Early evolution of enamel matrix proteins is reflected by pleiotropy of physiological functions

. 2023 Jan 26 ; 13 (1) : 1471. [epub] 20230126

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36702824
Odkazy

PubMed 36702824
PubMed Central PMC9879986
DOI 10.1038/s41598-023-28388-4
PII: 10.1038/s41598-023-28388-4
Knihovny.cz E-zdroje

Highly specialized enamel matrix proteins (EMPs) are predominantly expressed in odontogenic tissues and diverged from common ancestral gene. They are crucial for the maturation of enamel and its extreme complexity in multiple independent lineages. However, divergence of EMPs occured already before the true enamel evolved and their conservancy in toothless species suggests that non-canonical functions are still under natural selection. To elucidate this hypothesis, we carried out an unbiased, comprehensive phenotyping and employed data from the International Mouse Phenotyping Consortium to show functional pleiotropy of amelogenin, ameloblastin, amelotin, and enamelin, genes, i.e. in sensory function, skeletal morphology, cardiovascular function, metabolism, immune system screen, behavior, reproduction, and respiratory function. Mice in all KO mutant lines, i.e. amelogenin KO, ameloblastin KO, amelotin KO, and enamelin KO, as well as mice from the lineage with monomeric form of ameloblastin were affected in multiple physiological systems. Evolutionary conserved motifs and functional pleiotropy support the hypothesis of role of EMPs as general physiological regulators. These findings illustrate how their non-canonical function can still effect the fitness of modern species by an example of influence of amelogenin and ameloblastin on the bone physiology.

Zobrazit více v PubMed

Schneider I, Shubin NH. The origin of the tetrapod limb: From expeditions to enhancers. Trends Genet. 2013;29:419–426. doi: 10.1016/j.tig.2013.01.012. PubMed DOI

Le Maître A, Grunstra NDS, Pfaff C, Mitteroecker P. Evolution of the mammalian ear: An evolvability hypothesis. Evol. Biol. 2020;47:187–192. doi: 10.1007/s11692-020-09502-0. PubMed DOI PMC

DiFrisco J, Jaeger J. Beyond networks: Mechanism and process in evo-devo. Biol. Philos. 2019;34:54. doi: 10.1007/s10539-019-9716-9. DOI

Ghosh, K. S. & Chauhan, P. Crystallins and Their Complexes. in Macromolecular Protein Complexes II: Structure and Function (eds. Harris, J. R. & Marles-Wright, J.) 439–460 (Springer International Publishing, 2019). 10.1007/978-3-030-28151-9_14.

Wloga D, Gaertig J. Post-translational modifications of microtubules. J. Cell Sci. 2010;123:3447–3455. doi: 10.1242/jcs.063727. PubMed DOI PMC

Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 2014;94:235–263. doi: 10.1152/physrev.00018.2013. PubMed DOI

Craig R, Lee KH, Mun JY, Torre I, Luther PK. Structure, sarcomeric organization, and thin filament binding of cardiac myosin-binding protein-C. Pflüg. Arch. - Eur. J. Physiol. 2014;466:425–431. doi: 10.1007/s00424-013-1426-6. PubMed DOI PMC

Lyngstadaas SP, Risnes S, Sproat BS, Thrane PS, Prydz HP. A synthetic, chemically modified ribozyme eliminates amelogenin, the major translation product in developing mouse enamel in vivo. EMBO J. 1995;14:5224–5229. doi: 10.1002/j.1460-2075.1995.tb00207.x. PubMed DOI PMC

Gibson CW, et al. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J. Biol. Chem. 2001;276:31871–31875. doi: 10.1074/jbc.M104624200. PubMed DOI

Fukumoto S, et al. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J. Cell Biol. 2004;167:973–983. doi: 10.1083/jcb.200409077. PubMed DOI PMC

Hu JC-C, et al. Enamelin is critical for ameloblast integrity and enamel ultrastructure formation. PLoS ONE. 2014;9:e89303. doi: 10.1371/journal.pone.0089303. PubMed DOI PMC

Núñez SM, et al. Maturation stage enamel malformations in Amtn and Klk4 null mice. Matrix Biol. 2016;52–54:219–233. doi: 10.1016/j.matbio.2015.11.007. PubMed DOI PMC

Wald T, et al. Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif. Proc. Natl. Acad. Sci. 2017 doi: 10.1073/pnas.1615334114. PubMed DOI PMC

Ji Y, et al. Maturation stage enamel defects in Odontogenesis-associated phosphoprotein (Odaph) deficient mice. Dev. Dyn. 2021;250:1505–1517. doi: 10.1002/dvdy.336. PubMed DOI

Delgado S, Girondot M, Sire J-Y. Molecular evolution of amelogenin in mammals. J. Mol. Evol. 2005;60:12–30. doi: 10.1007/s00239-003-0070-8. PubMed DOI

Sire J-Y, Delgado S, Girondot M. The amelogenin story: Origin and evolution. Eur. J. Oral Sci. 2006;114:64–77. doi: 10.1111/j.1600-0722.2006.00297.x. PubMed DOI

Sire J-Y, Davit-Béal T, Delgado S, Gu X. The origin and evolution of enamel mineralization genes. Cells Tissues Organs. 2007;186:25–48. doi: 10.1159/000102679. PubMed DOI

Delgado S, et al. Molecular evidence for precambrian origin of amelogenin, the major protein of vertebrate enamel. Mol. Biol. Evol. 2001;18:2146–2153. doi: 10.1093/oxfordjournals.molbev.a003760. PubMed DOI

Zhu M, et al. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature. 2013;502:188–193. doi: 10.1038/nature12617. PubMed DOI

Girondot M, Sire J-Y. Evolution of the amelogenin gene in toothed and toothless vertebrates. Eur. J. Oral Sci. 1998;106:501–508. doi: 10.1111/j.1600-0722.1998.tb02213.x. PubMed DOI

Stakkestad Ø, et al. Phosphorylation modulates ameloblastin self-assembly and Ca2+ binding. Front. Physiol. 2017;8:531. doi: 10.3389/fphys.2017.00531. PubMed DOI PMC

Vetyskova V, et al. Characterization of AMBN I and II isoforms and study of their Ca2+-binding properties. Int. J. Mol. Sci. 2020;21:9293. doi: 10.3390/ijms21239293. PubMed DOI PMC

Fernàndez-Busquets X, Körnig A, Bucior I, Burger MM, Anselmetti D. Self-recognition and Ca2+-dependent carbohydrate-carbohydrate cell adhesion provide clues to the cambrian explosion. Mol. Biol. Evol. 2009;26:2551–2561. doi: 10.1093/molbev/msp170. PubMed DOI

Ba ANN, et al. Proteome-wide discovery of evolutionary conserved sequences in disordered regions. Sci. Signal. 2012;5:rs1–rs1. PubMed PMC

Koenigswald, W. V. Brief survey of enamel diversity at the schmelzmuster level in Cenozoic placental mammals. in Tooth Enamel Microstructure (CRC Press, 1997).

Ciancio MR, Vieytes EC, Castro MC, Carlini AA. Dental enamel structure in long-nosed armadillos (Xenarthra: Dasypus) and its evolutionary implications. Zool. J. Linn. Soc. 2020 doi: 10.1093/zoolinnean/zlaa119. DOI

Prothero DR, et al. On the unnecessary and misleading taxon “Cetartiodactyla”. J. Mamm. Evol. 2021 doi: 10.1007/s10914-021-09572-7. DOI

Gallardo R, Ivarsson Y, Schymkowitz J, Rousseau F, Zimmermann P. Structural diversity of PDZ–lipid interactions. ChemBioChem. 2010;11:456–467. doi: 10.1002/cbic.200900616. PubMed DOI

Peacock M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 2010;5:S23–S30. doi: 10.2215/CJN.05910809. PubMed DOI

Jacques J, et al. Tracking endogenous amelogenin and ameloblastin in vivo. PLoS ONE. 2014;9:e99626. doi: 10.1371/journal.pone.0099626. PubMed DOI PMC

Atsawasuwan P, et al. Expression and function of enamel-related gene products in calvarial development. J. Dent. Res. 2013;92:622–628. doi: 10.1177/0022034513487906. PubMed DOI PMC

Deutsch D, et al. Amelogenin, a major structural protein in mineralizing enamel, is also expressed in soft tissues: Brain and cells of the hematopoietic system. Eur. J. Oral Sci. 2006;114:183–189. doi: 10.1111/j.1600-0722.2006.00301.x. PubMed DOI

Haze A, et al. Amelogenin expression in long bone and cartilage cells and in bone marrow progenitor cells. Anat. Rec. 2007;290:455–460. doi: 10.1002/ar.20520. PubMed DOI

Su J, Bapat RA, Moradian-Oldak J. The expression and purification of recombinant mouse ameloblastin in E. coli. Odontogenesis. 2019 doi: 10.1007/978-1-4939-9012-2_23. PubMed DOI PMC

Ishikawa Y, Ito S, Nagata K, Sakai LY, Bächinger HP. Intracellular mechanisms of molecular recognition and sorting for transport of large extracellular matrix molecules. Proc. Natl. Acad. Sci. 2016;113:E6036–E6044. doi: 10.1073/pnas.1609571113. PubMed DOI PMC

Mao Y, Huang X, Zhao J, Gu Z. Preliminary identification of potential PDZ-domain proteins downstream of ephrin B2 during osteoclast differentiation of RAW264.7 cells. Int. J. Mol. Med. 2011;27:669–677. PubMed

Sun L, et al. Calcineurin regulates bone formation by the osteoblast. Proc. Natl. Acad. Sci. 2005;102:17130–17135. doi: 10.1073/pnas.0508480102. PubMed DOI PMC

Winslow MM, et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev. Cell. 2006;10:771–782. doi: 10.1016/j.devcel.2006.04.006. PubMed DOI

Lu X, et al. Ameloblastin, an extracellular matrix protein, affects long bone growth and mineralization. J. Bone Miner. Res. 2016;31:1235–1246. doi: 10.1002/jbmr.2788. PubMed DOI

Tamburstuen MV, et al. Ameloblastin expression and putative autoregulation in mesenchymal cells suggest a role in early bone formation and repair. Bone. 2011;48:406–413. doi: 10.1016/j.bone.2010.09.007. PubMed DOI PMC

Chaweewannakorn W, et al. Ameloblastin attenuates RANKL-mediated osteoclastogenesis by suppressing activation of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) J. Cell. Physiol. 2019;234:1745–1757. doi: 10.1002/jcp.27045. PubMed DOI

Warotayanont R, Frenkel B, Snead ML, Zhou Y. Leucine-rich amelogenin peptide induces osteogenesis by activation of the Wnt pathway. Biochem. Biophys. Res. Commun. 2009;387:558–563. doi: 10.1016/j.bbrc.2009.07.058. PubMed DOI PMC

Wen X, et al. The influence of Leucine-rich amelogenin peptide on MSC fate by inducing Wnt10b expression. Biomaterials. 2011;32:6478–6486. doi: 10.1016/j.biomaterials.2011.05.045. PubMed DOI PMC

Windahl SH, et al. Estrogen receptor-α in osteocytes is important for trabecular bone formation in male mice. Proc. Natl. Acad. Sci. 2013;110:2294–2299. doi: 10.1073/pnas.1220811110. PubMed DOI PMC

Ucer S, et al. The effects of androgens on murine cortical bone do not require AR or ERα signaling in osteoblasts and osteoclasts. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2015;30:1138–1149. doi: 10.1002/jbmr.2485. PubMed DOI PMC

Nicks KM, et al. Deletion of estrogen receptor beta in osteoprogenitor cells increases trabecular but not cortical bone mass in female mice. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2016;31:606–614. doi: 10.1002/jbmr.2723. PubMed DOI PMC

Li Y, Yuan Z-A, Aragon MA, Kulkarni AB, Gibson CW. Comparison of body weight and gene expression in amelogenin null and wild-type mice. Eur. J. Oral Sci. 2006;114:190–193. doi: 10.1111/j.1600-0722.2006.00286.x. PubMed DOI

Bhat MA, Sharma JB, Roy KK, Sengupta J, Ghosh D. Genomic evidence of Y chromosome microchimerism in the endometrium during endometriosis and in cases of infertility. Reprod. Biol. Endocrinol. 2019;17:22. doi: 10.1186/s12958-019-0465-z. PubMed DOI PMC

Philippe H, Telford MJ. Large-scale sequencing and the new animal phylogeny. Trends Ecol. Evol. 2006;21:614–620. doi: 10.1016/j.tree.2006.08.004. PubMed DOI

Gasse B, Sire J-Y. Comparative expression of the four enamel matrix protein genes, amelogenin, ameloblastin, enamelin and amelotin during amelogenesis in the lizard Anolis carolinensis. EvoDevo. 2015;6:29. doi: 10.1186/s13227-015-0024-4. PubMed DOI PMC

Iwase M, Kaneko S, Kim H, Satta Y, Takahata N. Evolutionary history of sex-linked mammalian amelogenin genes. Cells Tissues Organs. 2007;186:49–59. doi: 10.1159/000102680. PubMed DOI

Vickaryous MK, Sire J-Y. The integumentary skeleton of tetrapods: Origin, evolution, and development. J. Anat. 2009;214:441–464. doi: 10.1111/j.1469-7580.2008.01043.x. PubMed DOI PMC

Maddison W. P. & Maddison D.R. Mesquite: a modular system for evolutionary analysis. https://www.mesquiteproject.org/ (2019).

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC

Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Jenickova I, et al. Efficient allele conversion in mouse zygotes and primary cells based on electroporation of Cre protein. Methods. 2020 doi: 10.1016/j.ymeth.2020.07.005. PubMed DOI

Cheriet M, Said JN, Suen CY. A recursive thresholding technique for image segmentation. IEEE Trans. Image Process. 1998;7:918–921. doi: 10.1109/83.679444. PubMed DOI

Du Sert NP, et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18:e3000411. doi: 10.1371/journal.pbio.3000411. PubMed DOI PMC

R Core Team. R: The R project for statistical computing. https://www.r-project.org/.

RStudio Team. RStudio | Open source and professional software for data science teams. https://rstudio.com/.

Wickham H, et al. Welcome to the tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI

Bates D, Maechler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI

Auguie, B. & Antonov, A. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics. (2017).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Skeletal dysmorphology and mineralization defects in Fgf20 KO mice

. 2024 ; 15 () : 1286365. [epub] 20240726

Proteolytic profiles of two isoforms of human AMBN expressed in E. coli by MMP-20 and KLK-4 proteases

. 2024 Jan 30 ; 10 (2) : e24564. [epub] 20240117

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...