Autoimmune amelogenesis imperfecta in patients with APS-1 and coeliac disease

. 2023 Dec ; 624 (7992) : 653-662. [epub] 20231122

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37993717
Odkazy

PubMed 37993717
DOI 10.1038/s41586-023-06776-0
PII: 10.1038/s41586-023-06776-0
Knihovny.cz E-zdroje

Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.

Bioinformatics Unit Life Sciences Core Facilities Weizmann Institute of Science Rehovot Israel

Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases Institute of Molecular Genetics of the Czech Academy of Sciences v v i 252 50 Vestec Czech Republic

Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Debrecen Hungary

Department of Biomaterials and Prosthetic Dentistry Faculty of Dentistry University of Debrecen Debrecen Hungary

Department of Cell Biology Faculty of Science Charles University Prague Czech Republic

Department of Clinical Dentistry Faculty of Medicine University of Bergen Bergen Norway

Department of Clinical Science and K G Jebsen Center for Autoimmune Disorders University of Bergen Bergen Norway

Department of Gastroenterology Oslo University Hospital Oslo Norway

Department of Immunology and Regenerative Biology Weizmann Institute of Science Rehovot Israel

Department of Medicine Haukeland University Hospital Bergen Norway

Department of Pediatric Dentistry The Hebrew University Hadassah School of Dental Medicine Jerusalem Israel

Division of Dental Anatomy Department of Basic Medical Sciences Faculty of Dentistry University of Debrecen Debrecen Hungary

Division of Dental Biochemistry Department of Basic Medical Sciences Faculty of Dentistry University of Debrecen Debrecen Hungary

Endocrinological Research Center Institute of Pediatric Endocrinology Moscow Russian Federation

Faculty of Medicine Tel Aviv University Tel Aviv Israel

Institute of Dentistry University of Eastern Finland Kuopio Finland

Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic

K G Jebsen Coeliac Disease Research Centre University of Oslo Oslo Norway

Nantes Université INSERM Center for Research in Transplantation and Translational Immunology UMR 1064 Nantes France

Oral Health Centre of Expertise in Western Norway Vestland Bergen Norway

The Institute of Gastroenterology Nutrition and Liver Diseases Schneider Children's Medical Center of Israel Petach Tikvah Israel

Zobrazit více v PubMed

Pham, C.-D. et al. Endocytosis and enamel formation. Front. Physiol. 8, 529 (2017). PubMed DOI PMC

Smith, C. E. L. et al. Amelogenesis imperfecta; genes, proteins, and pathways. Front. Physiol. 8, 435 (2017).

Pavlič, A. & Waltimo-Sirén, J. Clinical and microstructural aberrations of enamel of deciduous and permanent teeth in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Arch. Oral Biol. 54, 658–665 (2009). PubMed DOI

Bruserud, Ø. et al. A longitudinal follow-up of autoimmune polyendocrine syndrome type 1. J. Clin. Endocrinol. Metab. 101, 2975–2983 (2016). PubMed DOI PMC

Wierink, C. D., Van Diermen, D. E., Aartman, I. H. A. & Heymans, H. S. A. Dental enamel defects in children with coeliac disease. Int. J. Paediatr. Dent. 17, 163–168 (2007). PubMed DOI

Bucci, P. et al. Oral aphthous ulcers and dental enamel defects in children with coeliac disease. Acta Paediatr. 95, 203–207 (2006). PubMed DOI

Nieri, M., Tofani, E., Defraia, E., Giuntini, V. & Franchi, L. Enamel defects and aphthous stomatitis in celiac and healthy subjects: systematic review and meta-analysis of controlled studies. J. Dent. 65, 1–10 (2017). PubMed DOI

Aschenbrenner, K. et al. Selection of Foxp3 PubMed DOI

Wyss, L. et al. Affinity for self antigen selects Treg cells with distinct functional properties. Nat. Immunol. 17, 1093–1101 (2016). PubMed DOI PMC

Abramson, J. & Husebye, E. S. Autoimmune regulator and self-tolerance—molecular and clinical aspects. Immunol. Rev. 271, 127–140 (2016). PubMed DOI

Peterson, P. & Peltonen, L. Autoimmune polyendocrinopathy syndrome type 1 (APS1) and AIRE gene: new views on molecular basis of autoimmunity. J. Autoimmun. 25, 49–55 (2005). PubMed DOI

Pekka, A., Myllärniemi, S., Sipilä, I. & Perheentupa, J. Clinical variation of autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) in a series of 68 patients. N. Engl. J. Med. 322, 1829–1836 (1990). DOI

Nishikawa, Y. et al. Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation. J. Exp. Med. 207, 963–971 (2010). PubMed DOI PMC

Vazquez, S. E. et al. Identification of novel, clinically correlated autoantigens in the monogenic autoimmune syndrome APS1 by proteome-wide PhIP-seq. eLife 9, e55053 (2020). PubMed DOI PMC

Catassi, C., Gatti, S. & Fasano, A. The new epidemiology of celiac disease. J. Pediatr. Gastroenterol. Nutr. 59, S7–S9 (2014). PubMed DOI

Verbeek, W. H. M. et al. The spectrum of celiac disease: epidemiology, clinical aspects and treatment. Nat. Rev. Gastroenterol. Hepatol. 7, 204–213 (2010). PubMed DOI

Dieterich, W. et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 3, 797–801 (1997). PubMed DOI

Sollid, L. M. Coeliac disease: dissecting a complex inflammatory disorder. Nat. Rev. Immunol. 2, 647–655 (2002). PubMed DOI

Stenman, S. M. et al. Secretion of celiac disease autoantibodies after in vitro gliadin challenge is dependent on small-bowel mucosal transglutaminase 2-specific IgA deposits. BMC Immunol. 9, 6 (2008). PubMed DOI PMC

Jericho, H. & Guandalini, S. Extra-intestinal manifestation of celiac disease in children. Nutrients 10, 755 (2018). PubMed DOI PMC

Pastore, L. et al. Oral manifestations of celiac disease. J. Clin. Gastroenterol. PAP, 224–232 (2008). DOI

Aine, L. Permanent tooth dental enamel defects leading to the diagnosis of coeliac disease. Br. Dent. J. 177, 253–254 (1994). PubMed DOI

Petronijevic, S., Stig, S., Gao, J. & Halstensen, T. S. Amelogenin specific IgA and IgG in children with untreated coeliac disease. Eur. J. Oral Sci. 124, 526–533 (2016). PubMed DOI

Mariani, P. et al. Coeliac disease, enamel defects and HLA typing. Acta Paediatr. 83, 1272–1275 (1994). PubMed DOI

Pemberton, T. J. et al. Identification of novel genes expressed during mouse tooth development by microarray gene expression analysis. Dev. Dyn. 236, 2245–2257 (2007). PubMed DOI PMC

Eckstein, M. et al. Store-operated Ca PubMed DOI PMC

Duverger, O. et al. Hair keratin mutations in tooth enamel increase dental decay risk. J. Clin. Invest. 124, 5219–5224 (2014). PubMed DOI PMC

Chiba, Y. et al. G protein-coupled receptor Gpr115 (Adgrf4) is required for enamel mineralization mediated by ameloblasts. J. Biol. Chem. 295, 15328–15341 (2020). PubMed DOI PMC

Sharir, A. et al. A large pool of actively cycling progenitors orchestrates self-renewal and injury repair of an ectodermal appendage. Nat. Cell Biol. 21, 1102–1112 (2019). PubMed DOI PMC

Sansom, S. N. et al. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res. 24, 1918–1931 (2014). PubMed DOI PMC

Bornstein, C. et al. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 559, 622–626 (2018). PubMed DOI

Hu, J. C.-C. & Yamakoshi, Y. Enamelin and autosomal-dominant amelogenesis imperfecta. Crit. Rev. Oral Biol. Med. 14, 387–398 (2003). PubMed DOI

Nelson, S. J. Dental Anatomy, Physiology and Occlusion (Elsevier, 2015).

Perniola, R., Tamborrino, G., Marsigliante, S. & de Rinaldis, C. Assessment of enamel hypoplasia in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J. Oral Pathol. Med. 27, 278–282 (1998). PubMed DOI

Calamari, Z. T., Hu, J. K. H. & Klein, O. D. Tissue mechanical forces and evolutionary developmental changes act through space and time to shape tooth morphology and function. BioEssays 40, e1800140 (2018). PubMed DOI PMC

Katchburian, E., Katchburiant, A. V. & Pearse, A. G. E. Histochemistry of lysosomal enzymes in developing teeth of albino rats. J. Anat. 101, 783–792 (1967). PubMed PMC

Baratella, L., Arana-Chavez, V. E. & Katchburian, E. Macrophages and apoptosis in the stellate reticulum of the rat enamel organ. J. Anat. 197, 303–306 (2000). PubMed DOI PMC

Nishikawa, S. & Sasaki, F. Phagocytotic processing of apoptotic bodies of transitional ameloblasts by MHC Class II-expressing macrophages in rat incisor. J. Histochem. Cytochem. 44, 1459–1467 (1996). PubMed DOI

Tsuruga, E., Sakakura, Y., Yajima, T. & Shide, N. Appearance and distribution of dendritic cells and macrophages in dental pulp during early postnatal morphogenesis of mouse mandibular first molars. Histochem. Cell Biol. 112, 193–204 (1999). PubMed DOI

Nishikawa, S. & Sasaki, F. Internalization of amelogenin by dendritic cells of the papillary layer during transition and early maturation stages. Histochem. Cell Biol. 112, 301–305 (1999). PubMed DOI

Jessen, H. & Moe, H. The fine structure of macrophages in the enamel organ, with special reference to the microtubular system. Z. Zellforsch. 126, 466–182 (1972). PubMed DOI

Bossù, M., Bartoli, A., Orsini, G., Luppino, E. & Polimeni, A. Enamel hypoplasia in coeliac children: a potential clinical marker of early diagnosis. Eur. J. Paediatr. Dent. 8, 31–37 (2007). PubMed

Petronijevic, S., Stig, S. & Halstensen, T. S. Epitope mapping of anti‐amelogenin IgA in coeliac disease. Eur. J. Oral Sci. 128, 27–36 (2020). PubMed DOI

Sóñora, C. et al. Enamel organ proteins as targets for antibodies in celiac disease: implications for oral health. Eur. J. Oral Sci. 124, 11–16 (2016). PubMed DOI

Paolella, G., Sposito, S., Romanelli, A. M. & Caputo, I. Type 2 transglutaminase in coeliac disease: a key player in pathogenesis, diagnosis and therapy. Int. J. Mol. Sci. 23, 7513 (2022). PubMed DOI PMC

Herrera, M. G. & Dodero, V. I. Gliadin proteolytical resistant peptides: the interplay between structure and self-assembly in gluten-related disorders. Biophys. Rev. 13, 1147–1154 (2021). PubMed DOI PMC

Kristjánsson, G., Venge, P. & Hällgren, R. Mucosal reactivity to cow’s milk protein in coeliac disease. Clin. Exp. Immunol. 147, 449–455 (2007). PubMed DOI PMC

Capone, K., Sansotta, N., Vohra, P., Jericho, H. & Guandalini, S. Milk protein-induced villous atrophy and elevated serologies in four children with celiac disease on a gluten-free diet. Ann. Pediatr. 3, 1028 (2020).

Coucke, F. Food intolerance in patients with manifest autoimmunity. Observational study. Autoimmun. Rev. 17, 1078–1080 (2018). PubMed DOI

Zone, J. J., Egan, C. A., Taylor, T. B. & Meyer, L. J. IgA autoimmune disorders: development of a passive transfer mouse model. J. Invest. Dermatol. Symp. Proc. 9, 47–51 (2004). DOI

Sinnberg, T. et al. Pulmonary surfactant proteins are inhibited by immunoglobulin A autoantibodies in severe COVID-19. Am. J. Respir. Crit. Care Med. 207, 38–49 (2023). PubMed DOI

Mylliirniemi, S. & Perheentupa, J. Oral findings in the autoimmune polyendocrinopathy-candidosis syndrome (APECS) and other forms of hypoparathyroidism. Oral Surg. Oral Med. Oral Pathol. 45, 721–729 (1978). DOI

Rashid, M. & Zarkadas, M. Oral manifestations of celiac disease: a clinical guide for dentists. J. Can. Dent. Assoc. 77, b39 (2011).

Gibbons, D. L. & Spencer, J. Mouse and human intestinal immunity: same ballpark, different players; different rules, same score. Mucosal Immunol. 4, 148–157 (2011). PubMed DOI

Monteiro, R. C. & Van De Winkel, J. G. J. IgA Fc receptors. Annu. Rev. Immunol. 21, 177–204 (2003).

Laible, G., Smolenski, G., Wheeler, T. & Brophy, B. Increased gene dosage for β- and κ-casein in transgenic cattle improves milk composition through complex effects. Sci. Rep. 6, 37607 (2016). PubMed DOI PMC

Bijl, E., van Valenberg, H. J. F., Huppertz, T. & van Hooijdonk, A. C. M. Protein, casein, and micellar salts in milk: current content and historical perspectives. J. Dairy Sci. 96, 5455–5464 (2013). PubMed DOI

Wedholm, A., Larsen, L. B., Lindmark-Månsson, H., Karlsson, A. H. & Andrén, A. Effect of protein composition on the cheese-making properties of milk from individual dairy cows. J. Dairy Sci. 89, 3296–3305 (2006). PubMed DOI

Smith, C. E. L. et al. Phenotype and variant spectrum in the LAMB3 form of amelogenesis imperfecta. J. Dent. Res. 98, 698–704 (2019). PubMed DOI

Kim, J.-W. et al. A novel de novo mutation in LAMB3 causes localized hypoplastic enamel in the molar region. Eur. J. Oral Sci. 124, 403–405 (2016). PubMed DOI

Poulter, J. A. et al. Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta. Eur. J. Hum. Genet. 22, 132–135 (2013). PubMed DOI PMC

Caccamo, D. et al. Expression pattern of transglutaminases in the early differentiation stage of erupting rat incisor. Amino Acids 36, 49–56 (2009). PubMed DOI

Beth, S. A. et al. Generation R birth cohort study shows that specific enamel defects were not associated with elevated serum transglutaminase type 2 antibodies. Acta Paediatr. 105, e485–e491 (2016). PubMed DOI

McCarra, C., Olegário, I. C., O’Connell, A. C. & Leith, R. Prevalence of hypomineralised second primary molars (HSPM): a systematic review and meta-analysis. Int. J. Paediatr. Dent. 32, 367–382 (2022). PubMed DOI

Kohen, R. et al. UTAP: user-friendly transcriptome analysis pipeline. BMC Bioinform. 20, 154 (2019). DOI

Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000). PubMed DOI PMC

Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013). PubMed DOI PMC

Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016). PubMed DOI PMC

Xu, H. et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 25, 1147–1157 (2015). PubMed DOI PMC

Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018). PubMed DOI PMC

De Laurenzi, V. & Melino, G. Gene disruption of tissue transglutaminase. Mol. Cell. Biol. 21, 148–155 (2001). PubMed DOI PMC

Jiang, W., Anderson, M. S., Bronson, R., Mathis, D. & Benoist, C. Modifier loci condition autoimmunity provoked by Aire deficiency. J. Exp. Med. 202, 805–815 (2005). PubMed DOI PMC

Ossart, J. et al. Breakdown of immune tolerance in AIRE-deficient rats induces a severe autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy-like autoimmune disease. J. Immunol. 201, 874–887 (2018). PubMed DOI

Vera Alvarez, R., Pongor, L. S., Mariño-Ramírez, L. & Landsman, D. TPMCalculator: one-step software to quantify mRNA abundance of genomic features. Bioinformatics 35, 1960–1962 (2019). PubMed DOI

Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014). PubMed DOI PMC

Khan, F., He, M. & Taussig, M. J. Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on Ni-nitrilotriacetic acid surfaces. Anal. Chem. 78, 3072–3079 (2006). PubMed DOI

Wald, T. et al. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5. J. Biol. Chem. 288, 22333–22345 (2013). PubMed DOI PMC

Simmer, J. P. et al. Isolation and characterization of a mouse amelogenin expressed in Escherichia coli. Calcif. Tissue Int. 54, 312–319 (1994). PubMed DOI

Wilkinson, D. G. & Nieto, M. A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361–373 (1993). PubMed DOI

Goldfarb, Y. et al. Mechanistic dissection of dominant AIRE mutations in mouse models reveals AIRE autoregulation. J. Exp. Med. 218, e20201076 (2021).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Skeletal dysmorphology and mineralization defects in Fgf20 KO mice

. 2024 ; 15 () : 1286365. [epub] 20240726

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...