TRPM6 N-Terminal CaM- and S100A1-Binding Domains

. 2019 Sep 09 ; 20 (18) : . [epub] 20190909

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31505788

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729 Grantová Agentura České Republiky
17-04236S Grantová Agentura České Republiky
61388963 Ústav Organické Chemie a Biochemie, Akademie Věd České Republiky

Transient receptor potential (TRPs) channels are crucial downstream targets of calcium signalling cascades. They can be modulated either by calcium itself and/or by calcium-binding proteins (CBPs). Intracellular messengers usually interact with binding domains present at the most variable TRP regions-N- and C-cytoplasmic termini. Calmodulin (CaM) is a calcium-dependent cytosolic protein serving as a modulator of most transmembrane receptors. Although CaM-binding domains are widespread within intracellular parts of TRPs, no such binding domain has been characterised at the TRP melastatin member-the transient receptor potential melastatin 6 (TRPM6) channel. Another CBP, the S100 calcium-binding protein A1 (S100A1), is also known for its modulatory activities towards receptors. S100A1 commonly shares a CaM-binding domain. Here, we present the first identified CaM and S100A1 binding sites at the N-terminal of TRPM6. We have confirmed the L520-R535 N-terminal TRPM6 domain as a shared binding site for CaM and S100A1 using biophysical and molecular modelling methods. A specific domain of basic amino acid residues (R526/R531/K532/R535) present at this TRPM6 domain has been identified as crucial to maintain non-covalent interactions with the ligands. Our data unambiguously confirm that CaM and S100A1 share the same binding domain at the TRPM6 N-terminus although the ligand-binding mechanism is different.

Zobrazit více v PubMed

Kraft R., Harteneck C. The mammalian melastatin-related transient receptor potential cation channels: An overview. Pflug. Arch. 2005;451:204–211. doi: 10.1007/s00424-005-1428-0. PubMed DOI

Voets T., Nilius B., Hoefs S., van der Kemp A.W., Droogmans G., Bindels R.J., Hoenderop J.G. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 2004;279:19–25. doi: 10.1074/jbc.M311201200. PubMed DOI

Fonfria E., Murdock P.R., Cusdin F.S., Benham C.D., Kelsell R.E., McNulty S. Tissue distribution profiles of the human TRPM cation channel family. J. Recept Signal Transduct Res. 2006;26:159–178. doi: 10.1080/10799890600637506. PubMed DOI

Groenestege W.M., Hoenderop J.G., van den Heuvel L., Knoers N., Bindels R.J. The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and estrogens. J. Am. Soc. Nephrol. 2006;17:1035–1043. doi: 10.1681/ASN.2005070700. PubMed DOI

Yang X.R., Lin M.J., McIntosh L.S., Sham J.S. Functional expression of transient receptor potential melastatin-and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2006:L1267–L1276. doi: 10.1152/ajplung.00515.2005. PubMed DOI

Mandinova A., Atar D., Schafer B., Spiess M., Aebi U., Heizmann C.W. Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium. J. Cell Sci. 1998;111:2043–2054. PubMed

Bagchi I.C., Huang Q., Means A.R. Identification of amino acids essential for calmodulin binding and activation of smooth muscle myosin light chain kinase. J. Biol. Chem. 1992;267:3024–3029. PubMed

Marston S.B., Fraser I., Huber P., Pritchard K., Gusev N.B., Torok K. Location of two contact sites between human smooth muscle caldesmon and Ca (2+)-calmodulin. J. Biol. Chem. 1994;269:8134–8139. PubMed

Paunier L., Radde I.C., Kooh S.W., Conen P.E., Fraser D.D.D. Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics. 1968;41:385–402. PubMed

Schlingmann K.P., Weber S., Peters M., Niemann Nejsum L., Vitzthum H., Klingel K., Kratz M., Haddad E., Ristoff E., Dinour D., et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 2002;31:166–170. doi: 10.1038/ng889. PubMed DOI

Walder R.Y., Landau D., Meyer P., Shalev H., Tsolia M., Borochowitz Z., Boettger M.B., Beck G.E., Englehardt R.K., Carmi R., et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 2002;31:171–174. doi: 10.1038/ng901. PubMed DOI

Garcia-Sanz N., Fernandez-Carvajal A., Morenilla-Palao C., Planells-Cases R., Fajardo-Sanchez E., Fernandez-Ballester G., Ferrer-Montiel A. Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J. Neurosci. 2004;24:5307–5314. doi: 10.1523/JNEUROSCI.0202-04.2004. PubMed DOI PMC

Li M., Jiang J., Yue L. Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J. Gen. Physiol. 2006;127:525–537. doi: 10.1085/jgp.200609502. PubMed DOI PMC

Zhang Z., Yu H., Huang J., Faouzi M., Schmitz C., Penner R., Fleig A. The TRPM6 kinase domain determines the Mg.ATP sensitivity of TRPM7/M6 heteromeric ion channels. J. Biol. Chem. 2014;289:5217–5227. doi: 10.1074/jbc.M113.512285. PubMed DOI PMC

Chubanov V., Waldegger S., Mederos y Schnitzler M., Vitzthum H., Sassen M.C., Seyberth H.W., Konrad M., Gudermann T. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc. Natl. Acad. Sci. USA. 2004;101:2894–2899. doi: 10.1073/pnas.0305252101. PubMed DOI PMC

Liao M., Cao E., Julius D., Cheng Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature. 2013;504:107–112. doi: 10.1038/nature12822. PubMed DOI PMC

Moiseenkova-Bell V.Y., Stanciu L.A., Serysheva I., Tobe B.J., Wensel T.G. Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA. 2008;105:7451–7455. doi: 10.1073/pnas.0711835105. PubMed DOI PMC

Gao Y., Cao E., Julius D., Cheng Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 2016;534:347–351. doi: 10.1038/nature17964. PubMed DOI PMC

Autzen H.E., Myasnikov A.G., Campbell M.G., Asarnow D., Julius D., Cheng Y. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science. 2018;359:228–232. doi: 10.1126/science.aar4510. PubMed DOI PMC

Winkler P.A., Huang Y., Sun W., Du J., Lu W. Electron cryo-microscopy structure of a human TRPM4 channel. Nature. 2017;552:200–204. doi: 10.1038/nature24674. PubMed DOI

Chubanov V., Mittermeier L., Gudermann T. TRPM7 reflected in Cryo-EMirror. Cell Calcium. 2018;76:129–131. doi: 10.1016/j.ceca.2018.11.004. PubMed DOI

Duan J., Li Z., Li J., Hulse R.E., Santa-Cruz A., Valinsky W.C., Abiria S.A., Krapivinsky G., Zhang J., Clapham D.E. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc. Natl. Acad. Sci. USA. 2018;115:E8201–E8210. doi: 10.1073/pnas.1810719115. PubMed DOI PMC

Owsianik G., D’Hoedt D., Voets T., Nilius B. Structure-function relationship of the TRP channel superfamily. Rev. Physiol. Biochem. Pharmacol. 2006;156:61–90. PubMed

Clapham D.E. TRP channels as cellular sensors. Nature. 2003;426:517–524. doi: 10.1038/nature02196. PubMed DOI

Harteneck C. Proteins modulating TRP channel function. Cell Calcium. 2003;33:303–310. doi: 10.1016/S0143-4160(03)00043-5. PubMed DOI

Obukhov A., Schultz G., Lückhoff A. Regulation of heterologously expressed transient receptor potential-like channels by calcium ions. Neuroscience. 1998;85:487–495. doi: 10.1016/S0306-4522(97)00616-7. PubMed DOI

Zhu M.X. Multiple roles of calmodulin and other Ca 2+-binding proteins in the functional regulation of TRP channels. Pflügers Arch. 2005;451:105–115. doi: 10.1007/s00424-005-1427-1. PubMed DOI

Kinoshita-Kawada M., Tang J., Xiao R., Kaneko S., Foskett J.K., Zhu M.X. Inhibition of TRPC5 channels by Ca 2+-binding protein 1 in Xenopus oocytes. Pflügers Arch. 2005;450:345–354. doi: 10.1007/s00424-005-1419-1. PubMed DOI

Jirku M., Lansky Z., Bednarova L., Sulc M., Monincova L., Majer P., Vyklicky L., Vondrasek J., Teisinger J., Bousova K. The characterization of a novel S100A1 binding site in the N-terminus of TRPM1. Int. J. Biochem. Cell Biol. 2016;78:186–193. doi: 10.1016/j.biocel.2016.07.014. PubMed DOI

Holakovska B., Grycova L., Jirku M., Sulc M., Bumba L., Teisinger J. Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel. J. Biol. Chem. 2012;287:16645–16655. doi: 10.1074/jbc.M112.350686. PubMed DOI PMC

Bousova K., Herman P., Vecer J., Bednarova L., Monincova L., Majer P., Vyklicky L., Vondrasek J., Teisinger J. Shared CaM- and S100A1-binding epitopes in the distal TRPM4 N terminus. FEBS J. 2018;285:599–613. doi: 10.1111/febs.14362. PubMed DOI

Tong Q., Zhang W., Conrad K., Mostoller K., Cheung J.Y., Peterson B.Z., Miller B.A. Regulation of the transient receptor potential channel TRPM2 by the Ca2+ sensor calmodulin. J. Biol. Chem. 2006;281:9076–9085. doi: 10.1074/jbc.M510422200. PubMed DOI

Xie J., Sun B., Du J., Yang W., Chen H.C., Overton J.D., Runnels L.W., Yue L. Phosphatidylinositol 4,5-bisphosphate (PIP(2)) controls magnesium gatekeeper TRPM6 activity. Sci. Rep. 2011;1:146. doi: 10.1038/srep00146. PubMed DOI PMC

Park E.Y.J., Baik J.Y., Kwak M., So I. The role of calmodulin in regulating calcium-permeable PKD2L1 channel activity. Korean J. Physiol. Pharmacol. 2019;23:219–224. doi: 10.4196/kjpp.2019.23.3.219. PubMed DOI PMC

Emery E.C., Diakogiannaki E., Gentry C., Psichas A., Habib A.M., Bevan S., Fischer M.J., Reimann F., Gribble F.M. Stimulation of GLP-1 secretion downstream of the ligand-gated ion channel TRPA1. Diabetes. 2015;64:1202–1210. doi: 10.2337/db14-0737. PubMed DOI PMC

Dang S., van Goor M.K., Asarnow D., Wang Y., Julius D., Cheng Y., van der Wijst J. Structural insight into TRPV5 channel function and modulation. Proc. Natl. Acad. Sci. USA. 2019;116:8869–8878. doi: 10.1073/pnas.1820323116. PubMed DOI PMC

Hasan R., Zhang X. Ca(2+) Regulation of TRP Ion Channels. Int. J. Mol. Sci. 2018;19:1256. doi: 10.3390/ijms19041256. PubMed DOI PMC

Babu Y.S., Sack J.S., Greenhough T.J., Bugg C.E., Means A.R., Cook W.J.J.J. Three-dimensional structure of calmodulin. Nature. 1985;315:37–40. doi: 10.1038/315037a0. PubMed DOI

Barbato G., Ikura M., Kay L.E., Pastor R.W., Bax A.A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: The central helix is flexible. Biochemistry. 1992;31:5269–5278. doi: 10.1021/bi00138a005. PubMed DOI

Babu Y.S., Bugg C.E., Cook W.J.J. Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol. 1988;204:191–204. doi: 10.1016/0022-2836(88)90608-0. PubMed DOI

Chin D., Means A.R.R. Calmodulin: A prototypical calcium sensor. Trends Cell Biol. 2000;10:322–328. doi: 10.1016/S0962-8924(00)01800-6. PubMed DOI

Singh A.K., McGoldrick L.L., Twomey E.C., Sobolevsky A.I.I. Mechanism of calmodulin inactivation of the calcium-selective TRP channel TRPV6. Sci. Adv. 2018;4 doi: 10.1126/sciadv.aau6088. PubMed DOI PMC

Hasan R., Leeson-Payne A.T., Jaggar J.H., Zhang X. Calmodulin is responsible for Ca(2+)-dependent regulation of TRPA1 Channels. Sci. Rep. 2017;7:45098. doi: 10.1038/srep45098. PubMed DOI PMC

Bate N., Caves R.E., Skinner S.P., Goult B.T., Basran J., Mitcheson J.S., Vuister G.W. A novel mechanism for calmodulin-dependent inactivation of transient receptor potential vanilloid 6. Biochemistry. 2018;57:2611–2622. doi: 10.1021/acs.biochem.7b01286. PubMed DOI

Prosser B.L., Wright N.T., Hernandez-Ochoa E.O., Varney K.M., Liu Y., Olojo R.O., Zimmer D.B., Weber D.J., Schneider M.F. S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling. J. Biol. Chem. 2008;283:5046–5057. doi: 10.1074/jbc.M709231200. PubMed DOI PMC

Wright N.T., Varney K.M., Ellis K.C., Markowitz J., Gitti R.K., Zimmer D.B., Weber D.J. The three-dimensional solution structure of Ca(2+)-bound S100A1 as determined by NMR spectroscopy. J. Mol. Biol. 2005;353:410–426. doi: 10.1016/j.jmb.2005.08.027. PubMed DOI

Bily J., Grycova L., Holendova B., Jirku M., Janouskova H., Bousova K., Teisinger J. Characterization of the S100A1 protein binding site on TRPC6 C-terminus. PLoS ONE. 2013;8:e62677. doi: 10.1371/journal.pone.0062677. PubMed DOI PMC

Lau S.-Y., Procko E., Gaudet R. Distinct properties of Ca2+–calmodulin binding to N-and C-terminal regulatory regions of the TRPV1 channel. J. Gen. Physiol. 2012;140:541–555. doi: 10.1085/jgp.201210810. PubMed DOI PMC

Yap K.L., Kim J., Truong K., Sherman M., Yuan T., Ikura M. Calmodulin target database. J. Struct. Funct. Genom. 2000;1:8–14. doi: 10.1023/A:1011320027914. PubMed DOI

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC

Brown N.P., Leroy C., Sander C. MView: A web-compatible database search or multiple alignment viewer. Bioinformatics. 1998;14:380–381. doi: 10.1093/bioinformatics/14.4.380. PubMed DOI

Vilar S., Cozza G., Moro S. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem. 2008;8:1555–1572. doi: 10.2174/156802608786786624. PubMed DOI

Kozakov D., Hall D.R., Xia B., Porter K.A., Padhorny D., Yueh C., Beglov D., Vajda S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017;12:255. doi: 10.1038/nprot.2016.169. PubMed DOI PMC

Fallon J.L., Halling D.B., Hamilton S.L., Quiocho F.A. Structure of calmodulin bound to the hydrophobic IQ domain of the cardiac Cav1. 2 calcium channel. Structure. 2005;13:1881–1886. doi: 10.1016/j.str.2005.09.021. PubMed DOI

Wright N.T., Prosser B.L., Varney K.M., Zimmer D.B., Schneider M.F., Weber D.J. S100A1 and calmodulin compete for the same binding site on ryanodine receptor. J. Biol. Chem. 2008;283:26676–26683. doi: 10.1074/jbc.M804432200. PubMed DOI PMC

Grycova L., Holendova B., Lansky Z., Bumba L., Jirku M., Bousova K., Teisinger J. Ca2+ Binding protein S100A1 competes with calmodulin and PIP2 for binding site on the C-terminus of the TPRV1 receptor. ACS Chem. Neurosci. 2014;6:386–392. doi: 10.1021/cn500250r. PubMed DOI

Prosser B.L., Hernández-Ochoa E.O., Schneider M.F. S100A1 and calmodulin regulation of ryanodine receptor in striated muscle. Cell Calcium. 2011;50:323–331. doi: 10.1016/j.ceca.2011.06.001. PubMed DOI PMC

Whicher J.R., MacKinnon R. Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism. Science. 2016;353:664–669. doi: 10.1126/science.aaf8070. PubMed DOI PMC

López-Romero A.E., Hernández-Araiza I., Torres-Quiroz F., Tovar-Y-Romo L.B., Islas L.D., Rosenbaum T. TRP ion channels: Proteins with conformational flexibility. Channels. 2019;13:207–226. doi: 10.1080/19336950.2019.1626793. PubMed DOI PMC

Jirku M., Bumba L., Bednarova L., Kubala M., Sulc M., Franek M., Vyklicky L., Vondrasek J., Teisinger J., Bousova K. Characterization of the part of N-terminal PIP2 binding site of the TRPM1 channel. Biophys. Chem. 2015;207:135–142. doi: 10.1016/j.bpc.2015.10.005. PubMed DOI

Neshich G., Togawa R.C., Mancini A.L., Kuser P.R., Yamagishi M.E., Pappas G., Torres W.V., e Campos T.F., Ferreira L.L., Luna F.M. STING Millennium: A web-based suite of programs for comprehensive and simultaneous analysis of protein structure and sequence. Nucleic Acids Res. 2003;31:3386–3392. doi: 10.1093/nar/gkg578. PubMed DOI PMC

Wiederstein M., Sippl M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–W410. doi: 10.1093/nar/gkm290. PubMed DOI PMC

Kozakov D., Beglov D., Bohnuud T., Mottarella S.E., Xia B., Hall D.R., Vajda S. How good is automated protein docking? Proteins: Struct. Funct. Bioinform. 2013;81:2159–2166. doi: 10.1002/prot.24403. PubMed DOI PMC

Vajda S., Yueh C., Beglov D., Bohnuud T., Mottarella S.E., Xia B., Hall D.R., Kozakov D. New additions to the C lus P ro server motivated by CAPRI. Proteins: Struct. Funct. Bioinform. 2017;85:435–444. doi: 10.1002/prot.25219. PubMed DOI PMC

Biovia D.S. Discovery Studio Modeling Environment. Release: 2017. Dassault Systèmes; San Diego, CA, USA: 2016.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...