Autoimmune amelogenesis imperfecta in patients with APS-1 and coeliac disease
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37993717
DOI
10.1038/s41586-023-06776-0
PII: 10.1038/s41586-023-06776-0
Knihovny.cz E-zdroje
- MeSH
- ameloblasty metabolismus MeSH
- amelogenesis imperfecta * komplikace imunologie MeSH
- antigeny imunologie metabolismus MeSH
- autoimunitní polyglandulární syndromy * komplikace imunologie MeSH
- autoprotilátky * imunologie MeSH
- celiakie * komplikace imunologie MeSH
- imunoglobulin A imunologie MeSH
- lidé MeSH
- protein AIRE nedostatek MeSH
- proteiny imunologie metabolismus MeSH
- střeva imunologie metabolismus MeSH
- zubní sklovina imunologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AIRE protein, human MeSH Prohlížeč
- antigeny MeSH
- autoprotilátky * MeSH
- imunoglobulin A MeSH
- protein AIRE MeSH
- proteiny MeSH
Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.
Bioinformatics Unit Life Sciences Core Facilities Weizmann Institute of Science Rehovot Israel
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Department of Clinical Dentistry Faculty of Medicine University of Bergen Bergen Norway
Department of Gastroenterology Oslo University Hospital Oslo Norway
Department of Immunology and Regenerative Biology Weizmann Institute of Science Rehovot Israel
Department of Medicine Haukeland University Hospital Bergen Norway
Endocrinological Research Center Institute of Pediatric Endocrinology Moscow Russian Federation
Faculty of Medicine Tel Aviv University Tel Aviv Israel
Institute of Dentistry University of Eastern Finland Kuopio Finland
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
K G Jebsen Coeliac Disease Research Centre University of Oslo Oslo Norway
Oral Health Centre of Expertise in Western Norway Vestland Bergen Norway
Zobrazit více v PubMed
Pham, C.-D. et al. Endocytosis and enamel formation. Front. Physiol. 8, 529 (2017). PubMed DOI PMC
Smith, C. E. L. et al. Amelogenesis imperfecta; genes, proteins, and pathways. Front. Physiol. 8, 435 (2017).
Pavlič, A. & Waltimo-Sirén, J. Clinical and microstructural aberrations of enamel of deciduous and permanent teeth in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Arch. Oral Biol. 54, 658–665 (2009). PubMed DOI
Bruserud, Ø. et al. A longitudinal follow-up of autoimmune polyendocrine syndrome type 1. J. Clin. Endocrinol. Metab. 101, 2975–2983 (2016). PubMed DOI PMC
Wierink, C. D., Van Diermen, D. E., Aartman, I. H. A. & Heymans, H. S. A. Dental enamel defects in children with coeliac disease. Int. J. Paediatr. Dent. 17, 163–168 (2007). PubMed DOI
Bucci, P. et al. Oral aphthous ulcers and dental enamel defects in children with coeliac disease. Acta Paediatr. 95, 203–207 (2006). PubMed DOI
Nieri, M., Tofani, E., Defraia, E., Giuntini, V. & Franchi, L. Enamel defects and aphthous stomatitis in celiac and healthy subjects: systematic review and meta-analysis of controlled studies. J. Dent. 65, 1–10 (2017). PubMed DOI
Aschenbrenner, K. et al. Selection of Foxp3 PubMed DOI
Wyss, L. et al. Affinity for self antigen selects Treg cells with distinct functional properties. Nat. Immunol. 17, 1093–1101 (2016). PubMed DOI PMC
Abramson, J. & Husebye, E. S. Autoimmune regulator and self-tolerance—molecular and clinical aspects. Immunol. Rev. 271, 127–140 (2016). PubMed DOI
Peterson, P. & Peltonen, L. Autoimmune polyendocrinopathy syndrome type 1 (APS1) and AIRE gene: new views on molecular basis of autoimmunity. J. Autoimmun. 25, 49–55 (2005). PubMed DOI
Pekka, A., Myllärniemi, S., Sipilä, I. & Perheentupa, J. Clinical variation of autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) in a series of 68 patients. N. Engl. J. Med. 322, 1829–1836 (1990). DOI
Nishikawa, Y. et al. Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation. J. Exp. Med. 207, 963–971 (2010). PubMed DOI PMC
Vazquez, S. E. et al. Identification of novel, clinically correlated autoantigens in the monogenic autoimmune syndrome APS1 by proteome-wide PhIP-seq. eLife 9, e55053 (2020). PubMed DOI PMC
Catassi, C., Gatti, S. & Fasano, A. The new epidemiology of celiac disease. J. Pediatr. Gastroenterol. Nutr. 59, S7–S9 (2014). PubMed DOI
Verbeek, W. H. M. et al. The spectrum of celiac disease: epidemiology, clinical aspects and treatment. Nat. Rev. Gastroenterol. Hepatol. 7, 204–213 (2010). PubMed DOI
Dieterich, W. et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 3, 797–801 (1997). PubMed DOI
Sollid, L. M. Coeliac disease: dissecting a complex inflammatory disorder. Nat. Rev. Immunol. 2, 647–655 (2002). PubMed DOI
Stenman, S. M. et al. Secretion of celiac disease autoantibodies after in vitro gliadin challenge is dependent on small-bowel mucosal transglutaminase 2-specific IgA deposits. BMC Immunol. 9, 6 (2008). PubMed DOI PMC
Jericho, H. & Guandalini, S. Extra-intestinal manifestation of celiac disease in children. Nutrients 10, 755 (2018). PubMed DOI PMC
Pastore, L. et al. Oral manifestations of celiac disease. J. Clin. Gastroenterol. PAP, 224–232 (2008). DOI
Aine, L. Permanent tooth dental enamel defects leading to the diagnosis of coeliac disease. Br. Dent. J. 177, 253–254 (1994). PubMed DOI
Petronijevic, S., Stig, S., Gao, J. & Halstensen, T. S. Amelogenin specific IgA and IgG in children with untreated coeliac disease. Eur. J. Oral Sci. 124, 526–533 (2016). PubMed DOI
Mariani, P. et al. Coeliac disease, enamel defects and HLA typing. Acta Paediatr. 83, 1272–1275 (1994). PubMed DOI
Pemberton, T. J. et al. Identification of novel genes expressed during mouse tooth development by microarray gene expression analysis. Dev. Dyn. 236, 2245–2257 (2007). PubMed DOI PMC
Eckstein, M. et al. Store-operated Ca PubMed DOI PMC
Duverger, O. et al. Hair keratin mutations in tooth enamel increase dental decay risk. J. Clin. Invest. 124, 5219–5224 (2014). PubMed DOI PMC
Chiba, Y. et al. G protein-coupled receptor Gpr115 (Adgrf4) is required for enamel mineralization mediated by ameloblasts. J. Biol. Chem. 295, 15328–15341 (2020). PubMed DOI PMC
Sharir, A. et al. A large pool of actively cycling progenitors orchestrates self-renewal and injury repair of an ectodermal appendage. Nat. Cell Biol. 21, 1102–1112 (2019). PubMed DOI PMC
Sansom, S. N. et al. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res. 24, 1918–1931 (2014). PubMed DOI PMC
Bornstein, C. et al. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 559, 622–626 (2018). PubMed DOI
Hu, J. C.-C. & Yamakoshi, Y. Enamelin and autosomal-dominant amelogenesis imperfecta. Crit. Rev. Oral Biol. Med. 14, 387–398 (2003). PubMed DOI
Nelson, S. J. Dental Anatomy, Physiology and Occlusion (Elsevier, 2015).
Perniola, R., Tamborrino, G., Marsigliante, S. & de Rinaldis, C. Assessment of enamel hypoplasia in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J. Oral Pathol. Med. 27, 278–282 (1998). PubMed DOI
Calamari, Z. T., Hu, J. K. H. & Klein, O. D. Tissue mechanical forces and evolutionary developmental changes act through space and time to shape tooth morphology and function. BioEssays 40, e1800140 (2018). PubMed DOI PMC
Katchburian, E., Katchburiant, A. V. & Pearse, A. G. E. Histochemistry of lysosomal enzymes in developing teeth of albino rats. J. Anat. 101, 783–792 (1967). PubMed PMC
Baratella, L., Arana-Chavez, V. E. & Katchburian, E. Macrophages and apoptosis in the stellate reticulum of the rat enamel organ. J. Anat. 197, 303–306 (2000). PubMed DOI PMC
Nishikawa, S. & Sasaki, F. Phagocytotic processing of apoptotic bodies of transitional ameloblasts by MHC Class II-expressing macrophages in rat incisor. J. Histochem. Cytochem. 44, 1459–1467 (1996). PubMed DOI
Tsuruga, E., Sakakura, Y., Yajima, T. & Shide, N. Appearance and distribution of dendritic cells and macrophages in dental pulp during early postnatal morphogenesis of mouse mandibular first molars. Histochem. Cell Biol. 112, 193–204 (1999). PubMed DOI
Nishikawa, S. & Sasaki, F. Internalization of amelogenin by dendritic cells of the papillary layer during transition and early maturation stages. Histochem. Cell Biol. 112, 301–305 (1999). PubMed DOI
Jessen, H. & Moe, H. The fine structure of macrophages in the enamel organ, with special reference to the microtubular system. Z. Zellforsch. 126, 466–182 (1972). PubMed DOI
Bossù, M., Bartoli, A., Orsini, G., Luppino, E. & Polimeni, A. Enamel hypoplasia in coeliac children: a potential clinical marker of early diagnosis. Eur. J. Paediatr. Dent. 8, 31–37 (2007). PubMed
Petronijevic, S., Stig, S. & Halstensen, T. S. Epitope mapping of anti‐amelogenin IgA in coeliac disease. Eur. J. Oral Sci. 128, 27–36 (2020). PubMed DOI
Sóñora, C. et al. Enamel organ proteins as targets for antibodies in celiac disease: implications for oral health. Eur. J. Oral Sci. 124, 11–16 (2016). PubMed DOI
Paolella, G., Sposito, S., Romanelli, A. M. & Caputo, I. Type 2 transglutaminase in coeliac disease: a key player in pathogenesis, diagnosis and therapy. Int. J. Mol. Sci. 23, 7513 (2022). PubMed DOI PMC
Herrera, M. G. & Dodero, V. I. Gliadin proteolytical resistant peptides: the interplay between structure and self-assembly in gluten-related disorders. Biophys. Rev. 13, 1147–1154 (2021). PubMed DOI PMC
Kristjánsson, G., Venge, P. & Hällgren, R. Mucosal reactivity to cow’s milk protein in coeliac disease. Clin. Exp. Immunol. 147, 449–455 (2007). PubMed DOI PMC
Capone, K., Sansotta, N., Vohra, P., Jericho, H. & Guandalini, S. Milk protein-induced villous atrophy and elevated serologies in four children with celiac disease on a gluten-free diet. Ann. Pediatr. 3, 1028 (2020).
Coucke, F. Food intolerance in patients with manifest autoimmunity. Observational study. Autoimmun. Rev. 17, 1078–1080 (2018). PubMed DOI
Zone, J. J., Egan, C. A., Taylor, T. B. & Meyer, L. J. IgA autoimmune disorders: development of a passive transfer mouse model. J. Invest. Dermatol. Symp. Proc. 9, 47–51 (2004). DOI
Sinnberg, T. et al. Pulmonary surfactant proteins are inhibited by immunoglobulin A autoantibodies in severe COVID-19. Am. J. Respir. Crit. Care Med. 207, 38–49 (2023). PubMed DOI
Mylliirniemi, S. & Perheentupa, J. Oral findings in the autoimmune polyendocrinopathy-candidosis syndrome (APECS) and other forms of hypoparathyroidism. Oral Surg. Oral Med. Oral Pathol. 45, 721–729 (1978). DOI
Rashid, M. & Zarkadas, M. Oral manifestations of celiac disease: a clinical guide for dentists. J. Can. Dent. Assoc. 77, b39 (2011).
Gibbons, D. L. & Spencer, J. Mouse and human intestinal immunity: same ballpark, different players; different rules, same score. Mucosal Immunol. 4, 148–157 (2011). PubMed DOI
Monteiro, R. C. & Van De Winkel, J. G. J. IgA Fc receptors. Annu. Rev. Immunol. 21, 177–204 (2003).
Laible, G., Smolenski, G., Wheeler, T. & Brophy, B. Increased gene dosage for β- and κ-casein in transgenic cattle improves milk composition through complex effects. Sci. Rep. 6, 37607 (2016). PubMed DOI PMC
Bijl, E., van Valenberg, H. J. F., Huppertz, T. & van Hooijdonk, A. C. M. Protein, casein, and micellar salts in milk: current content and historical perspectives. J. Dairy Sci. 96, 5455–5464 (2013). PubMed DOI
Wedholm, A., Larsen, L. B., Lindmark-Månsson, H., Karlsson, A. H. & Andrén, A. Effect of protein composition on the cheese-making properties of milk from individual dairy cows. J. Dairy Sci. 89, 3296–3305 (2006). PubMed DOI
Smith, C. E. L. et al. Phenotype and variant spectrum in the LAMB3 form of amelogenesis imperfecta. J. Dent. Res. 98, 698–704 (2019). PubMed DOI
Kim, J.-W. et al. A novel de novo mutation in LAMB3 causes localized hypoplastic enamel in the molar region. Eur. J. Oral Sci. 124, 403–405 (2016). PubMed DOI
Poulter, J. A. et al. Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta. Eur. J. Hum. Genet. 22, 132–135 (2013). PubMed DOI PMC
Caccamo, D. et al. Expression pattern of transglutaminases in the early differentiation stage of erupting rat incisor. Amino Acids 36, 49–56 (2009). PubMed DOI
Beth, S. A. et al. Generation R birth cohort study shows that specific enamel defects were not associated with elevated serum transglutaminase type 2 antibodies. Acta Paediatr. 105, e485–e491 (2016). PubMed DOI
McCarra, C., Olegário, I. C., O’Connell, A. C. & Leith, R. Prevalence of hypomineralised second primary molars (HSPM): a systematic review and meta-analysis. Int. J. Paediatr. Dent. 32, 367–382 (2022). PubMed DOI
Kohen, R. et al. UTAP: user-friendly transcriptome analysis pipeline. BMC Bioinform. 20, 154 (2019). DOI
Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000). PubMed DOI PMC
Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013). PubMed DOI PMC
Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016). PubMed DOI PMC
Xu, H. et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 25, 1147–1157 (2015). PubMed DOI PMC
Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018). PubMed DOI PMC
De Laurenzi, V. & Melino, G. Gene disruption of tissue transglutaminase. Mol. Cell. Biol. 21, 148–155 (2001). PubMed DOI PMC
Jiang, W., Anderson, M. S., Bronson, R., Mathis, D. & Benoist, C. Modifier loci condition autoimmunity provoked by Aire deficiency. J. Exp. Med. 202, 805–815 (2005). PubMed DOI PMC
Ossart, J. et al. Breakdown of immune tolerance in AIRE-deficient rats induces a severe autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy-like autoimmune disease. J. Immunol. 201, 874–887 (2018). PubMed DOI
Vera Alvarez, R., Pongor, L. S., Mariño-Ramírez, L. & Landsman, D. TPMCalculator: one-step software to quantify mRNA abundance of genomic features. Bioinformatics 35, 1960–1962 (2019). PubMed DOI
Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014). PubMed DOI PMC
Khan, F., He, M. & Taussig, M. J. Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on Ni-nitrilotriacetic acid surfaces. Anal. Chem. 78, 3072–3079 (2006). PubMed DOI
Wald, T. et al. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5. J. Biol. Chem. 288, 22333–22345 (2013). PubMed DOI PMC
Simmer, J. P. et al. Isolation and characterization of a mouse amelogenin expressed in Escherichia coli. Calcif. Tissue Int. 54, 312–319 (1994). PubMed DOI
Wilkinson, D. G. & Nieto, M. A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361–373 (1993). PubMed DOI
Goldfarb, Y. et al. Mechanistic dissection of dominant AIRE mutations in mouse models reveals AIRE autoregulation. J. Exp. Med. 218, e20201076 (2021).
Skeletal dysmorphology and mineralization defects in Fgf20 KO mice