Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R35 DE026602
NIDCR NIH HHS - United States
PubMed
28196895
PubMed Central
PMC5338493
DOI
10.1073/pnas.1615334114
PII: 1615334114
Knihovny.cz E-zdroje
- Klíčová slova
- ameloblastin, amelogenin, biomineralization, enamel, intrinsically disordered protein,
- MeSH
- amelogenin metabolismus MeSH
- aminokyselinové motivy fyziologie MeSH
- biologická evoluce MeSH
- extracelulární matrix - proteiny metabolismus MeSH
- hydroxyapatit metabolismus MeSH
- myši MeSH
- proteiny zubní skloviny metabolismus MeSH
- sekvence aminokyselin MeSH
- vazba proteinů fyziologie MeSH
- vnitřně neuspořádané proteiny metabolismus MeSH
- zubní sklovina metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- amelogenin MeSH
- enamel matrix proteins MeSH Prohlížeč
- extracelulární matrix - proteiny MeSH
- hydroxyapatit MeSH
- proteiny zubní skloviny MeSH
- vnitřně neuspořádané proteiny MeSH
The formation of mineralized tissues is governed by extracellular matrix proteins that assemble into a 3D organic matrix directing the deposition of hydroxyapatite. Although the formation of bones and dentin depends on the self-assembly of type I collagen via the Gly-X-Y motif, the molecular mechanism by which enamel matrix proteins (EMPs) assemble into the organic matrix remains poorly understood. Here we identified a Y/F-x-x-Y/L/F-x-Y/F motif, evolutionarily conserved from the first tetrapods to man, that is crucial for higher order structure self-assembly of the key intrinsically disordered EMPs, ameloblastin and amelogenin. Using targeted mutations in mice and high-resolution imaging, we show that impairment of ameloblastin self-assembly causes disorganization of the enamel organic matrix and yields enamel with disordered hydroxyapatite crystallites. These findings define a paradigm for the molecular mechanism by which the EMPs self-assemble into supramolecular structures and demonstrate that this process is crucial for organization of the organic matrix and formation of properly structured enamel.
Department of Orofacial Sciences University of California San Francisco CA 94143
Department of Pediatrics University of California San Francisco CA 94143
Institute for Human Genetics University of California San Francisco CA 94143
Institute of Microbiology of the Czech Academy of Sciences v v i 142 20 Prague 4 Czech Republic
Institute of Microbiology of the Czech Academy of Sciences v v i 142 20 Prague 4 Czech Republic;
Program in Craniofacial Biology University of California San Francisco CA 94143
Zobrazit více v PubMed
Kawasaki K, Suzuki T, Weiss KM. Genetic basis for the evolution of vertebrate mineralized tissue. Proc Natl Acad Sci USA. 2004;101(31):11356–11361. PubMed PMC
Gajjeraman S, Narayanan K, Hao J, Qin C, George A. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J Biol Chem. 2007;282(2):1193–1204. PubMed
Kawasaki K, Weiss KM. Mineralized tissue and vertebrate evolution: The secretory calcium-binding phosphoprotein gene cluster. Proc Natl Acad Sci USA. 2003;100(7):4060–4065. PubMed PMC
Sire JY, Davit-Béal T, Delgado S, Gu X. The origin and evolution of enamel mineralization genes. Cells Tissues Organs. 2007;186(1):25–48. PubMed
Kawasaki K. The SCPP gene family and the complexity of hard tissues in vertebrates. Cells Tissues Organs. 2011;194(2-4):108–112. PubMed
Price SA, Hopkins SS, Smith KK, Roth VL. Tempo of trophic evolution and its impact on mammalian diversification. Proc Natl Acad Sci USA. 2012;109(18):7008–7012. PubMed PMC
Sander PM. Non-mammalian synapsid enamel and the origin of mammalian enamel prisms: The bottom-up perspective. In: Koenigswald W, Sander PM, editors. Tooth Enamel Microstructure. A. A. Balkema; Rotterdam: 1997. pp. 41–62.
Clemens WA. Characterization of enamel microstructure terminology and application of the origins of prismatic structures in systematic analysis. In: Koenigswald W, Sander PM, editors. Tooth Enamel Microstructure. A. A. Balkema; Rotterdam: 1997. pp. 85–112.
Martin T. Incisor enamel microstructure and systematics in rodents. In: Koenigswald W, Sander PM, editors. Tooth Enamel Microstructure. A. A. Balkema; Rotterdam: 1997. pp. 163–175.
Tarasevich BJ, et al. The nucleation and growth of calcium phosphate by amelogenin. J Cryst Growth. 2007;304(2):407–415. PubMed PMC
Fang PA, Conway JF, Margolis HC, Simmer JP, Beniash E. Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proc Natl Acad Sci USA. 2011;108(34):14097–14102. PubMed PMC
Delak K, et al. The tooth enamel protein, porcine amelogenin, is an intrinsically disordered protein with an extended molecular configuration in the monomeric form. Biochemistry. 2009;48(10):2272–2281. PubMed PMC
Wald T, et al. Biophysical characterization of recombinant human ameloblastin. Eur J Oral Sci. 2011;119(Suppl 1):261–269. PubMed
Wald T, et al. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5. J Biol Chem. 2013;288(31):22333–22345. PubMed PMC
Mészáros B, Tompa P, Simon I, Dosztányi Z. Molecular principles of the interactions of disordered proteins. J Mol Biol. 2007;372(2):549–561. PubMed
Das RK, Mao AH, Pappu RV. Unmasking functional motifs within disordered regions of proteins. Sci Signal. 2012;5(220):pe17. PubMed
Boot-Handford RP, Tuckwell DS. Fibrillar collagen: The key to vertebrate evolution? A tale of molecular incest. BioEssays. 2003;25(2):142–151. PubMed
Osicka R, et al. A novel “clip-and-link” activity of repeat in toxin (RTX) proteins from gram-negative pathogens. Covalent protein cross-linking by an Asp-Lys isopeptide bond upon calcium-dependent processing at an Asp-Pro bond. J Biol Chem. 2004;279(24):24944–24956. PubMed
Sadilkova L, et al. Single-step affinity purification of recombinant proteins using a self-excising module from Neisseria meningitidis FrpC. Protein Sci. 2008;17(10):1834–1843. PubMed PMC
Moradian-Oldak J, Leung W, Fincham AG. Temperature and pH-dependent supramolecular self-assembly of amelogenin molecules: A dynamic light-scattering analysis. J Struct Biol. 1998;122(3):320–327. PubMed
Ravindranath HH, Chen LS, Zeichner-David M, Ishima R, Ravindranath RM. Interaction between the enamel matrix proteins amelogenin and ameloblastin. Biochem Biophys Res Commun. 2004;323(3):1075–1083. PubMed
Mazumder P, Prajapati S, Lokappa SB, Gallon V, Moradian-Oldak J. Analysis of co-assembly and co-localization of ameloblastin and amelogenin. Front Physiol. 2014;5:274. PubMed PMC
Mazumder P, Prajapati S, Bapat R, Moradian-Oldak J. Amelogenin-ameloblastin spatial interaction around maturing enamel rods. J Dent Res. 2016;95(9):1042–1048. PubMed PMC
Bininda-Emonds OR, et al. The delayed rise of present-day mammals. Nature. 2007;446(7135):507–512. PubMed
Pyron RA, Wiens JJ. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol. 2011;61(2):543–583. PubMed
Jones ME, et al. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara) BMC Evol Biol. 2013;13:208. PubMed PMC
Welker F, et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature. 2015;522(7554):81–84. PubMed
Uversky VN, Dunker AK. Understanding protein non-folding. Biochim Biophys Acta. 2010;1804(6):1231–1264. PubMed PMC
Dyson HJ. Expanding the proteome: Disordered and alternatively folded proteins. Q Rev Biophys. 2011;44(4):467–518. PubMed PMC
Tompa P. Unstructural biology coming of age. Curr Opin Struct Biol. 2011;21(3):419–425. PubMed
Forlino A, Marini JC. Osteogenesis imperfecta. Lancet. 2016;387(10028):1657–1671. PubMed PMC
He G, Dahl T, Veis A, George A. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater. 2003;2(8):552–558. PubMed
Moradian-Oldak J, Paine ML, Lei YP, Fincham AG, Snead ML. Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy. J Struct Biol. 2000;131(1):27–37. PubMed
Paine ML, et al. Enamel biomineralization defects result from alterations to amelogenin self-assembly. J Struct Biol. 2000;132(3):191–200. PubMed
Carneiro KM, et al. Amyloid-like ribbons of amelogenins in enamel mineralization. Sci Rep. 2016;6:23105. PubMed PMC
Wazen RM, Moffatt P, Zalzal SF, Yamada Y, Nanci A. A mouse model expressing a truncated form of ameloblastin exhibits dental and junctional epithelium defects. Matrix Biol. 2009;28(5):292–303. PubMed PMC
Iwata T, et al. Processing of ameloblastin by MMP-20. J Dent Res. 2007;86(2):153–157. PubMed
Nagano T, et al. Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. J Dent Res. 2009;88(9):823–828. PubMed PMC
Uchida T, et al. Immunochemical and immunohistochemical studies, using antisera against porcine 25 kDa amelogenin, 89 kDa enamelin and the 13-17 kDa nonamelogenins, on immature enamel of the pig and rat. Histochemistry. 1991;96(2):129–138. PubMed
Uchida T, et al. Synthesis, secretion, degradation, and fate of ameloblastin during the matrix formation stage of the rat incisor as shown by immunocytochemistry and immunochemistry using region-specific antibodies. J Histochem Cytochem. 1997;45(10):1329–1340. PubMed
Hu CC, et al. Sheathlin: Cloning, cDNA/polypeptide sequences, and immunolocalization of porcine enamel sheath proteins. J Dent Res. 1997;76(2):648–657. PubMed
Geng S, White SN, Paine ML, Snead ML. Protein interaction between ameloblastin and proteasome subunit α type 3 can facilitate redistribution of ameloblastin domains within forming enamel. J Biol Chem. 2015;290(34):20661–20673. PubMed PMC
Fukae M, Tanabe T. 45Ca-labeled proteins found in porcine developing dental enamel at an early stage of development. Adv Dent Res. 1987;1(2):261–266. PubMed
Wood CB, Stern DN. The earliest prisms in mammalian and reptilian enamel. In: Koenigswald W, Sander PM, editors. Tooth Enamel Microstructure. A. A. Balkema; Rotterdam: 1997. pp. 63–83.
Horacek I, Spoutil F. 2012. Why tribosphenic? On variation and constraint in developmental dynamics of chiropteran molars. Evolutionary History of Bats: Fossils, Molecules and Morphology, eds Gunnell GF, Simmons NB (Cambridge Univ Press, Cambridge, UK), pp 572.
Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) 2nd Ed.
Simmer JP, et al. Isolation and characterization of a mouse amelogenin expressed in Escherichia coli. Calcif Tissue Int. 1994;54(4):312–319. PubMed
Kasparek P, et al. Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett. 2014;588(21):3982–3988. PubMed
Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208–212. PubMed PMC
Robinson C, Kirkham J, Stonehouse NJ, Shore RC. Control of crystal growth during enamel maturation. Connect Tissue Res. 1989;22(1-4):139–145. PubMed
Simmer JP, Hu Y, Lertlam R, Yamakoshi Y, Hu JC. Hypomaturation enamel defects in Klk4 knockout/LacZ knockin mice. J Biol Chem. 2009;284(28):19110–19121. PubMed PMC
Early evolution of enamel matrix proteins is reflected by pleiotropy of physiological functions
Xeno-Hybrid Bone Graft Releasing Biomimetic Proteins Promotes Osteogenic Differentiation of hMSCs
Characterization of AMBN I and II Isoforms and Study of Their Ca2+-Binding Properties
Phosphorylation Modulates Ameloblastin Self-assembly and Ca 2+ Binding