Oligomerization Function of the Native Exon 5 Sequence of Ameloblastin Fused with Calmodulin
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40060873
PubMed Central
PMC11886713
DOI
10.1021/acsomega.4c07953
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The evolution of proteins is primarily driven by the combinatorial assembly of a limited set of pre-existing modules known as protein domains. This modular architecture not only supports the diversity of natural proteins but also provides a robust strategy for protein engineering, enabling the design of artificial proteins with enhanced or novel functions for various industrial applications. Among these functions, oligomerization plays a crucial role in enhancing protein activity, such as by increasing the binding capacity of antibodies. To investigate the potential of engineering oligomerization, we examined the transferability of the sequence domain encoded by exon 5 (Ex5), which was originally responsible for the oligomerization of ameloblastin (AMBN). We designed a two-domain protein composed of Ex5 in combination with a monomeric, globular, and highly stable protein, specifically calmodulin (CaM). CaM represents the opposite protein character to AMBN, which is highly disordered and has a dynamic character. This engineered protein, termed eCaM, successfully acquired an oligomeric function, inducing self-assembly under specific conditions. Biochemical and biophysical analyses revealed that the oligomerization of eCaM is both concentration- and time-dependent, with the process being reversible upon dilution. Furthermore, mutating a key oligomerization residue within Ex5 abolished the self-assembly of eCaM, confirming the essential role of the Ex5 motif in driving oligomerization. Our findings demonstrate that the oligomerization properties encoded by Ex5 can be effectively transferred to a new protein context, though the positioning of Ex5 within the protein structure is critical. This work highlights the potential of enhancing monomeric proteins with oligomeric functions, paving the way for industrial applications and the development of proteins with tailored properties.
2nd Faculty of Medicine Charles University 5 Úvalu 84 15006 Prague Czech Republic
Faculty of Mathematics and Physics Charles University Ke Kralovu 5 12116 Prague Czech Republic
Faculty of Science University of Hradec Kralove Rokitanskeho 62 500 03 Hradec Kralove Czech Republic
Zobrazit více v PubMed
Lutz S.; Iamurri S. M.. Protein engineering: past, present, and future. In Protein Engineering: Methods and Protocols, 2018; pp 1–12. PubMed
Sinha R.; Shukla P. Current trends in protein engineering: updates and progress. Curr. Protein Pept. Sci. 2019, 20, 398–407. 10.2174/1389203720666181119120120. PubMed DOI
Ali M. H.; Imperiali B. Protein oligomerization: how and why. Bioorg. Med. Chem. 2005, 13, 5013–5020. 10.1016/j.bmc.2005.05.037. PubMed DOI
Kumari N.; Yadav S. Modulation of protein oligomerization: an overview. Prog. Biophys. Mol. Biol. 2019, 149, 99–113. 10.1016/j.pbiomolbio.2019.03.003. PubMed DOI
Gwyther R. E.; Jones D. D.; Worthy H. L. Better together: building protein oligomers naturally and by design. Biochem. Soc. Trans. 2019, 47, 1773–1780. 10.1042/BST20190283. PubMed DOI PMC
Gabizon R.; Friedler A. Allosteric modulation of protein oligomerization: an emerging approach to drug design. Front. Chem. 2014, 2, 9.10.3389/fchem.2014.00009. PubMed DOI PMC
Goodsell D. S.; Olson A. J. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 105–153. 10.1146/annurev.biophys.29.1.105. PubMed DOI
Levy E. D.; Teichmann S. A. Structural, evolutionary, and assembly principles of protein oligomerization. Prog. Mol. Biol. Transl. Sci. 2013, 117, 25–51. 10.1016/B978-0-12-386931-9.00002-7. PubMed DOI
Oohora K.; Hayashi T. Hemoprotein-based supramolecular assembling systems. Curr. Opin. Chem. Biol. 2014, 19, 154–161. 10.1016/j.cbpa.2014.02.014. PubMed DOI
Kobayashi N.; Arai R. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks. Curr. Opin. Biotechnol. 2017, 46, 57–65. 10.1016/j.copbio.2017.01.001. PubMed DOI
Ljubetič A.; Gradišar H.; Jerala R. Advances in design of protein folds and assemblies. Curr. Opin. Chem. Biol. 2017, 40, 65–71. 10.1016/j.cbpa.2017.06.020. PubMed DOI
Zakeri B.; Fierer J. O.; Celik E.; Chittock E. C.; Schwarz-Linek U.; Moy V. T.; Howarth M. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, E690–E697. 10.1073/pnas.1115485109. PubMed DOI PMC
Brodin J. D.; Ambroggio X.; Tang C.; Parent K. N.; Baker T. S.; Tezcan F. A. Metal-directed, chemically tunable assembly of one-, two-and three-dimensional crystalline protein arrays. Nat. Chem. 2012, 4, 375–382. 10.1038/nchem.1290. PubMed DOI PMC
Jones D. D.; Barker P. D. Controlling Self-Assembly by Linking Protein Folding, DNA Binding, and the Redox Chemistry of Heme. Angew. Chem., Int. Ed. 2005, 44, 6337–6341. 10.1002/anie.200463035. PubMed DOI
Leibly D. J.; Arbing M. A.; Pashkov I.; DeVore N.; Waldo G. S.; Terwilliger T. C.; Yeates T. O. A suite of engineered GFP molecules for oligomeric scaffolding. Structure 2015, 23, 1754–1768. 10.1016/j.str.2015.07.008. PubMed DOI PMC
Fallas J. A.; Ueda G.; Sheffler W.; Nguyen V.; McNamara D. E.; Sankaran B.; Pereira J. H.; Parmeggiani F.; Brunette T.; Cascio D.; et al. Computational design of self-assembling cyclic protein homo-oligomers. Nat. Chem. 2017, 9, 353–360. 10.1038/nchem.2673. PubMed DOI PMC
Chevalier A.; Silva D.-A.; Rocklin G. J.; Hicks D. R.; Vergara R.; Murapa P.; Bernard S. M.; Zhang L.; Lam K.-H.; Yao G.; et al. Massively parallel de novo protein design for targeted therapeutics. Nature 2017, 550, 74–79. 10.1038/nature23912. PubMed DOI PMC
Gonen S.; DiMaio F.; Gonen T.; Baker D. Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. Science 2015, 348, 1365–1368. 10.1126/science.aaa9897. PubMed DOI
Woolfson D. N. Coiled-coil design: updated and upgraded. Subcell Biochem. 2017, 82, 35–61. 10.1007/978-3-319-49674-0_2. PubMed DOI
Blondel A.; Bedouelle H. Engineering the quaternary structure of an exported protein with a leucine zipper. Protein Eng., Des. Sel. 1991, 4, 457–461. 10.1093/protein/4.4.457. PubMed DOI
Deisseroth K.; Heist E. K.; Tsien R. W. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 1998, 392, 198–202. 10.1038/32448. PubMed DOI
Saimi Y.; Kung C. Calmodulin as an ion channel subunit. Annu. Rev. Physiol. 2002, 64, 289–311. 10.1146/annurev.physiol.64.100301.111649. PubMed DOI
Neil S. M.; Lakey T.; Tomlinson S. Calmodulin regulation of adenylate cyclase activity. Cell Calcium 1985, 6, 213–226. 10.1016/0143-4160(85)90007-7. PubMed DOI
Swulius M. T.; Waxham M. N. Ca(2+)/calmodulin-dependent protein kinases. Cell. Mol. Life Sci. 2008, 65, 2637–2657. 10.1007/s00018-008-8086-2. PubMed DOI PMC
Strynadka N. C.; James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu. Rev. Biochem. 1989, 58, 951–998. 10.1146/annurev.bi.58.070189.004511. PubMed DOI
Kretsinger R. H.; Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J. Biol. Chem. 1973, 248, 3313–3326. 10.1016/S0021-9258(19)44043-X. PubMed DOI
Babu Y. S.; Sack J. S.; Greenhough T. J.; Bugg C. E.; Means A. R.; Cook W. J. Three-dimensional structure of calmodulin. Nature 1985, 315, 37–40. 10.1038/315037a0. PubMed DOI
Babu Y. S.; Bugg C. E.; Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol. 1988, 204, 191–204. 10.1016/0022-2836(88)90608-0. PubMed DOI
Barbato G.; Ikura M.; Kay L. E.; Pastor R. W.; Bax A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 1992, 31, 5269–5278. 10.1021/bi00138a005. PubMed DOI
Lau S. Y.; Procko E.; Gaudet R. Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. J. Gen. Physiol. 2012, 140, 541–555. 10.1085/jgp.201210810. PubMed DOI PMC
Ataman Z. A.; Gakhar L.; Sorensen B. R.; Hell J. W.; Shea M. A. The NMDA receptor NR1 C1 region bound to calmodulin: structural insights into functional differences between homologous domains. Structure 2007, 15, 1603–1617. 10.1016/j.str.2007.10.012. PubMed DOI PMC
Johnson C. N.; Potet F.; Thompson M. K.; Kroncke B. M.; Glazer A. M.; Voehler M. W.; Knollmann B. C.; George A. L.; Chazin W. J. A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel. Structure 2018, 26, 683–694.e3. 10.1016/j.str.2018.03.005. PubMed DOI PMC
Liu Y.; Zheng X.; Mueller G. A.; Sobhany M.; DeRose E. F.; Zhang Y.; London R. E.; Birnbaumer L. Crystal structure of calmodulin binding domain of orai1 in complex with Ca2+ calmodulin displays a unique binding mode. J. Biol. Chem. 2012, 287, 43030–43041. 10.1074/jbc.M112.380964. PubMed DOI PMC
Zhang M.; Abrams C.; Wang L. P.; Gizzi A.; He L. P.; Lin R. H.; Chen Y.; Loll P. J.; Pascal J. M.; Zhang J. F. Structural Basis for Calmodulin as a Dynamic Calcium Sensor. Structure 2012, 20, 911–923. 10.1016/j.str.2012.03.019. PubMed DOI PMC
Bahler M.; Rhoads A. Calmodulin signaling via the IQ motif. FEBS Lett. 2002, 513, 107–113. 10.1016/S0014-5793(01)03239-2. PubMed DOI
Vetyskova V.; Zouharova M.; Bednarova L.; Vaněk O.; Sázelová P.; Kašička V.; Vymetal J.; Srp J.; Rumlová M.; Charnavets T.; et al. Characterization of AMBN I and II isoforms and study of their Ca2+-binding properties. Int. J. Mol. Sci. 2020, 21, 9293.10.3390/ijms21239293. PubMed DOI PMC
Vetyskova V.; Hubalek M.; Sulc J.; Prochazka J.; Vondrasek J.; Vydra Bousova K. Proteolytic profiles of two isoforms of human AMBN expressed in E. coli by MMP-20 and KLK-4 proteases. Heliyon 2024, 10, e2456410.1016/j.heliyon.2024.e24564. PubMed DOI PMC
Paine M. L.; Luo W.; Zhu D. H.; Bringas P.; Snead M. L. Functional domains for amelogenin revealed by compound genetic defects. J. Bone Miner. Res. 2003, 18, 466–472. 10.1359/jbmr.2003.18.3.466. PubMed DOI
Lu X.; Li W.; Fukumoto S.; Yamada Y.; Evans C. A.; Diekwisch T.; Luan X. The ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing. Matrix Biol. 2016, 52–54, 113–126. 10.1016/j.matbio.2016.02.007. PubMed DOI PMC
Su J.; Chandrababu K. B.; Moradian-Oldak J. Ameloblastin peptide encoded by exon 5 interacts with amelogenin N-terminus. Biochem. Biophys. Rep. 2016, 7, 26–32. 10.1016/j.bbrep.2016.05.007. PubMed DOI PMC
Wald T.; Osickova A.; Sulc M.; Benada O.; Semeradtova A.; Rezabkova L.; Veverka V.; Bednarova L.; Maly J.; Macek P.; Sebo P.; Slaby I.; Vondrasek J.; Osicka R. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5. J. Biol. Chem. 2013, 288, 22333–22345. 10.1074/jbc.M113.456012. PubMed DOI PMC
Wald T.; Spoutil F.; Osickova A.; Prochazkova M.; Benada O.; Kasparek P.; Bumba L.; Klein O. D.; Sedlacek R.; Sebo P.; et al. Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E1641–E1650. 10.1073/pnas.1615334114. PubMed DOI PMC
Su J.; Kegulian N. C.; Bapat R. A.; Moradian-Oldak J. Ameloblastin binds to phospholipid bilayers via a helix-forming motif within the sequence encoded by exon 5. ACS Omega 2019, 4, 4405–4416. 10.1021/acsomega.8b03582. PubMed DOI PMC
Lu X.; Ito Y.; Kulkarni A.; Gibson C.; Luan X.; Diekwisch T. G. Ameloblastin-rich enamel matrix favors short and randomly oriented apatite crystals. Eur. J. Oral Sci. 2011, 119, 254–260. 10.1111/j.1600-0722.2011.00905.x. PubMed DOI PMC
Ravindranath H. H.; Chen L.-S.; Zeichner-David M.; Ishima R.; Ravindranath R. M. Interaction between the enamel matrix proteins amelogenin and ameloblastin. Biochem. Biophys. Res. Commun. 2004, 323, 1075–1083. 10.1016/j.bbrc.2004.08.207. PubMed DOI
Pandya M.; Diekwisch T. G. Amelogenesis: Transformation of a protein-mineral matrix into tooth enamel. J. Struct. Biol. 2021, 213, 107809.10.1016/j.jsb.2021.107809. PubMed DOI PMC
Kegulian N. C.; Visakan G.; Bapat R. A.; Moradian-Oldak J. Ameloblastin and its multifunctionality in amelogenesis: a review. Matrix Biol. 2024, 131, 62.10.1016/j.matbio.2024.05.007. PubMed DOI PMC
Bousova K.; Herman P.; Vecer J.; Bednarova L.; Monincova L.; Majer P.; Vyklicky L.; Vondrasek J.; Teisinger J. Shared CaM- and S100A1-binding epitopes in the distal TRPM4 N terminus. FEBS J. 2018, 285, 599–613. 10.1111/febs.14362. PubMed DOI
Hayes D.; Laue T.; Philo J.. Program Sednterp: Sedimentation Interpretation Pprogram; Alliance Protein Laboratories: Thousand Oaks, CA, 1995.
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 2000, 78, 1606–1619. 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Brautigam C. A. Calculations and Publication-Quality Illustrations for Analytical Ultracentrifugation Data. Methods Enzymol. 2015, 562, 109–133. 10.1016/bs.mie.2015.05.001. PubMed DOI
Sreerama N.; Woody R. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 2000, 287, 252–260. 10.1006/abio.2000.4880. PubMed DOI
Bousova K.; Barvik I.; Herman P.; Hofbauerová K.; Monincova L.; Majer P.; Zouharova M.; Vetyskova V.; Postulkova K.; Vondrasek J. Mapping of CaM, S100A1 and PIP2-Binding Epitopes in the Intracellular N-and C-Termini of TRPM4. Int. J. Mol. Sci. 2020, 21, 4323.10.3390/ijms21124323. PubMed DOI PMC
Wald T.; Bednarova L.; Osicka R.; Pachl P.; Sulc M.; Lyngstadaas S. P.; Slaby I.; Vondrasek J. Biophysical characterization of recombinant human ameloblastin. Eur. J. Oral Sci. 2011, 119 (s1), 261–269. 10.1111/j.1600-0722.2011.00913.x. PubMed DOI
Martin S. R.; Bayley P. M. The effects of Ca2+ and Cd2+ on the secondary and tertiary structure of bovine testis calmodulin. A circular-dichroism study. Biochem. J. 1986, 238, 485–490. 10.1042/bj2380485. PubMed DOI PMC
Hashimoto K.; Panchenko A. R. Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20352–20357. 10.1073/pnas.1012999107. PubMed DOI PMC
Frieden C. Protein oligomerization as a metabolic control mechanism: Application to apoE. Protein Sci. 2019, 28, 837–842. 10.1002/pro.3583. PubMed DOI PMC
Strotmann R.; Schultz G.; Plant T. D. Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J. Biol. Chem. 2003, 278, 26541–26549. 10.1074/jbc.M302590200. PubMed DOI
Tong Q.; Zhang W.; Conrad K.; Mostoller K.; Cheung J. Y.; Peterson B. Z.; Miller B. A. Regulation of the transient receptor potential channel TRPM2 by the Ca2+ sensor calmodulin. J. Biol. Chem. 2006, 281, 9076–9085. 10.1074/jbc.M510422200. PubMed DOI
Numazaki M.; Tominaga T.; Takeuchi K.; Murayama N.; Toyooka H.; Tominaga M. Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 8002–8006. 10.1073/pnas.1337252100. PubMed DOI PMC
Rosenbaum T.; Gordon-Shaag A.; Munari M.; Gordon S. E. Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J. Gen. Physiol. 2004, 123, 53–62. 10.1085/jgp.200308906. PubMed DOI PMC
Xiao R.; Tang J.; Wang C.; Colton C. K.; Tian J.; Zhu M. X. Calcium plays a central role in the sensitization of TRPV3 channel to repetitive stimulations. J. Biol. Chem. 2008, 283, 6162–6174. 10.1074/jbc.M706535200. PubMed DOI PMC
de Groot T.; Kovalevskaya N. V.; Verkaart S.; Schilderink N.; Felici M.; van der Hagen E. A.; Bindels R. J.; Vuister G. W.; Hoenderop J. G. Molecular mechanisms of calmodulin action on TRPV5 and modulation by parathyroid hormone. Mol. Cell. Biol. 2011, 31, 2845–2853. 10.1128/MCB.01319-10. PubMed DOI PMC
Derler I.; Hofbauer M.; Kahr H.; Fritsch R.; Muik M.; Kepplinger K.; Hack M. E.; Moritz S.; Schindl R.; Groschner K.; Romanin C. Dynamic but not constitutive association of calmodulin with rat TRPV6 channels enables fine tuning of Ca2+-dependent inactivation. J. Physiol. 2006, 577, 31–44. 10.1113/jphysiol.2006.118661. PubMed DOI PMC
Holakovska B.; Grycova L.; Bily J.; Teisinger J. Characterization of calmodulin binding domains in TRPV2 and TRPV5 C-tails. Amino Acids 2011, 40, 741–748. 10.1007/s00726-010-0712-2. PubMed DOI
Zouharova M.; Herman P.; Hofbauerova K.; Vondrasek J.; Bousova K. TRPM6 N-Terminal CaM- and S100A1-Binding Domains. Int. J. Mol. Sci. 2019, 20, 4430.10.3390/ijms20184430. PubMed DOI PMC
Holakovska B.; Grycova L.; Jirku M.; Sulc M.; Bumba L.; Teisinger J. Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel. J. Biol. Chem. 2012, 287, 16645–16655. 10.1074/jbc.M112.350686. PubMed DOI PMC
Gloss L. M. Equilibrium and kinetic approaches for studying oligomeric protein folding. Methods Enzymol. 2009, 325–357. 10.1016/s0076-6879(09)66014-6. PubMed DOI
Paul S. S.; Lyons A.; Kirchner R.; Woodside M. T. Quantifying oligomer populations in real time during protein aggregation using single-molecule mass photometry. ACS Nano 2022, 16, 16462–16470. 10.1021/acsnano.2c05739. PubMed DOI PMC