• This record comes from PubMed

Proteolytic profiles of two isoforms of human AMBN expressed in E. coli by MMP-20 and KLK-4 proteases

. 2024 Jan 30 ; 10 (2) : e24564. [epub] 20240117

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Links

PubMed 38298721
PubMed Central PMC10828707
DOI 10.1016/j.heliyon.2024.e24564
PII: S2405-8440(24)00595-4
Knihovny.cz E-resources

Ameloblastin is a protein in biomineralization of tooth enamel. However recent results indicate that this is probably not its only role in an organism. Enamel matrix formation represents a complex process enabled via specific crosslinking of two proteins - the most abundant amelogenin and the ameloblastin (AMBN). The human AMBN (hAMBN) gene possesses 13 protein coding exons with alternatively spliced transcripts and the longest isoform about 447 amino acid residues. It has been described that AMBN molecules in vitro assemble into oligomers via a sequence encoded by exon 5. Enamel is formed by the processing of enamel proteins by two specific proteases - enamelysin (MMP-20) and kallikrein 4 (KLK-4). The scaffold made of AMEL and non-amelogenin proteins is cleaved and removed from the developed tooth enamel. The hAMBN is expressed in two isoforms (ISO I and II), which could lead to their different utilization determined by distinct proteolytic profiles. In this study, we compared proteolytic profiles of both isoforms of hAMBN expressed in E. coli after proteolysis by MMP-20, KLK-4, and their 1:2 mixture. Proteolysis products were analysed and cleavage sites were identified by mass spectrometry. The proteolytic profiles of two AMBN isoforms showed different results, although we have to determine that the analysed AMBN was not post-translationally modified as expressed in prokaryotic cells. These results may lead to the suggestion of potentially divergent roles of AMBN isoforms cleavage products in various cell signalling pathways such as calcium buffering or signalling cascades.

See more in PubMed

Gil-Bona A., Bidlack F.B. Tooth enamel and its dynamic protein matrix. Int. J. Mol. Sci. 2020;21(12):4458. PubMed PMC

Lacruz R.S., Habelitz S., Wright J.T., Paine M.L. Dental enamel formation and implications for oral health and disease. Physiol. Rev. 2017;97(3):939–993. PubMed PMC

Heller D., Helmerhorst E.J., Oppenheim F.G. Saliva and serum protein exchange at the tooth enamel surface. J. Dent. Res. 2017;96(4):437–443. PubMed PMC

Margolis H., Beniash E., Fowler C. Role of macromolecular assembly of enamel matrix proteins in enamel formation. J. Dent. Res. 2006;85(9):775–793. PubMed

Zeichner-David M. Is there more to enamel matrix proteins than biomineralization? Matrix Biol. 2001;20(5–6):307–316. PubMed

Thompson V.P., Silva N.R.F.A. In: 1 - Structure and properties of enamel and dentin. Vallittu P., editor. Woodhead Publishing; 2013. pp. 3–19. (Non-Metallic Biomaterials for Tooth Repair and Replacement).

Sire J.-Y., Delgado S., Fromentin D., Girondot M. Amelogenin: lessons from evolution. Arch. Oral Biol. 2005;50(2):205–212. PubMed

Wald T., Spoutil F., Osickova A., Prochazkova M., Benada O., Kasparek P., Bumba L., Klein O.D., Sedlacek R., Sebo P., Prochazka J., Osicka R. Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif. Proc. Natl. Acad. Sci. USA. 2017;114(9):E1641–E1650. PubMed PMC

Vetyskova V., Zouharova M., Bednarova L., Vaněk O., Sázelová P., Kašička V., Vymetal J., Srp J., Rumlová M., Charnavets T., Postulkova K., Reseland J.E., Bousova K., Vondrasek J. Characterization of AMBN I and II isoforms and study of their Ca2+-binding properties. Int. J. Mol. Sci. 2020;21(23):9293. PubMed PMC

Stakkestad O., Lyngstadaas S.P., Thiede B., Vondrasek J., Skalhegg B.S., Reseland J.E. Phosphorylation modulates ameloblastin self-assembly and Ca2+ binding. Front. Physiol. 2017;8:10. PubMed PMC

Lu T., Li M., Xu X., Xiong J., Huang C., Zhang X., Hu A., Peng L., Cai D., Zhang L. Whole exome sequencing identifies an AMBN missense mutation causing severe autosomal-dominant amelogenesis imperfecta and dentin disorders. Int. J. Oral Sci. 2018;10(3):1–9. PubMed PMC

Wazen R.M., Moffatt P., Zalzal S.F., Yamada Y., Nanci A. A mouse model expressing a truncated form of ameloblastin exhibits dental and junctional epithelium defects. Matrix Biol. 2009;28(5):292–303. PubMed PMC

Geng T., Heyward C.A., Chen X., Zheng M., Yang Y., Reseland J.E. Comprehensive analysis identifies ameloblastin-related competitive endogenous RNA as a prognostic biomarker for testicular germ cell tumour. Cancers. 2022;14(8):1870. PubMed PMC

Ozdemir D., Hart P., Ryu O., Choi S., Ozdemir-Karatas M., Firatli E., Piesco N., Hart T. MMP20 active-site mutation in hypomaturation amelogenesis imperfecta. J. Dent. Res. 2005;84(11):1031–1035. PubMed PMC

Sabandal M.M.I., Schäfer E. Amelogenesis imperfecta: review of diagnostic findings and treatment concepts. Odontology. 2016;104(3):245–256. PubMed

Simancas-Escorcia V., Natera A., Acosta-de-Camargo M.G. Genes involved in amelogenesis imperfecta. Part I. Rev. Fac. Odontol. Univ. Antioquia. 2018;30(1):105–120.

Poulter J.A., Murillo G., Brookes S.J., Smith C.E.L., Parry D.A., Silva S., Kirkham J., Inglehearn C.F., Mighell A.J. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta. Hum. Mol. Genet. 2014;23(20):5317–5324. PubMed PMC

Wald T., Osickova A., Sulc M., Benada O., Semeradtova A., Rezabkova L., Veverka V., Bednarova L., Maly J., Macek P. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5. J. Biol. Chem. 2013;288(31):22333–22345. PubMed PMC

Wald T., Bednarova L., Osicka R., Pachl P., Sulc M., Lyngstadaas S.P., Slaby I., Vondrasek J. Biophysical characterization of recombinant human ameloblastin. Eur. J. Oral Sci. 2011;119:261–269. PubMed

MacDougall M., Simmons D., Gu T.T., Forsman-Semb K., Kärrman Mårdh C., Mesbah M., Forest N., Krebsbach P.H., Yamada Y., Berdal A. Cloning, characterization and immunolocalization of human ameloblastin. Eur. J. Oral Sci. 2000;108(4):303–310. PubMed

Wald T., Bednarova L., Osicka R., Pachl P., Sulc M., Lyngstadaas S.P., Slaby I., Vondrasek J. Biophysical characterization of recombinant human ameloblastin. Eur. J. Oral Sci. 2011;119(Suppl 1):261–269. PubMed

Stelzer G., Rosen N., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Stein T.I., Nudel R., Lieder I., Mazor Y. The GeneCards suite: from gene data mining to disease genome sequence analyses. Current protocols in bioinformatics. 2016;54(1):1. 30. 1-1.30. 33. PubMed

Su J., Bapat R.A., Moradian-Oldak J. The expression and purification of recombinant mouse ameloblastin in E. coli. Methods Mol. Biol. (Clifton, NJ) 2019;1922:229. PubMed PMC

Bapat R.A., Su J., Moradian-Oldak J. Co-immunoprecipitation reveals interactions between amelogenin and ameloblastin via their self-assembly domains. Front. Physiol. 2020:1721. PubMed PMC

Shao C., Bapat R.A., Su J., Moradian-Oldak J. ACS Biomaterials Science & Engineering; 2022. Regulation of Hydroxyapatite Nucleation in Vitro through Ameloblastin–Amelogenin Interactions. PubMed PMC

Vetyskova V., Zouharova M., Bousova K. Production of recombinant human ameloblastin by a fully native purification pathway. Protein Expr. Purif. 2022;198 PubMed

Kobayashi N., Arai R. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks. Curr. Opin. Biotechnol. 2017;46:57–65. PubMed

Zouharova M., Vymetal J., Bednarova L., Vanek O., Herman P., Vetyskova V., Postulkova K., Lingstaadas P.S., Vondrasek J., Bousova K. Intrinsically disordered protein domain of human ameloblastin in synthetic fusion with calmodulin increases calmodulin stability and modulates its function. Int. J. Biol. Macromol. 2021;168:1–12. PubMed

Chun Y., Yamakoshi Y., Yamakoshi F., Fukae M., Hu J., Bartlett J., Simmer J. Cleavage site specificity of MMP-20 for secretory-stage ameloblastin. 2010;89(8):785–790. PubMed PMC

Yamakoshi Y., Hu J.C.C., Fukae M., Yamakoshi F., Simmer J.P. How do enamelysin and kallikrein 4 process the 32‐kDa enamelin? Eur. J. Oral Sci. 2006;114:45–51. PubMed

Shahid S., Bartlett J.D. In: Proteinases in enamel development. Goldberg M., Den Besten P., editors. Springer International Publishing; Cham: 2021. pp. 261–270. (Extracellular Matrix Biomineralization of Dental Tissue Structures).

Yamakoshi Y., Simmer J.P., Bartlett J.D., Karakida T., Oida S. MMP20 and KLK4 activation and inactivation interactions in vitro. Arch. Oral Biol. 2013;58(11):1569–1577. PubMed PMC

Koli K., Saxena G., Ogbureke K.U. Expression of matrix metalloproteinase (MMP)-20 and potential interaction with dentin sialophosphoprotein (DSPP) in human major salivary glands. J. Histochem. Cytochem. 2015;63(7):524–533. PubMed

Ryu O., Hu J.C.C., Yamakoshi Y., Villemain J.L., Cao X., Zhang C., Bartlett J.D., Simmer J.P. Porcine kallikrein‐4 activation, glycosylation, activity, and expression in prokaryotic and eukaryotic hosts. Eur. J. Oral Sci. 2002;110(5):358–365. PubMed

Simmer J.P., Hu J.C.C. Expression, structure, and function of enamel proteinases. Connect. Tissue Res. 2002;43(2–3):441–449. PubMed

Yamakoshi Y., Tanabe T., Fukae M., Shimizu M. Porcine amelogenins. Calcif. Tissue Int. 1994;54(1):69–75. PubMed

Lu Y., Papagerakis P., Yamakoshi Y., Hu J., Bartlett J., Simmer J. Functions of KLK4 and MMP-20 in dental enamel formation. Biol. Chem. 2008;389:695–700. PubMed PMC

Simmer J.P., Richardson A.S., Smith C.E., Hu Y., Hu J.C.C. Expression of kallikrein‐related peptidase 4 in dental and non‐dental tissues. Eur. J. Oral Sci. 2011;119:226–233. PubMed PMC

Nagano T., Kakegawa A., Yamakoshi Y., Tsuchiya S., Hu J.C.-C., Gomi K., Arai T., Bartlett J.D., Simmer J.P. Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. J. Dent. Res. 2009;88(9):823–828. PubMed PMC

Yamakoshi Y., Richardson A.S., Nunez S.M., Yamakoshi F., Milkovich R.N., Hu J.C.C., Bartlett J.D., Simmer J.P. Enamel proteins and proteases in Mmp20 and Klk4 null and double‐null mice. Eur. J. Oral Sci. 2011;119:206–216. PubMed PMC

Del Nery E., Chagas J.R., Juliano M.A., Juliano L., Prado E.S. Comparison of human and porcine tissue kallikrein substrate specificities. Immunopharmacology. 1999;45(1):151–157. PubMed

Blommel P.G., Fox B.G. A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr. Purif. 2007;55(1):53–68. PubMed PMC

Ma B., Zhang K., Hendrie C., Liang C., Li M., Doherty‐Kirby A., Lajoie G. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003;17(20):2337–2342. PubMed

Lacruz R.S. Enamel: molecular identity of its transepithelial ion transport system. Cell Calcium. 2017;65:1–7. PubMed PMC

Spoutil F., Aranaz-Novaliches G., Prochazkova M., Wald T., Novosadova V., Kasparek P., Osicka R., Reseland J.E., Lyngstadaas S.P., Tiainen H., Bousova K., Vondrasek J., Sedlacek R., Prochazka J. Early evolution of enamel matrix proteins is reflected by pleiotropy of physiological functions. Sci. Rep.-Uk. 2023;13(1):1471. PubMed PMC

Abraham R.T. PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair. 2004;3(8):883–887. PubMed

Wald T., Osickova A., Sulc M., Benada O., Semeradtova A., Rezabkova L., Veverka V., Bednarova L., Maly J., Macek P., Sebo P., Slaby I., Vondrasek J., Osicka R. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5. J. Biol. Chem. 2013;288(31):22333–22345. PubMed PMC

Lu Y., Papagerakis P., Yamakoshi Y., Hu J.C.-C., Bartlett J.D., Simmer J.P. 2008. Functions of KLK4 and MMP-20 in Dental Enamel Formation. PubMed PMC

Sayers E.W., Bolton E.E., Brister J.R., Canese K., Chan J., Comeau D.C., Connor R., Funk K., Kelly C., Kim S., Madej T., Marchler-Bauer A., Lanczycki C., Lathrop S., Lu Z., Thibaud-Nissen F., Murphy T., Phan L., Skripchenko Y., Tse T., Wang J., Williams R., Trawick B.W., Pruitt K.D., Sherry S.T. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022;50(D1):D20–d26. PubMed PMC

Newest 20 citations...

See more in
Medvik | PubMed

Oligomerization Function of the Native Exon 5 Sequence of Ameloblastin Fused with Calmodulin

. 2025 Mar 04 ; 10 (8) : 7741-7751. [epub] 20250220

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...