Skeletal dysmorphology and mineralization defects in Fgf20 KO mice

. 2024 ; 15 () : 1286365. [epub] 20240726

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39129916

INTRODUCTION: Fibroblast growth factor 20 (Fgf20), a member of the Fgf9 subfamily, was identified as an important regulator of bone differentiation and homeostasis processes. However, the role of Fgf20 in bone physiology has not been approached yet. Here we present a comprehensive bone phenotype analysis of mice with functional ablation of Fgf20. METHODS: The study conducts an extensive analysis of Fgf20 knockout mice compared to controls, incorporating microCT scanning, volumetric analysis, Fgf9 subfamily expression and stimulation experiment and histological evaluation. RESULTS: The bone phenotype could be detected especially in the area of​ the lumbar and caudal part of the spine and in fingers. Regarding the spine, Fgf20-/- mice exhibited adhesions of the transverse process of the sixth lumbar vertebra to the pelvis as well as malformations in the distal part of their tails. Preaxial polydactyly and polysyndactyly in varying degrees of severity were also detected. High resolution microCT analysis of distal femurs and the fourth lumbar vertebra showed significant differences in structure and mineralization in both cortical and trabecular bone. These findings were histologically validated and may be associated with the expression of Fgf20 in chondrocytes and their progenitors. Moreover, histological sections demonstrated increased bone tissue formation, disruption of Fgf20-/- femur cartilage, and cellular-level alterations, particularly in osteoclasts. We also observed molar dysmorphology, including root taurodontism, and described variations in mineralization and dentin thickness. DISCUSSION: Our analysis provides evidence that Fgf20, together with other members of the Fgf9 subfamily, plays a crucial regulatory role in skeletal development and bone homeostasis.

Zobrazit více v PubMed

Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol. (2015) 4:215–66. doi: 10.1002/wdev.176 PubMed DOI PMC

Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. (2005) 16:139–49. doi: 10.1016/j.cytogfr.2005.01.001 PubMed DOI

Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, et al. . Receptor specificity of the fibroblast growth factor family. J Biol Chem. (1996) 271:15292–7. doi: 10.1074/jbc.271.25.15292 PubMed DOI

Walshe J, Mason I. Fgf signalling is required for formation of cartilage in the head. Dev Biol. (2003) 264:522–36. doi: 10.1016/j.ydbio.2003.08.010 PubMed DOI

Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. (1993) 60:1–41. doi: 10.1016/s0065-230x(08)60821-0 PubMed DOI

Danopoulos S, Shiosaki J, Al Alam D. FGF signaling in lung development and disease: human versus mouse. Front Genet. (2019) 10:170. doi: 10.3389/fgene.2019.00170 PubMed DOI PMC

Ndlovu R, Deng L-C, Wu J, Li X-K, Zhang J-S. Fibroblast growth factor 10 in pancreas development and pancreatic cancer. Front Genet. (2018) 9:482. doi: 10.3389/fgene.2018.00482 PubMed DOI PMC

Itoh N, Ohta H, Nakayama Y, Konishi M. Roles of FGF signals in heart development, health, and disease. Front Cell Dev Biol. (2016) 4:110. doi: 10.3389/fcell.2016.00110 PubMed DOI PMC

Walker KA, Sims-Lucas S, Bates CM. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development. Pediatr Nephrol Berl Ger. (2016) 31:885–95. doi: 10.1007/s00467-015-3151-1 PubMed DOI PMC

Nie X, Luukko K, Kettunen P. FGF signalling in craniofacial development and developmental disorders. Oral Dis. (2006) 12:102–11. doi: 10.1111/j.1601-0825.2005.01176.x PubMed DOI

Ornitz DM, Marie PJ. Fibroblast growth factors in skeletal development. Curr Top Dev Biol. (2019) 133:195–234. doi: 10.1016/bs.ctdb.2018.11.020 PubMed DOI

Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. (2006) 281:15694–700. doi: 10.1074/jbc.M601252200 PubMed DOI PMC

Itoh N, Ohta H. Roles of FGF20 in dopaminergic neurons and Parkinson’s disease. Front Mol Neurosci. (2013) 6:15. doi: 10.3389/fnmol.2013.00015 PubMed DOI PMC

Zhu R, Zhu Y, Liu X, He Z. Fibroblast growth factor 20 (FGF20) gene polymorphism and risk of Parkinson’s disease: a meta-analysis. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. (2014) 35:1889–94. doi: 10.1007/s10072-014-1853-y PubMed DOI

Hajihosseini MK, Heath JK. Expression patterns of fibroblast growth factors-18 and -20 in mouse embryos is suggestive of novel roles in calvarial and limb development. Mech Dev. (2002) 113:79–83. doi: 10.1016/S0925-4773(01)00656-6 PubMed DOI

Huh S-H, Jones J, Warchol ME, Ornitz DM. Differentiation of the lateral compartment of the cochlea requires a temporally restricted FGF20 signal. PloS Biol Public Library Sci. (2012) 10:e1001231. doi: 10.1371/journal.pbio.1001231 PubMed DOI PMC

Biggs LC, Mäkelä OJ, Myllymäki S-M, Das Roy R, Närhi K, Pispa J, et al. . Hair follicle dermal condensation forms via Fgf20 primed cell cycle exit, cell motility, and aggregation. eLife. (2018) 7:e36468. doi: 10.7554/eLife.36468.044 PubMed DOI PMC

Huh S-H, Närhi K, Lindfors PH, Häärä O, Yang L, Ornitz DM, et al. . Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes Dev. (2013) 27:450–8. doi: 10.1101/gad.198945.112 PubMed DOI PMC

Häärä O, Harjunmaa E, Lindfors PH, Huh S-H, Fliniaux I, Åberg T, et al. . Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development. (2012) 139:3189–99. doi: 10.1242/dev.079558 PubMed DOI PMC

Elo T, Lindfors PH, Lan Q, Voutilainen M, Trela E, Ohlsson C, et al. . Ectodysplasin target gene Fgf20 regulates mammary bud growth and ductal invasion and branching during puberty. Sci Rep. (2017) 7:5049. doi: 10.1038/s41598-017-04637-1 PubMed DOI PMC

Levy R, Mott RF, Iraqi FA, Gabet Y. Collaborative cross mice in a genetic association study reveal new candidate genes for bone microarchitecture. BMC Genomics. (2015) 16:1013. doi: 10.1186/s12864-015-2213-x PubMed DOI PMC

Su N, Jin M, Chen L. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone Res Nat Publishing Group. (2014) 2:1–24. doi: 10.1038/boneres.2014.3 PubMed DOI PMC

IMPReSS . International Mouse Phenotyping Resource of Standardised Screens. IMPReSS Int. Mouse Phenotyping Resour. Stand. Screens. Available at: https://www.mousephenotype.org/impress/pipelines.

Zhong L, Yao L, Tower RJ, Wei Y, Miao Z, Park J, et al. . Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. eLife. (2020) 9:e54695. doi: 10.7554/eLife.54695.sa2 PubMed DOI PMC

Tang L, Wu M, Lu S, Zhang H, Shen Y, Shen C, et al. . Fgf9 Negatively regulates bone mass by inhibiting osteogenesis and promoting osteoclastogenesis via MAPK and PI3K/AKT signaling. J Bone Miner Res Off J Am Soc Bone Miner Res. (2021) 36:779–91. doi: 10.1002/jbmr.4230 PubMed DOI

Lu SY, Jin Y, Li X, Sheppard P, Bock ME, Sheikh F, et al. . Embryonic survival and severity of cardiac and craniofacial defects are affected by genetic background in fibroblast growth factor-16 null mice. DNA Cell Biol. (2010) 29:407–15. doi: 10.1089/dna.2010.1024 PubMed DOI

Spoutil F, Aranaz-Novaliches G, Prochazkova M, Wald T, Novosadova V, Kasparek P, et al. . Early evolution of enamel matrix proteins is reflected by pleiotropy of physiological functions. Sci Rep. (2023) 13:1471. doi: 10.1038/s41598-023-28388-4 PubMed DOI PMC

Porntaveetus T, Otsuka-Tanaka Y, Basson MA, Moon AM, Sharpe PT, Ohazama A. Expression of fibroblast growth factors (Fgfs) in murine tooth development. J Anat. (2011) 218:534–43. doi: 10.1111/j.1469-7580.2011.01352.x PubMed DOI PMC

Niswander L, Jeffrey S, Martin GR, Tickle C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature. (1994) 371:609–12. doi: 10.1038/371609a0 PubMed DOI

Guo B, Lee SK, Paksima N. Polydactyly: A review. Bull NYU Hosp Jt Dis. (2013) 71:17–23. PubMed

Antalíková L, Kren V, Bílá V, Kaspárek R, Rozinek J. Contribution to the morphometry of limb bud structures in the normodactylous and polydactylous rat. I. Apical ectodermal ridge. Folia Morphol. (1990) 38:402–7. PubMed

Yasuda M. Pathogenesis of preaxial polydactyly of the hand in human embryos. Development. (1975) 33:745–56. doi: 10.1242/dev.33.3.745 PubMed DOI

Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF, St-Jacques B, et al. . Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by ptc1. Cell. (2001) 105:599–612. doi: 10.1016/S0092-8674(01)00369-5 PubMed DOI

Verheyden JM, Lewandoski M, Deng C, Harfe BD, Sun X. Conditional inactivation of Fgfr1 in mouse defines its role in limb bud establishment, outgrowth and digit patterning. Development. (2005) 132:4235–45. doi: 10.1242/dev.02001 PubMed DOI PMC

Du W, Du W, Yu H. The role of fibroblast growth factors in tooth development and incisor renewal. Stem Cells Int Hindawi. (2018) 2018:e7549160. doi: 10.1155/2018/7549160 PubMed DOI PMC

Chamorro MN, Schwartz DR, Vonica A, Brivanlou AH, Cho KR, Varmus HE. FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J. (2005) 24:73–84. doi: 10.1038/sj.emboj.7600460 PubMed DOI PMC

Falconi G, Fabiani E, Fianchi L, Criscuolo M, Raffaelli CS, Bellesi S, et al. . Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes. Exp Hematol. (2016) 44:75–83.e1-4. doi: 10.1016/j.exphem.2015.10.005 PubMed DOI

Schmid GJ, Kobayashi C, Sandell LJ, Ornitz DM. Fibroblast Growth Factor expression during skeletal fracture healing in mice. Dev Dyn Off Publ Am Assoc Anat. (2009) 238:766–74. doi: 10.1002/dvdy.21882 PubMed DOI PMC

Buchtova M, Chaloupkova R, Zakrzewska M, Vesela I, Cela P, Barathova J, et al. . Instability restricts signaling of multiple fibroblast growth factors. Cell Mol Life Sci CMLS. (2015) 72:2445–59. doi: 10.1007/s00018-015-1856-8 PubMed DOI PMC

Garofalo S, Kliger-Spatz M, Cooke JL, Wolstin O, Lunstrum GP, Moshkovitz SM, et al. . Skeletal dysplasia and defective chondrocyte differentiation by targeted overexpression of fibroblast growth factor 9 in transgenic mice. J Bone Miner Res Off J Am Soc Bone Miner Res. (1999) 14:1909–15. doi: 10.1359/jbmr.1999.14.11.1909 PubMed DOI

Colvin JS, White AC, Pratt SJ, Ornitz DM. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development. (2001) 128:2095–106. doi: 10.1242/dev.128.11.2095 PubMed DOI

Behr B, Leucht P, Longaker MT, Quarto N. Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. Proc Natl Acad Sci Proc Natl Acad Sci. (2010) 107:11853–8. doi: 10.1073/pnas.1003317107 PubMed DOI PMC

Wang L, Roth T, Abbott M, Ho L, Wattanachanya L, Nissenson RA. Osteoblast-derived FGF9 regulates skeletal homeostasis. Bone. (2017) 98:18–25. doi: 10.1016/j.bone.2016.12.005 PubMed DOI PMC

Hung IH, Yu K, Lavine KJ, Ornitz DM. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod. Dev Biol. (2007) 307:300–13. doi: 10.1016/j.ydbio.2007.04.048 PubMed DOI PMC

Risnes S, Peterkova R, Lesot H. Distribution and structure of dental enamel in incisors of Tabby mice. Arch Oral Biol. (2005) 50:181–4. doi: 10.1016/j.archoralbio.2004.11.003 PubMed DOI

Yang J, Wang S-K, Choi M, Reid BM, Hu Y, Lee Y-L, et al. . Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. Mol Genet Genomic Med. (2015) 3:40–58. doi: 10.1002/mgg3.111 PubMed DOI PMC

Hill NL, Laib A, Duncan MK. Mutation of the ectodysplasin-A gene results in bone defects in mice. J Comp Pathol. (2002) 126:220–5. doi: 10.1053/jcpa.2001.0531 PubMed DOI

Fgf20 Mouse Gene Details | fibroblast growth factor 20 | International Mouse Phenotyping Consortium . Available online at: https://www.mousephenotype.org/data/genes/MGI:1891346#order.

Concordet J-P, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. (2018) 46:W242–5. doi: 10.1093/nar/gky354 PubMed DOI PMC

Spoutil F, Dlugosova S, Varga I, Aranaz-Novaliches G, Novosadova V, Prochazkova M, et al. . Semi-automated microCT analysis of bone anatomy and mineralization in mouse models. Curr Protoc. (2024) 4:e980. doi: 10.1002/cpz1.980 PubMed DOI

R Core Team . R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; (2022). Available at: https://www.R-project.org/.

RStudio Team . RStudio: Integrated Development Environment for R. Boston, MA: RStudio, PBC; (2022). Available at: http://www.rstudio.com/.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; (2016). doi: 10.1007/978-3-319-24277-4 DOI

Gruper Y, Wolff ASB, Glanz L, Spoutil F, Marthinussen MC, Osickova A, et al. . Autoimmune amelogenesis imperfecta in patients with APS-1 and coeliac disease. Nat Nat Publishing Group. (2023) 624:653–62. doi: 10.1038/s41586-023-06776-0 PubMed DOI

McCarthy DJ, Campbell KR, Lun ATL, Wills QF. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinforma Oxf Engl. (2017) 33:1179–86. doi: 10.1093/bioinformatics/btw777 PubMed DOI PMC

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. (2000) 28:27–30. doi: 10.1093/nar/28.1.27 PubMed DOI PMC

Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. (2015) 1:417–25. doi: 10.1016/j.cels.2015.12.004 PubMed DOI PMC

MSigDB gene sets R package . Available online at: https://igordot.github.io/msigdbr/.

Amezquita RA, Lun ATL, Becht E, Carey VJ, Carpp LN, Geistlinger L, et al. . Orchestrating single-cell analysis with Bioconductor. Nat Methods. (2020) 17:137–45. doi: 10.1038/s41592-019-0654-x PubMed DOI PMC

Lun ATL, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Research. (2016) 5:2122. doi: 10.12688/f1000research PubMed DOI PMC

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. (2015) 67:1–48. doi: 10.18637/jss.v067.i01 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...