Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif

. 2017 Feb 28 ; 114 (9) : E1641-E1650. [epub] 20170214

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28196895

Grantová podpora
R35 DE026602 NIDCR NIH HHS - United States

The formation of mineralized tissues is governed by extracellular matrix proteins that assemble into a 3D organic matrix directing the deposition of hydroxyapatite. Although the formation of bones and dentin depends on the self-assembly of type I collagen via the Gly-X-Y motif, the molecular mechanism by which enamel matrix proteins (EMPs) assemble into the organic matrix remains poorly understood. Here we identified a Y/F-x-x-Y/L/F-x-Y/F motif, evolutionarily conserved from the first tetrapods to man, that is crucial for higher order structure self-assembly of the key intrinsically disordered EMPs, ameloblastin and amelogenin. Using targeted mutations in mice and high-resolution imaging, we show that impairment of ameloblastin self-assembly causes disorganization of the enamel organic matrix and yields enamel with disordered hydroxyapatite crystallites. These findings define a paradigm for the molecular mechanism by which the EMPs self-assemble into supramolecular structures and demonstrate that this process is crucial for organization of the organic matrix and formation of properly structured enamel.

Zobrazit více v PubMed

Kawasaki K, Suzuki T, Weiss KM. Genetic basis for the evolution of vertebrate mineralized tissue. Proc Natl Acad Sci USA. 2004;101(31):11356–11361. PubMed PMC

Gajjeraman S, Narayanan K, Hao J, Qin C, George A. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J Biol Chem. 2007;282(2):1193–1204. PubMed

Kawasaki K, Weiss KM. Mineralized tissue and vertebrate evolution: The secretory calcium-binding phosphoprotein gene cluster. Proc Natl Acad Sci USA. 2003;100(7):4060–4065. PubMed PMC

Sire JY, Davit-Béal T, Delgado S, Gu X. The origin and evolution of enamel mineralization genes. Cells Tissues Organs. 2007;186(1):25–48. PubMed

Kawasaki K. The SCPP gene family and the complexity of hard tissues in vertebrates. Cells Tissues Organs. 2011;194(2-4):108–112. PubMed

Price SA, Hopkins SS, Smith KK, Roth VL. Tempo of trophic evolution and its impact on mammalian diversification. Proc Natl Acad Sci USA. 2012;109(18):7008–7012. PubMed PMC

Sander PM. Non-mammalian synapsid enamel and the origin of mammalian enamel prisms: The bottom-up perspective. In: Koenigswald W, Sander PM, editors. Tooth Enamel Microstructure. A. A. Balkema; Rotterdam: 1997. pp. 41–62.

Clemens WA. Characterization of enamel microstructure terminology and application of the origins of prismatic structures in systematic analysis. In: Koenigswald W, Sander PM, editors. Tooth Enamel Microstructure. A. A. Balkema; Rotterdam: 1997. pp. 85–112.

Martin T. Incisor enamel microstructure and systematics in rodents. In: Koenigswald W, Sander PM, editors. Tooth Enamel Microstructure. A. A. Balkema; Rotterdam: 1997. pp. 163–175.

Tarasevich BJ, et al. The nucleation and growth of calcium phosphate by amelogenin. J Cryst Growth. 2007;304(2):407–415. PubMed PMC

Fang PA, Conway JF, Margolis HC, Simmer JP, Beniash E. Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proc Natl Acad Sci USA. 2011;108(34):14097–14102. PubMed PMC

Delak K, et al. The tooth enamel protein, porcine amelogenin, is an intrinsically disordered protein with an extended molecular configuration in the monomeric form. Biochemistry. 2009;48(10):2272–2281. PubMed PMC

Wald T, et al. Biophysical characterization of recombinant human ameloblastin. Eur J Oral Sci. 2011;119(Suppl 1):261–269. PubMed

Wald T, et al. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5. J Biol Chem. 2013;288(31):22333–22345. PubMed PMC

Mészáros B, Tompa P, Simon I, Dosztányi Z. Molecular principles of the interactions of disordered proteins. J Mol Biol. 2007;372(2):549–561. PubMed

Das RK, Mao AH, Pappu RV. Unmasking functional motifs within disordered regions of proteins. Sci Signal. 2012;5(220):pe17. PubMed

Boot-Handford RP, Tuckwell DS. Fibrillar collagen: The key to vertebrate evolution? A tale of molecular incest. BioEssays. 2003;25(2):142–151. PubMed

Osicka R, et al. A novel “clip-and-link” activity of repeat in toxin (RTX) proteins from gram-negative pathogens. Covalent protein cross-linking by an Asp-Lys isopeptide bond upon calcium-dependent processing at an Asp-Pro bond. J Biol Chem. 2004;279(24):24944–24956. PubMed

Sadilkova L, et al. Single-step affinity purification of recombinant proteins using a self-excising module from Neisseria meningitidis FrpC. Protein Sci. 2008;17(10):1834–1843. PubMed PMC

Moradian-Oldak J, Leung W, Fincham AG. Temperature and pH-dependent supramolecular self-assembly of amelogenin molecules: A dynamic light-scattering analysis. J Struct Biol. 1998;122(3):320–327. PubMed

Ravindranath HH, Chen LS, Zeichner-David M, Ishima R, Ravindranath RM. Interaction between the enamel matrix proteins amelogenin and ameloblastin. Biochem Biophys Res Commun. 2004;323(3):1075–1083. PubMed

Mazumder P, Prajapati S, Lokappa SB, Gallon V, Moradian-Oldak J. Analysis of co-assembly and co-localization of ameloblastin and amelogenin. Front Physiol. 2014;5:274. PubMed PMC

Mazumder P, Prajapati S, Bapat R, Moradian-Oldak J. Amelogenin-ameloblastin spatial interaction around maturing enamel rods. J Dent Res. 2016;95(9):1042–1048. PubMed PMC

Bininda-Emonds OR, et al. The delayed rise of present-day mammals. Nature. 2007;446(7135):507–512. PubMed

Pyron RA, Wiens JJ. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol. 2011;61(2):543–583. PubMed

Jones ME, et al. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara) BMC Evol Biol. 2013;13:208. PubMed PMC

Welker F, et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature. 2015;522(7554):81–84. PubMed

Uversky VN, Dunker AK. Understanding protein non-folding. Biochim Biophys Acta. 2010;1804(6):1231–1264. PubMed PMC

Dyson HJ. Expanding the proteome: Disordered and alternatively folded proteins. Q Rev Biophys. 2011;44(4):467–518. PubMed PMC

Tompa P. Unstructural biology coming of age. Curr Opin Struct Biol. 2011;21(3):419–425. PubMed

Forlino A, Marini JC. Osteogenesis imperfecta. Lancet. 2016;387(10028):1657–1671. PubMed PMC

He G, Dahl T, Veis A, George A. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater. 2003;2(8):552–558. PubMed

Moradian-Oldak J, Paine ML, Lei YP, Fincham AG, Snead ML. Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy. J Struct Biol. 2000;131(1):27–37. PubMed

Paine ML, et al. Enamel biomineralization defects result from alterations to amelogenin self-assembly. J Struct Biol. 2000;132(3):191–200. PubMed

Carneiro KM, et al. Amyloid-like ribbons of amelogenins in enamel mineralization. Sci Rep. 2016;6:23105. PubMed PMC

Wazen RM, Moffatt P, Zalzal SF, Yamada Y, Nanci A. A mouse model expressing a truncated form of ameloblastin exhibits dental and junctional epithelium defects. Matrix Biol. 2009;28(5):292–303. PubMed PMC

Iwata T, et al. Processing of ameloblastin by MMP-20. J Dent Res. 2007;86(2):153–157. PubMed

Nagano T, et al. Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. J Dent Res. 2009;88(9):823–828. PubMed PMC

Uchida T, et al. Immunochemical and immunohistochemical studies, using antisera against porcine 25 kDa amelogenin, 89 kDa enamelin and the 13-17 kDa nonamelogenins, on immature enamel of the pig and rat. Histochemistry. 1991;96(2):129–138. PubMed

Uchida T, et al. Synthesis, secretion, degradation, and fate of ameloblastin during the matrix formation stage of the rat incisor as shown by immunocytochemistry and immunochemistry using region-specific antibodies. J Histochem Cytochem. 1997;45(10):1329–1340. PubMed

Hu CC, et al. Sheathlin: Cloning, cDNA/polypeptide sequences, and immunolocalization of porcine enamel sheath proteins. J Dent Res. 1997;76(2):648–657. PubMed

Geng S, White SN, Paine ML, Snead ML. Protein interaction between ameloblastin and proteasome subunit α type 3 can facilitate redistribution of ameloblastin domains within forming enamel. J Biol Chem. 2015;290(34):20661–20673. PubMed PMC

Fukae M, Tanabe T. 45Ca-labeled proteins found in porcine developing dental enamel at an early stage of development. Adv Dent Res. 1987;1(2):261–266. PubMed

Wood CB, Stern DN. The earliest prisms in mammalian and reptilian enamel. In: Koenigswald W, Sander PM, editors. Tooth Enamel Microstructure. A. A. Balkema; Rotterdam: 1997. pp. 63–83.

Horacek I, Spoutil F. 2012. Why tribosphenic? On variation and constraint in developmental dynamics of chiropteran molars. Evolutionary History of Bats: Fossils, Molecules and Morphology, eds Gunnell GF, Simmons NB (Cambridge Univ Press, Cambridge, UK), pp 572.

Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) 2nd Ed.

Simmer JP, et al. Isolation and characterization of a mouse amelogenin expressed in Escherichia coli. Calcif Tissue Int. 1994;54(4):312–319. PubMed

Kasparek P, et al. Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett. 2014;588(21):3982–3988. PubMed

Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208–212. PubMed PMC

Robinson C, Kirkham J, Stonehouse NJ, Shore RC. Control of crystal growth during enamel maturation. Connect Tissue Res. 1989;22(1-4):139–145. PubMed

Simmer JP, Hu Y, Lertlam R, Yamakoshi Y, Hu JC. Hypomaturation enamel defects in Klk4 knockout/LacZ knockin mice. J Biol Chem. 2009;284(28):19110–19121. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace