Early evolution of enamel matrix proteins is reflected by pleiotropy of physiological functions
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36702824
PubMed Central
PMC9879986
DOI
10.1038/s41598-023-28388-4
PII: 10.1038/s41598-023-28388-4
Knihovny.cz E-zdroje
- MeSH
- amelogenin metabolismus MeSH
- myši MeSH
- proteiny zubní skloviny * genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amelogenin MeSH
- enamel matrix proteins MeSH Prohlížeč
- proteiny zubní skloviny * MeSH
Highly specialized enamel matrix proteins (EMPs) are predominantly expressed in odontogenic tissues and diverged from common ancestral gene. They are crucial for the maturation of enamel and its extreme complexity in multiple independent lineages. However, divergence of EMPs occured already before the true enamel evolved and their conservancy in toothless species suggests that non-canonical functions are still under natural selection. To elucidate this hypothesis, we carried out an unbiased, comprehensive phenotyping and employed data from the International Mouse Phenotyping Consortium to show functional pleiotropy of amelogenin, ameloblastin, amelotin, and enamelin, genes, i.e. in sensory function, skeletal morphology, cardiovascular function, metabolism, immune system screen, behavior, reproduction, and respiratory function. Mice in all KO mutant lines, i.e. amelogenin KO, ameloblastin KO, amelotin KO, and enamelin KO, as well as mice from the lineage with monomeric form of ameloblastin were affected in multiple physiological systems. Evolutionary conserved motifs and functional pleiotropy support the hypothesis of role of EMPs as general physiological regulators. These findings illustrate how their non-canonical function can still effect the fitness of modern species by an example of influence of amelogenin and ameloblastin on the bone physiology.
Department of Biomaterials Institute of Clinical Dentistry University of Oslo Oslo Norway
Institute of Organic Chemistry and Biochemistry of the CAS Prague Czech Republic
Zobrazit více v PubMed
Schneider I, Shubin NH. The origin of the tetrapod limb: From expeditions to enhancers. Trends Genet. 2013;29:419–426. doi: 10.1016/j.tig.2013.01.012. PubMed DOI
Le Maître A, Grunstra NDS, Pfaff C, Mitteroecker P. Evolution of the mammalian ear: An evolvability hypothesis. Evol. Biol. 2020;47:187–192. doi: 10.1007/s11692-020-09502-0. PubMed DOI PMC
DiFrisco J, Jaeger J. Beyond networks: Mechanism and process in evo-devo. Biol. Philos. 2019;34:54. doi: 10.1007/s10539-019-9716-9. DOI
Ghosh, K. S. & Chauhan, P. Crystallins and Their Complexes. in Macromolecular Protein Complexes II: Structure and Function (eds. Harris, J. R. & Marles-Wright, J.) 439–460 (Springer International Publishing, 2019). 10.1007/978-3-030-28151-9_14.
Wloga D, Gaertig J. Post-translational modifications of microtubules. J. Cell Sci. 2010;123:3447–3455. doi: 10.1242/jcs.063727. PubMed DOI PMC
Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 2014;94:235–263. doi: 10.1152/physrev.00018.2013. PubMed DOI
Craig R, Lee KH, Mun JY, Torre I, Luther PK. Structure, sarcomeric organization, and thin filament binding of cardiac myosin-binding protein-C. Pflüg. Arch. - Eur. J. Physiol. 2014;466:425–431. doi: 10.1007/s00424-013-1426-6. PubMed DOI PMC
Lyngstadaas SP, Risnes S, Sproat BS, Thrane PS, Prydz HP. A synthetic, chemically modified ribozyme eliminates amelogenin, the major translation product in developing mouse enamel in vivo. EMBO J. 1995;14:5224–5229. doi: 10.1002/j.1460-2075.1995.tb00207.x. PubMed DOI PMC
Gibson CW, et al. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J. Biol. Chem. 2001;276:31871–31875. doi: 10.1074/jbc.M104624200. PubMed DOI
Fukumoto S, et al. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J. Cell Biol. 2004;167:973–983. doi: 10.1083/jcb.200409077. PubMed DOI PMC
Hu JC-C, et al. Enamelin is critical for ameloblast integrity and enamel ultrastructure formation. PLoS ONE. 2014;9:e89303. doi: 10.1371/journal.pone.0089303. PubMed DOI PMC
Núñez SM, et al. Maturation stage enamel malformations in Amtn and Klk4 null mice. Matrix Biol. 2016;52–54:219–233. doi: 10.1016/j.matbio.2015.11.007. PubMed DOI PMC
Wald T, et al. Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif. Proc. Natl. Acad. Sci. 2017 doi: 10.1073/pnas.1615334114. PubMed DOI PMC
Ji Y, et al. Maturation stage enamel defects in Odontogenesis-associated phosphoprotein (Odaph) deficient mice. Dev. Dyn. 2021;250:1505–1517. doi: 10.1002/dvdy.336. PubMed DOI
Delgado S, Girondot M, Sire J-Y. Molecular evolution of amelogenin in mammals. J. Mol. Evol. 2005;60:12–30. doi: 10.1007/s00239-003-0070-8. PubMed DOI
Sire J-Y, Delgado S, Girondot M. The amelogenin story: Origin and evolution. Eur. J. Oral Sci. 2006;114:64–77. doi: 10.1111/j.1600-0722.2006.00297.x. PubMed DOI
Sire J-Y, Davit-Béal T, Delgado S, Gu X. The origin and evolution of enamel mineralization genes. Cells Tissues Organs. 2007;186:25–48. doi: 10.1159/000102679. PubMed DOI
Delgado S, et al. Molecular evidence for precambrian origin of amelogenin, the major protein of vertebrate enamel. Mol. Biol. Evol. 2001;18:2146–2153. doi: 10.1093/oxfordjournals.molbev.a003760. PubMed DOI
Zhu M, et al. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature. 2013;502:188–193. doi: 10.1038/nature12617. PubMed DOI
Girondot M, Sire J-Y. Evolution of the amelogenin gene in toothed and toothless vertebrates. Eur. J. Oral Sci. 1998;106:501–508. doi: 10.1111/j.1600-0722.1998.tb02213.x. PubMed DOI
Stakkestad Ø, et al. Phosphorylation modulates ameloblastin self-assembly and Ca2+ binding. Front. Physiol. 2017;8:531. doi: 10.3389/fphys.2017.00531. PubMed DOI PMC
Vetyskova V, et al. Characterization of AMBN I and II isoforms and study of their Ca2+-binding properties. Int. J. Mol. Sci. 2020;21:9293. doi: 10.3390/ijms21239293. PubMed DOI PMC
Fernàndez-Busquets X, Körnig A, Bucior I, Burger MM, Anselmetti D. Self-recognition and Ca2+-dependent carbohydrate-carbohydrate cell adhesion provide clues to the cambrian explosion. Mol. Biol. Evol. 2009;26:2551–2561. doi: 10.1093/molbev/msp170. PubMed DOI
Ba ANN, et al. Proteome-wide discovery of evolutionary conserved sequences in disordered regions. Sci. Signal. 2012;5:rs1–rs1. PubMed PMC
Koenigswald, W. V. Brief survey of enamel diversity at the schmelzmuster level in Cenozoic placental mammals. in Tooth Enamel Microstructure (CRC Press, 1997).
Ciancio MR, Vieytes EC, Castro MC, Carlini AA. Dental enamel structure in long-nosed armadillos (Xenarthra: Dasypus) and its evolutionary implications. Zool. J. Linn. Soc. 2020 doi: 10.1093/zoolinnean/zlaa119. DOI
Prothero DR, et al. On the unnecessary and misleading taxon “Cetartiodactyla”. J. Mamm. Evol. 2021 doi: 10.1007/s10914-021-09572-7. DOI
Gallardo R, Ivarsson Y, Schymkowitz J, Rousseau F, Zimmermann P. Structural diversity of PDZ–lipid interactions. ChemBioChem. 2010;11:456–467. doi: 10.1002/cbic.200900616. PubMed DOI
Peacock M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 2010;5:S23–S30. doi: 10.2215/CJN.05910809. PubMed DOI
Jacques J, et al. Tracking endogenous amelogenin and ameloblastin in vivo. PLoS ONE. 2014;9:e99626. doi: 10.1371/journal.pone.0099626. PubMed DOI PMC
Atsawasuwan P, et al. Expression and function of enamel-related gene products in calvarial development. J. Dent. Res. 2013;92:622–628. doi: 10.1177/0022034513487906. PubMed DOI PMC
Deutsch D, et al. Amelogenin, a major structural protein in mineralizing enamel, is also expressed in soft tissues: Brain and cells of the hematopoietic system. Eur. J. Oral Sci. 2006;114:183–189. doi: 10.1111/j.1600-0722.2006.00301.x. PubMed DOI
Haze A, et al. Amelogenin expression in long bone and cartilage cells and in bone marrow progenitor cells. Anat. Rec. 2007;290:455–460. doi: 10.1002/ar.20520. PubMed DOI
Su J, Bapat RA, Moradian-Oldak J. The expression and purification of recombinant mouse ameloblastin in E. coli. Odontogenesis. 2019 doi: 10.1007/978-1-4939-9012-2_23. PubMed DOI PMC
Ishikawa Y, Ito S, Nagata K, Sakai LY, Bächinger HP. Intracellular mechanisms of molecular recognition and sorting for transport of large extracellular matrix molecules. Proc. Natl. Acad. Sci. 2016;113:E6036–E6044. doi: 10.1073/pnas.1609571113. PubMed DOI PMC
Mao Y, Huang X, Zhao J, Gu Z. Preliminary identification of potential PDZ-domain proteins downstream of ephrin B2 during osteoclast differentiation of RAW264.7 cells. Int. J. Mol. Med. 2011;27:669–677. PubMed
Sun L, et al. Calcineurin regulates bone formation by the osteoblast. Proc. Natl. Acad. Sci. 2005;102:17130–17135. doi: 10.1073/pnas.0508480102. PubMed DOI PMC
Winslow MM, et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev. Cell. 2006;10:771–782. doi: 10.1016/j.devcel.2006.04.006. PubMed DOI
Lu X, et al. Ameloblastin, an extracellular matrix protein, affects long bone growth and mineralization. J. Bone Miner. Res. 2016;31:1235–1246. doi: 10.1002/jbmr.2788. PubMed DOI
Tamburstuen MV, et al. Ameloblastin expression and putative autoregulation in mesenchymal cells suggest a role in early bone formation and repair. Bone. 2011;48:406–413. doi: 10.1016/j.bone.2010.09.007. PubMed DOI PMC
Chaweewannakorn W, et al. Ameloblastin attenuates RANKL-mediated osteoclastogenesis by suppressing activation of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) J. Cell. Physiol. 2019;234:1745–1757. doi: 10.1002/jcp.27045. PubMed DOI
Warotayanont R, Frenkel B, Snead ML, Zhou Y. Leucine-rich amelogenin peptide induces osteogenesis by activation of the Wnt pathway. Biochem. Biophys. Res. Commun. 2009;387:558–563. doi: 10.1016/j.bbrc.2009.07.058. PubMed DOI PMC
Wen X, et al. The influence of Leucine-rich amelogenin peptide on MSC fate by inducing Wnt10b expression. Biomaterials. 2011;32:6478–6486. doi: 10.1016/j.biomaterials.2011.05.045. PubMed DOI PMC
Windahl SH, et al. Estrogen receptor-α in osteocytes is important for trabecular bone formation in male mice. Proc. Natl. Acad. Sci. 2013;110:2294–2299. doi: 10.1073/pnas.1220811110. PubMed DOI PMC
Ucer S, et al. The effects of androgens on murine cortical bone do not require AR or ERα signaling in osteoblasts and osteoclasts. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2015;30:1138–1149. doi: 10.1002/jbmr.2485. PubMed DOI PMC
Nicks KM, et al. Deletion of estrogen receptor beta in osteoprogenitor cells increases trabecular but not cortical bone mass in female mice. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2016;31:606–614. doi: 10.1002/jbmr.2723. PubMed DOI PMC
Li Y, Yuan Z-A, Aragon MA, Kulkarni AB, Gibson CW. Comparison of body weight and gene expression in amelogenin null and wild-type mice. Eur. J. Oral Sci. 2006;114:190–193. doi: 10.1111/j.1600-0722.2006.00286.x. PubMed DOI
Bhat MA, Sharma JB, Roy KK, Sengupta J, Ghosh D. Genomic evidence of Y chromosome microchimerism in the endometrium during endometriosis and in cases of infertility. Reprod. Biol. Endocrinol. 2019;17:22. doi: 10.1186/s12958-019-0465-z. PubMed DOI PMC
Philippe H, Telford MJ. Large-scale sequencing and the new animal phylogeny. Trends Ecol. Evol. 2006;21:614–620. doi: 10.1016/j.tree.2006.08.004. PubMed DOI
Gasse B, Sire J-Y. Comparative expression of the four enamel matrix protein genes, amelogenin, ameloblastin, enamelin and amelotin during amelogenesis in the lizard Anolis carolinensis. EvoDevo. 2015;6:29. doi: 10.1186/s13227-015-0024-4. PubMed DOI PMC
Iwase M, Kaneko S, Kim H, Satta Y, Takahata N. Evolutionary history of sex-linked mammalian amelogenin genes. Cells Tissues Organs. 2007;186:49–59. doi: 10.1159/000102680. PubMed DOI
Vickaryous MK, Sire J-Y. The integumentary skeleton of tetrapods: Origin, evolution, and development. J. Anat. 2009;214:441–464. doi: 10.1111/j.1469-7580.2008.01043.x. PubMed DOI PMC
Maddison W. P. & Maddison D.R. Mesquite: a modular system for evolutionary analysis. https://www.mesquiteproject.org/ (2019).
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Jenickova I, et al. Efficient allele conversion in mouse zygotes and primary cells based on electroporation of Cre protein. Methods. 2020 doi: 10.1016/j.ymeth.2020.07.005. PubMed DOI
Cheriet M, Said JN, Suen CY. A recursive thresholding technique for image segmentation. IEEE Trans. Image Process. 1998;7:918–921. doi: 10.1109/83.679444. PubMed DOI
Du Sert NP, et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18:e3000411. doi: 10.1371/journal.pbio.3000411. PubMed DOI PMC
R Core Team. R: The R project for statistical computing. https://www.r-project.org/.
RStudio Team. RStudio | Open source and professional software for data science teams. https://rstudio.com/.
Wickham H, et al. Welcome to the tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI
Bates D, Maechler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI
Auguie, B. & Antonov, A. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics. (2017).
Skeletal dysmorphology and mineralization defects in Fgf20 KO mice