., Forsman-Semb K., Kärrman Mårdh C., Mesbah M., Forest N., Krebsbach P.H., Yamada Y., Berdal A. Cloning, characterization and immunolocalization of human ameloblastin. Eur. J. Oral Sci. 2000;108(4):303–310. PubMed
Wald T., Bednarova L., Osicka R., Pachl P., Sulc M., Lyngstadaas S.P., Slaby I., Vondrasek J. Biophysical characterization of recombinant human ameloblastin. Eur. J. Oral Sci. 2011;119(Suppl 1):261–269. PubMed
Stelzer G., Rosen N., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Stein T.I., Nudel R., Lieder I., Mazor Y. The GeneCards suite: from gene data mining to disease genome sequence analyses. Current protocols in bioinformatics. 2016;54(1):1. 30. 1-1.30. 33. PubMed
Su J., Bapat R.A., Moradian-Oldak J. The expression and purification of recombinant mouse ameloblastin in E. coli. Methods Mol. Biol. (Clifton, NJ) 2019;1922:229. PubMed PMC
Bapat R.A., Su J., Moradian-Oldak J. Co-immunoprecipitation reveals interactions between amelogenin and ameloblastin via their self-assembly domains. Front. Physiol. 2020:1721. PubMed PMC
Shao C., Bapat R.A., Su J., Moradian-Oldak J. ACS Biomaterials Science & Engineering; 2022. Regulation of Hydroxyapatite Nucleation in Vitro through Ameloblastin–Amelogenin Interactions. PubMed PMC
Vetyskova V., Zouharova M., Bousova K. Production of recombinant human ameloblastin by a fully native purification pathway. Protein Expr. Purif. 2022;198 PubMed
Kobayashi N., Arai R. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks. Curr. Opin. Biotechnol. 2017;46:57–65. PubMed
Zouharova M., Vymetal J., Bednarova L., Vanek O., Herman P., Vetyskova V., Postulkova K., Lingstaadas P.S., Vondrasek J., Bousova K. Intrinsically disordered protein domain of human ameloblastin in synthetic fusion with calmodulin increases calmodulin stability and modulates its function. Int. J. Biol. Macromol. 2021;168:1–12. PubMed
Chun Y., Yamakoshi Y., Yamakoshi F., Fukae M., Hu J., Bartlett J., Simmer J. Cleavage site specificity of MMP-20 for secretory-stage ameloblastin. 2010;89(8):785–790. PubMed PMC
Yamakoshi Y., Hu J.C.C., Fukae M., Yamakoshi F., Simmer J.P. How do enamelysin and kallikrein 4 process the 32‐kDa enamelin? Eur. J. Oral Sci. 2006;114:45–51. PubMed
Shahid S., Bartlett J.D. In: Proteinases in enamel development. Goldberg M., Den Besten P., editors. Springer International Publishing; Cham: 2021. pp. 261–270. (Extracellular Matrix Biomineralization of Dental Tissue Structures).
Yamakoshi Y., Simmer J.P., Bartlett J.D., Karakida T., Oida S. MMP20 and KLK4 activation and inactivation interactions in vitro. Arch. Oral Biol. 2013;58(11):1569–1577. PubMed PMC
Koli K., Saxena G., Ogbureke K.U. Expression of matrix metalloproteinase (MMP)-20 and potential interaction with dentin sialophosphoprotein (DSPP) in human major salivary glands. J. Histochem. Cytochem. 2015;63(7):524–533. PubMed
Ryu O., Hu J.C.C., Yamakoshi Y., Villemain J.L., Cao X., Zhang C., Bartlett J.D., Simmer J.P. Porcine kallikrein‐4 activation, glycosylation, activity, and expression in prokaryotic and eukaryotic hosts. Eur. J. Oral Sci. 2002;110(5):358–365. PubMed
Simmer J.P., Hu J.C.C. Expression, structure, and function of enamel proteinases. Connect. Tissue Res. 2002;43(2–3):441–449. PubMed
Yamakoshi Y., Tanabe T., Fukae M., Shimizu M. Porcine amelogenins. Calcif. Tissue Int. 1994;54(1):69–75. PubMed
Lu Y., Papagerakis P., Yamakoshi Y., Hu J., Bartlett J., Simmer J. Functions of KLK4 and MMP-20 in dental enamel formation. Biol. Chem. 2008;389:695–700. PubMed PMC
Simmer J.P., Richardson A.S., Smith C.E., Hu Y., Hu J.C.C. Expression of kallikrein‐related peptidase 4 in dental and non‐dental tissues. Eur. J. Oral Sci. 2011;119:226–233. PubMed PMC
Nagano T., Kakegawa A., Yamakoshi Y., Tsuchiya S., Hu J.C.-C., Gomi K., Arai T., Bartlett J.D., Simmer J.P. Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. J. Dent. Res. 2009;88(9):823–828. PubMed PMC
Yamakoshi Y., Richardson A.S., Nunez S.M., Yamakoshi F., Milkovich R.N., Hu J.C.C., Bartlett J.D., Simmer J.P. Enamel proteins and proteases in Mmp20 and Klk4 null and double‐null mice. Eur. J. Oral Sci. 2011;119:206–216. PubMed PMC
Del Nery E., Chagas J.R., Juliano M.A., Juliano L., Prado E.S. Comparison of human and porcine tissue kallikrein substrate specificities. Immunopharmacology. 1999;45(1):151–157. PubMed
Blommel P.G., Fox B.G. A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr. Purif. 2007;55(1):53–68. PubMed PMC
Ma B., Zhang K., Hendrie C., Liang C., Li M., Doherty‐Kirby A., Lajoie G. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003;17(20):2337–2342. PubMed
Lacruz R.S. Enamel: molecular identity of its transepithelial ion transport system. Cell Calcium. 2017;65:1–7. PubMed PMC
Spoutil F., Aranaz-Novaliches G., Prochazkova M., Wald T., Novosadova V., Kasparek P., Osicka R., Reseland J.E., Lyngstadaas S.P., Tiainen H., Bousova K., Vondrasek J., Sedlacek R., Prochazka J. Early evolution of enamel matrix proteins is reflected by pleiotropy of physiological functions. Sci. Rep.-Uk. 2023;13(1):1471. PubMed PMC
Abraham R.T. PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair. 2004;3(8):883–887. PubMed
Wald T., Osickova A., Sulc M., Benada O., Semeradtova A., Rezabkova L., Veverka V., Bednarova L., Maly J., Macek P., Sebo P., Slaby I., Vondrasek J., Osicka R. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5. J. Biol. Chem. 2013;288(31):22333–22345. PubMed PMC
Lu Y., Papagerakis P., Yamakoshi Y., Hu J.C.-C., Bartlett J.D., Simmer J.P. 2008. Functions of KLK4 and MMP-20 in Dental Enamel Formation. PubMed PMC
Sayers E.W., Bolton E.E., Brister J.R., Canese K., Chan J., Comeau D.C., Connor R., Funk K., Kelly C., Kim S., Madej T., Marchler-Bauer A., Lanczycki C., Lathrop S., Lu Z., Thibaud-Nissen F., Murphy T., Phan L., Skripchenko Y., Tse T., Wang J., Williams R., Trawick B.W., Pruitt K.D., Sherry S.T. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022;50(D1):D20–d26. PubMed PMC
