Succinate Mediates Tumorigenic Effects via Succinate Receptor 1: Potential for New Targeted Treatment Strategies in Succinate Dehydrogenase Deficient Paragangliomas

. 2021 ; 12 () : 589451. [epub] 20210312

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33776908

Paragangliomas and pheochromocytomas (PPGLs) are chromaffin tumors associated with severe catecholamine-induced morbidities. Surgical removal is often curative. However, complete resection may not be an option for patients with succinate dehydrogenase subunit A-D (SDHx) mutations. SDHx mutations are associated with a high risk for multiple recurrent, and metastatic PPGLs. Treatment options in these cases are limited and prognosis is dismal once metastases are present. Identification of new therapeutic targets and candidate drugs is thus urgently needed. Previously, we showed elevated expression of succinate receptor 1 (SUCNR1) in SDHB PPGLs and SDHD head and neck paragangliomas. Its ligand succinate has been reported to accumulate due to SDHx mutations. We thus hypothesize that autocrine stimulation of SUCNR1 plays a role in the pathogenesis of SDHx mutation-derived PPGLs. We confirmed elevated SUCNR1 expression in SDHx PPGLs and after SDHB knockout in progenitor cells derived from a human pheochromocytoma (hPheo1). Succinate significantly increased viability of SUCNR1-transfected PC12 and ERK pathway signaling compared to control cells. Candidate SUCNR1 inhibitors successfully reversed proliferative effects of succinate. Our data reveal an unrecognized oncometabolic function of succinate in SDHx PPGLs, providing a growth advantage via SUCNR1.

Department of Biomedical Engineering Centre for Public Health Genomics University of Virginia Charlottesville VA United States

Department of Medicine Division of Endocrinology University of Florida and Malcom Randall VA Medical Center Gainesville FL United States

Division of Endocrinology 471 Department of Internal Medicine Radboud University Medical Center Nijmegen Netherlands

Hereditary Endocrine Cancer Group Human Cancer Genetics Program Spanish National Cancer Research Centre Madrid Spain

Institute for Cardiogenetics University of Lübeck Lübeck Germany

Institute for Experimental and Clinical Pharmacology and Toxicology University of Lübeck Lübeck Germany

Institute of Biotechnology Czech Academy of Sciences Prague West Czechia

Institute of Clinical Chemistry and Laboratory Medicine University Hospital Carl Gustav Carus Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany

Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China

Laboratory of Surgical Pathology National Cancer Institute National Institutes of Health Bethesda MD United States

Neuroendocrine Oncology and Metabolism Medical Department 1 Center of Brain Behavior and Metabolism University Medical Center Schleswig Holstein Lübeck Lübeck Germany

Radboud University Nijmegen Netherlands

School of Medical Science Griffith University Southport QLD Australia

Section on Medical Neuroendocrinology Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health Bethesda MD United States

Surgical Neurology Branch National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda MD United States

Zobrazit více v PubMed

Pamporaki C, Hamplova B, Peitzsch M, Prejbisz A, Beuschlein F, Timmers H, et al. . Characteristics of Pediatric vs Adult Pheochromocytomas and Paragangliomas. J Clin Endocrinol Metab (2017) 102:1122–32.  10.1210/jc.2016-3829 PubMed DOI PMC

Jochmanova I, Wolf KI, King KS, Nambuba J, Wesley R, Martucci V, et al. . SDHB-related pheochromocytoma and paraganglioma penetrance and genotype-phenotype correlations. J Cancer Res Clin Oncol (2017) 143:1421–35.  10.1007/s00432-017-2397-3 PubMed DOI PMC

Castro-Vega LJ, Letouze E, Burnichon N, Buffet A, Disderot PH, Khalifa E, et al. . Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat Commun (2015) 6:6044.  10.1038/ncomms7044 PubMed DOI PMC

Curras-Freixes M, Inglada-Perez L, Mancikova V, Montero-Conde C, Leton R, Comino-Mendez I, et al. . Recommendations for somatic and germline genetic testing of single pheochromocytoma and paraganglioma based on findings from a series of 329 patients. J Med Genet (2015) 52:647–56.  10.1136/jmedgenet-2015-103218 PubMed DOI

Schulte KM, Talat N, Galata G, Aylwin S, Izatt L, Eisenhofer G, et al. . Genetics and the clinical approach to paragangliomas. Horm Metab Res (2014) 46:964–73.  10.1055/s-0034-1383581 PubMed DOI

Bourdeau I, Grunenwald S, Burnichon N, Khalifa E, Dumas N, Binet MC, et al. . A SDHC Founder Mutation Causes Paragangliomas (PGLs) in the French Canadians: New Insights on the SDHC-Related PGL. J Clin Endocrinol Metab (2016) 101:4710–8.  10.1210/jc.2016-1665 PubMed DOI PMC

Bausch B, Schiavi F, Ni Y, Welander J, Patocs A, Ngeow J, et al. . Clinical Characterization of the Pheochromocytoma and Paraganglioma Susceptibility Genes SDHA, TMEM127, MAX, and SDHAF2 for Gene-Informed Prevention. JAMA Oncol (2017) 3:1204–12.  10.1001/jamaoncol.2017.0223 PubMed DOI PMC

Amato B, Serra R, Fappiano F, Rossi R, Danzi M, Milone M, et al. . Surgical complications of carotid body tumors surgery: a review. Int Angiol (2015) 34:15–22. PubMed

Main AM, Rossing M, Borgwardt L, Gronkaer Toft B, Rasmussen AKFeldt-Rasmussen U. Genotype-phenotype associations in PPGLs in 59 patients with variants in SDHX genes. Endocr Connect (2020) 9:793–803.  10.1530/EC-20-0279 PubMed DOI PMC

Lendvai N, Pawlosky R, Bullova P, Eisenhofer G, Patocs A, Veech RL, et al. . Succinate-to-fumarate ratio as a new metabolic marker to detect the presence of SDHB/D-related paraganglioma: initial experimental and ex vivo findings. Endocrinology (2014) 155:27–32.  10.1210/en.2013-1549 PubMed DOI PMC

Richter S, Peitzsch M, Rapizzi E, Lenders JW, Qin N, de Cubas AA, et al. . Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency. J Clin Endocrinol Metab (2014) 99:3903–11.  10.1210/jc.2014-2151 PubMed DOI PMC

Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. . Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell (2005) 7:77–85: S153561080400368X.  10.1016/j.ccr.2004.11.022 PubMed DOI

Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, et al. . Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet (2005) 14:2231–9. ddi227.  10.1093/hmg/ddi227 PubMed DOI

Gu C, Yang H, Chang K, Zhang B, Xie F, Ye J, et al. . Melatonin alleviates progression of uterine endometrial cancer by suppressing estrogen/ubiquitin C/SDHB-mediated succinate accumulation. Cancer Lett (2020) 476:34–47.  10.1016/j.canlet.2020.02.009 PubMed DOI

Tseng PL, Wu WH, Hu TH, Chen CW, Cheng HC, Li CF, et al. . Decreased succinate dehydrogenase B in human hepatocellular carcinoma accelerates tumor malignancy by inducing the Warburg effect. Sci Rep (2018) 8:3081.  10.1038/s41598-018-21361-6 PubMed DOI PMC

Murphy MP, O’Neill LAJ. Krebs Cycle Reimagined: The Emerging Roles of Succinate and Itaconate as Signal Transducers. Cell (2018) 174:780–4.  10.1016/j.cell.2018.07.030 PubMed DOI

Zhao T, Mu X, You Q. Succinate: An initiator in tumorigenesis and progression. Oncotarget (2017) 8:53819–28.  10.18632/oncotarget.17734 PubMed DOI PMC

He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, et al. . Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature (2004) 429:188–93.  10.1038/nature02488 PubMed DOI

Ariza AC, Deen PM, Robben JH. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front Endocrinol (Lausanne) (2012) 3:22.  10.3389/fendo.2012.00022 PubMed DOI PMC

Prag HA, Gruszczyk AV, Huang MM, Beach TE, Young T, Tronci L, et al. . Mechanism of succinate efflux upon reperfusion of the ischaemic heart. Cardiovasc Res (2020) 148. 10.1093/cvr/cvaa148 PubMed DOI PMC

Reddy A, Bozi LHM, Yaghi OH, Mills EL, Xiao H, Nicholson HE, et al. . pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise. Cell (2020) 183:62–75.  10.1016/j.cell.2020.08.039 PubMed DOI PMC

Ko SH, Choi GE, Oh JY, Lee HJ, Kim JS, Chae CW, et al. . Succinate promotes stem cell migration through the GPR91-dependent regulation of DRP1-mediated mitochondrial fission. Sci Rep (2017) 7:12582.  10.1038/s41598-017-12692-x PubMed DOI PMC

Lei W, Ren W, Ohmoto M, Urban JF Jr., Matsumoto I, Margolskee RF, et al. . Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. Proc Natl Acad Sci U S A (2018) 115:5552–7.  10.1073/pnas.1720758115 PubMed DOI PMC

Mao H, Yang A, Zhao Y, Lei L, Li H. Succinate Supplement Elicited “Pseudohypoxia” Condition to Promote Proliferation, Migration, and Osteogenesis of Periodontal Ligament Cells. Stem Cells Int (2020) 2020:2016809.  10.1155/2020/2016809 PubMed DOI PMC

de Castro Fonseca M, Aguiar CJ, da Rocha Franco JA, Gingold RN, Leite MF. GPR91: expanding the frontiers of Krebs cycle intermediates. Cell Commun Signal (2016) 14:3.  10.1186/s12964-016-0126-1 PubMed DOI PMC

Gilissen J, Jouret F, Pirotte B, Hanson J. Insight into SUCNR1 (GPR91) structure and function. Pharmacol Ther (2016) 159:56–65.  10.1016/j.pharmthera.2016.01.008 PubMed DOI

Hamel D, Sanchez M, Duhamel F, Roy O, Honore JC, Noueihed B, et al. . G-protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery. Arterioscler Thromb Vasc Biol (2014) 34:285–93.  10.1161/ATVBAHA.113.302131 PubMed DOI

Sapieha P, Sirinyan M, Hamel D, Zaniolo K, Joyal JS, Cho JH, et al. . The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med (2008) 14:1067–76.  10.1038/nm.1873 PubMed DOI

Li T, Hu J, Du S, Chen Y, Wang S, Wu Q. ERK1/2/COX-2/PGE2 signaling pathway mediates GPR91-dependent VEGF release in streptozotocin-induced diabetes. Mol Vis (2014) 20:1109–21. PubMed PMC

Wu JY, Huang TW, Hsieh YT, Wang YF, Yen CC, Lee GL, et al. . Cancer-Derived Succinate Promotes Macrophage Polarization and Cancer Metastasis via Succinate Receptor. Mol Cell (2020) 77:213–27.e5.  10.1016/j.molcel.2019.10.023 PubMed DOI

Mu X, Zhao T, Xu C, Shi W, Geng B, Shen J, et al. . Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget (2017) 8:13174–85.  10.18632/oncotarget.14485 PubMed DOI PMC

McCreath KJ, Espada S, Galvez BG, Benito M, de Molina A, Sepulveda P, et al. . Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes (2015) 64:1154–67.  10.2337/db14-0346 PubMed DOI

Diehl J, Gries B, Pfeil U, Goldenberg A, Mermer P, Kummer W, et al. . Expression and localization of GPR91 and GPR99 in murine organs. Cell Tissue Res (2016) 364:245–62.  10.1007/s00441-015-2318-1 PubMed DOI

Balbir A, Lee H, Okumura M, Biswal S, Fitzgerald RS, Shirahata M. A search for genes that may confer divergent morphology and function in the carotid body between two strains of mice. Am J Physiol Lung Cell Mol Physiol (2007) 292:L704–15.  10.1152/ajplung.00383.2006 PubMed DOI

Cervera AM, Apostolova N, Crespo FL, Mata M, McCreath KJ. Cells silenced for SDHB expression display characteristic features of the tumor phenotype. Cancer Res (2008) 68:4058–67.  10.1158/0008-5472.CAN-07-5580 PubMed DOI

Shankavaram U, Fliedner SM, Elkahloun AG, Barb JJ, Munson PJ, Huynh TT, et al. . Genotype and tumor locus determine expression profile of pseudohypoxic pheochromocytomas and paragangliomas. Neoplasia (2013) 15:435–47. 10.1593/neo.122132 PubMed DOI PMC

Bhuniya D, Umrani D, Dave B, Salunke D, Kukreja G, Gundu J, et al. . Discovery of a potent and selective small molecule hGPR91 antagonist. Bioorg Med Chem Lett (2011) 21:3596–602.  10.1016/j.bmcl.2011.04.091 PubMed DOI

Lopez-Jimenez E, Gomez-Lopez G, Leandro-Garcia LJ, Munoz I, Schiavi F, Montero-Conde C, et al. . Research resource: Transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol (2010) 24:2382–91.  10.1210/me.2010-0256 PubMed DOI PMC

Qin N, de Cubas AA, Garcia-Martin R, Richter S, Peitzsch M, Menschikowski M, et al. . Opposing effects of HIF1alpha and HIF2alpha on chromaffin cell phenotypic features and tumor cell proliferation: Insights from MYC-associated factor X. Int J Cancer (2014) 135:2054–64.  10.1002/ijc.28868 PubMed DOI

Burnichon N, Vescovo L, Amar L, Libe R, de Reynies A, Venisse A, et al. . Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet (2011) 20:3974–85.  10.1093/hmg/ddr324 PubMed DOI

Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, et al. . Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell (2017) 31:181–93.  10.1016/j.ccell.2017.01.001 PubMed DOI PMC

Calsina B, Castro-Vega LJ, Torres-Perez R, Inglada-Perez L, Curras-Freixes M, Roldan-Romero JM, et al. . Integrative multi-omics analysis identifies a prognostic miRNA signature and a targetable miR-21-3p/TSC2/mTOR axis in metastatic pheochromocytoma/paraganglioma. Theranostics (2019) 9:4946–58.  10.7150/thno.35458 PubMed DOI PMC

Richter S, D’Antongiovanni V, Martinelli S, Bechmann N, Riverso M, Poitz DM, et al. . Primary fibroblast co-culture stimulates growth and metabolism in Sdhb-impaired mouse pheochromocytoma MTT cells. Cell Tissue Res (2018) 374:473–85.  10.1007/s00441-018-2907-x PubMed DOI PMC

Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, et al. . Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol (2017) 35:31–4.  10.1038/nbt.3737 PubMed DOI PMC

Fliedner SM, Engel T, Lendvai NK, Shankavaram U, Nolting S, Wesley R, et al. . Anti-cancer potential of MAPK pathway inhibition in paragangliomas-effect of different statins on mouse pheochromocytoma cells. PloS One (2014) 9:e97712.  10.1371/journal.pone.0097712 PubMed DOI PMC

Tan AS, Baty JW, Dong LF, Bezawork-Geleta A, Endaya B, Goodwin J, et al. . Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab (2015) 21:81–94.  10.1016/j.cmet.2014.12.003 PubMed DOI

Fliedner SM, Yang C, Thompson E, Abu-Asab M, Hsu CM, Lampert G, et al. . Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells. Am J Cancer Res (2015) 5:1558–70. PubMed PMC

Her YF, Nelson-Holte M, Majer LJ, III. Oxygen Concentration Controls Epigenetic Effects in Models of Familial Paraganglioma. PLoS ONE (2015) 10(5):e0127471.  10.1371/journal.pone.0127471 PubMed DOI PMC

Fliedner SMJ, Brabant G, Lehnert H. Pheochromocytoma and paraganglioma: genotype versus anatomic location as determinants of tumor phenotype. Cell Tissue Res (2018) 372:347–65.  10.1007/s00441-017-2760-3 PubMed DOI

Peruzzotti-Jametti L, Bernstock JD, Vicario N, Costa ASH, Kwok CK, Leonardi T, et al. . Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. Cell Stem Cell (2018) 22:355–68.e13.  10.1016/j.stem.2018.01.020 PubMed DOI PMC

Ortiz-Masia D, Gisbert-Ferrandiz L, Bauset C, Coll S, Mamie C, Scharl M, et al. . Succinate Activates EMT in Intestinal Epithelial Cells through SUCNR1: A Novel Protagonist in Fistula Development. Cells (2020) 9:1104.  10.3390/cells9051104 PubMed DOI PMC

Lukyanova LD, Kirova YI, Germanova EL. Specific Features of Immediate Expression of Succinate-Dependent Receptor GPR91 in Tissues during Hypoxia. Bull Exp Biol Med (2016) 160:742–7.  10.1007/s10517-016-3299-0 PubMed DOI

Cardaci S, Zheng L, MacKay G, van den Broek NJ, MacKenzie ED, Nixon C, et al. . Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat Cell Biol (2015) 17:1317–26.  10.1038/ncb3233 PubMed DOI PMC

Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, et al. . SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell (2013) 23:739–52.  10.1016/j.ccr.2013.04.018 PubMed DOI

Payen VL, Mina E, Van Hée VF, Porporato PE, Sonveaux P. Monocarboxylate transporters in cancer. Mol Metab (2020) 33:48–66.  10.1016/j.molmet.2019.07.006 PubMed DOI PMC

Martinelli S, Maggi M, Rapizzi E. Pheochromocytoma/paraganglioma preclinical models: which to use and why? Endocr Connect (2020) 9:R251.  10.1530/ec-20-0472 PubMed DOI PMC

Milo R, Jorgensen P, Moran U, Weber G, Springer M. BioNumbers–the database of key numbers in molecular and cell biology. Nucleic Acids Res (2010) 38:D750–3.  10.1093/nar/gkp889 PubMed DOI PMC

Ullrich M, Richter S, Seifert V, Hauser S, Calsina B, Martinez-Montes AM, et al. . Targeting Cyclooxygenase-2 in Pheochromocytoma and Paraganglioma: Focus on Genetic Background. Cancers (Basel) (2019) 11:743.  10.3390/cancers11060743 PubMed DOI PMC

Krzak G, Willis CM, Smith JA, Pluchino S, Peruzzotti-Jametti L. Succinate Receptor 1: An Emerging Regulator of Myeloid Cell Function in Inflammation. Trends Immunol (2021) 42:45–58.  10.1016/j.it.2020.11.004 PubMed DOI

Trauelsen M, Rexen Ulven E, Hjorth SA, Brvar M, Monaco C, Frimurer TM, et al. . Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91. Mol Metab (2017) 6:1585–96.  10.1016/j.molmet.2017.09.005 PubMed DOI PMC

Rexen Ulven E, Trauelsen M, Brvar M, Luckmann M, Bielefeldt LO, Jensen LKI, et al. . Structure-Activity Investigations and Optimisations of Non-metabolite Agonists for the Succinate Receptor 1. Sci Rep (2018) 8:10010.  10.1038/s41598-018-28263-7 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace