Interaction of Calmodulin with TRPM: An Initiator of Channel Modulation

. 2023 Oct 13 ; 24 (20) : . [epub] 20231013

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37894842

Grantová podpora
RVO: 61388963 Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry

Transient receptor potential melastatin (TRPM) channels, a subfamily of the TRP superfamily, constitute a diverse group of ion channels involved in mediating crucial cellular processes like calcium homeostasis. These channels exhibit complex regulation, and one of the key regulatory mechanisms involves their interaction with calmodulin (CaM), a cytosol ubiquitous calcium-binding protein. The association between TRPM channels and CaM relies on the presence of specific CaM-binding domains in the channel structure. Upon CaM binding, the channel undergoes direct and/or allosteric structural changes and triggers down- or up-stream signaling pathways. According to current knowledge, ion channel members TRPM2, TRPM3, TRPM4, and TRPM6 are directly modulated by CaM, resulting in their activation or inhibition. This review specifically focuses on the interplay between TRPM channels and CaM and summarizes the current known effects of CaM interactions and modulations on TRPM channels in cellular physiology.

Zobrazit více v PubMed

Voets T., Talavera K., Owsianik G., Nilius B. Sensing with TRP channels. Nat. Chem. Biol. 2005;1:85–92. doi: 10.1038/nchembio0705-85. PubMed DOI

Jimenez I., Prado Y., Marchant F., Otero C., Eltit F., Cabello-Verrugio C., Cerda O., Simon F. TRPM Channels in Human Diseases. Cells. 2020;9:2604. doi: 10.3390/cells9122604. PubMed DOI PMC

Lopez-Romero A.E., Hernandez-Araiza I., Torres-Quiroz F., Tovar Y.R.L.B., Islas L.D., Rosenbaum T. TRP ion channels: Proteins with conformational flexibility. Channels. 2019;13:207–226. doi: 10.1080/19336950.2019.1626793. PubMed DOI PMC

Samanta A., Hughes T.E.T., Moiseenkova-Bell V.Y. Transient Receptor Potential (TRP) Channels. Subcell Biochem. 2018;87:141–165. PubMed PMC

Vangeel L., Voets T. Transient Receptor Potential Channels and Calcium Signaling. Cold Spring Harb. Perspect. Biol. 2019;11:a035048. doi: 10.1101/cshperspect.a035048. PubMed DOI PMC

Hasan R., Zhang X. Ca(2+) Regulation of TRP Ion Channels. Int. J. Mol. Sci. 2018;19:1256. doi: 10.3390/ijms19041256. PubMed DOI PMC

Zhao Y., McVeigh B.M., Moiseenkova-Bell V.Y. Structural Pharmacology of TRP Channels. J. Mol. Biol. 2021;433:166914. doi: 10.1016/j.jmb.2021.166914. PubMed DOI PMC

Clapham D.E. TRP channels as cellular sensors. Nature. 2003;426:517–524. doi: 10.1038/nature02196. PubMed DOI

Nilius B., Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 2011;12:218. doi: 10.1186/gb-2011-12-3-218. PubMed DOI PMC

Ciardo M.G., Ferrer-Montiel A. Lipids as central modulators of sensory TRP channels. Biochim. Biophys. Acta Biomembr. 2017;1859:1615–1628. doi: 10.1016/j.bbamem.2017.04.012. PubMed DOI

Gees M., Colsoul B., Nilius B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb. Perspect. Biol. 2010;2:a003962. doi: 10.1101/cshperspect.a003962. PubMed DOI PMC

Cao E. Structural mechanisms of transient receptor potential ion channels. J. Gen. Physiol. 2020;152:e201811998. doi: 10.1085/jgp.201811998. PubMed DOI PMC

Yang D., Kim J. Emerging role of transient receptor potential (TRP) channels in cancer progression. BMB Rep. 2020;53:125–132. doi: 10.5483/BMBRep.2020.53.3.016. PubMed DOI PMC

Bertin S., Raz E. Transient Receptor Potential (TRP) channels in T cells. Semin. Immunopathol. 2016;38:309–319. doi: 10.1007/s00281-015-0535-z. PubMed DOI PMC

Shapovalov G., Lehen’kyi V., Skryma R., Prevarskaya N. TRP channels in cell survival and cell death in normal and transformed cells. Cell Calcium. 2011;50:295–302. doi: 10.1016/j.ceca.2011.05.006. PubMed DOI

Pedersen S.F., Owsianik G., Nilius B. TRP channels: An overview. Cell Calcium. 2005;38:233–252. doi: 10.1016/j.ceca.2005.06.028. PubMed DOI

Huang Y., Fliegert R., Guse A.H., Lü W., Du J. A structural overview of the ion channels of the TRPM family. Cell Calcium. 2020;85:102111. doi: 10.1016/j.ceca.2019.102111. PubMed DOI PMC

Winkler P.A., Huang Y., Sun W., Du J., Lu W. Electron cryo-microscopy structure of a human TRPM4 channel. Nature. 2017;552:200–204. doi: 10.1038/nature24674. PubMed DOI

Yin Y., Le S.C., Hsu A.L., Borgnia M.J., Yang H., Lee S.Y. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science. 2019;363:945. doi: 10.1126/science.aav9334. PubMed DOI PMC

Diver M.M., Cheng Y., Julius D. Structural insights into TRPM8 inhibition and desensitization. Science. 2019;365:1434–1440. doi: 10.1126/science.aax6672. PubMed DOI PMC

Yin Y., Wu M., Zubcevic L., Borschel W.F., Lander G.C., Lee S.Y. Structure of the cold- and menthol-sensing ion channel TRPM8. Science. 2018;359:237–241. doi: 10.1126/science.aan4325. PubMed DOI PMC

Autzen H.E., Myasnikov A.G., Campbell M.G., Asarnow D., Julius D., Cheng Y. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science. 2018;359:228–232. doi: 10.1126/science.aar4510. PubMed DOI PMC

Duan J., Li Z., Li J., Hulse R.E., Santa-Cruz A., Valinsky W.C., Abiria S.A., Krapivinsky G., Zhang J., Clapham D.E. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc. Natl. Acad. Sci. USA. 2018;115:E8201. doi: 10.1073/pnas.1810719115. PubMed DOI PMC

Wang L., Fu T.M., Zhou Y., Xia S., Greka A., Wu H. Structures and gating mechanism of human TRPM2. Science. 2018;362:eaav4809. doi: 10.1126/science.aav4809. PubMed DOI PMC

Guo J., She J., Zeng W., Chen Q., Bai X.C., Jiang Y. Structures of the calcium-activated, non-selective cation channel TRPM4. Nature. 2017;552:205–209. doi: 10.1038/nature24997. PubMed DOI PMC

Lu W., Du J., Ruan Z., Haley E., Orozco I., Roth R., Sabat M., Myers R. Structures of TRPM5 channel elucidate mechanism of activation and inhibition. bioRxiv. 2021 doi: 10.1101/2021.03.25.437100. PubMed DOI PMC

Krapivinsky G., Krapivinsky L., Manasian Y., Clapham D.E. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell. 2014;157:1061–1072. doi: 10.1016/j.cell.2014.03.046. PubMed DOI PMC

Tóth B., Iordanov I., Csanády L. Putative chanzyme activity of TRPM2 cation channel is unrelated to pore gating. Proc. Natl. Acad. Sci. USA. 2014;111:16949–16954. doi: 10.1073/pnas.1412449111. PubMed DOI PMC

Montell C. Mg2+ homeostasis: The Mg2+ nificent TRPM chanzymes. Curr. Biol. 2003;13:R799–R801. doi: 10.1016/j.cub.2003.09.048. PubMed DOI

Gattkowski E., Johnsen A., Bauche A., Mockl F., Kulow F., Garcia Alai M., Rutherford T.J., Fliegert R., Tidow H. Novel CaM-binding motif in its NudT9H domain contributes to temperature sensitivity of TRPM2. Biochim. Biophys. Acta Mol. Cell Res. 2019;1866:1162–1170. doi: 10.1016/j.bbamcr.2018.12.010. PubMed DOI PMC

Mishra R., Rao V., Ta R., Shobeiri N., Hill C.E. Mg2+- and MgATP-inhibited and Ca2+/calmodulin-sensitive TRPM7-like current in hepatoma and hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;297:G687–G694. doi: 10.1152/ajpgi.90683.2008. PubMed DOI

Nilius B., Prenen J., Tang J., Wang C., Owsianik G., Janssens A., Voets T., Zhu M.X. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J. Biol. Chem. 2005;280:6423–6433. doi: 10.1074/jbc.M411089200. PubMed DOI

Przibilla J., Dembla S., Rizun O., Lis A., Jung M., Oberwinkler J., Beck A., Philipp S.E. Ca(2+)-dependent regulation and binding of calmodulin to multiple sites of Transient Receptor Potential Melastatin 3 (TRPM3) ion channels. Cell Calcium. 2018;73:40–52. doi: 10.1016/j.ceca.2018.03.005. PubMed DOI

Tong Q., Zhang W., Conrad K., Mostoller K., Cheung J.Y., Peterson B.Z., Miller B.A. Regulation of the transient receptor potential channel TRPM2 by the Ca2+ sensor calmodulin. J. Biol. Chem. 2006;281:9076–9085. doi: 10.1074/jbc.M510422200. PubMed DOI

Turlova E., Wong R., Xu B., Li F., Du L., Habbous S., Horgen F.D., Fleig A., Feng Z.P., Sun H.S. TRPM7 Mediates Neuronal Cell Death Upstream. of Calcium/Calmodulin-Dependent Protein Kinase II and Calcineurin Mechanism in Neonatal Hypoxic-Ischemic Brain Injury. Transl. Stroke Res. 2021;12:164–184. doi: 10.1007/s12975-020-00810-3. PubMed DOI

Sarria I., Ling J., Zhu M.X., Gu J.G. TRPM8 acute desensitization is mediated by calmodulin and requires. PIP(2): Distinction from tachyphylaxis. J. Neurophysiol. 2011;106:3056–3066. doi: 10.1152/jn.00544.2011. PubMed DOI PMC

Hof T., Chaigne S., Recalde A., Salle L., Brette F., Guinamard R. Transient receptor potential channels in cardiac health and disease. Nat. Rev. Cardiol. 2019;16:344–360. doi: 10.1038/s41569-018-0145-2. PubMed DOI

DeLano W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002;40:82–92.

Latorre R., Díaz-Franulic I. Profile of David Julius and Ardem Patapoutian: 2021 nobel laureates in physiology or medicine. Proc. Natl. Acad. Sci. USA. 2022;119:e2121015119. doi: 10.1073/pnas.2121015119. PubMed DOI PMC

Bagur R., Hajnoczky G. Intracellular Ca(2+) Sensing: Its Role in Calcium Homeostasis and Signaling. Mol. Cell. 2017;66:780–788. doi: 10.1016/j.molcel.2017.05.028. PubMed DOI PMC

Sharma R.K., Parameswaran S. Calmodulin-binding proteins: A journey of 40 years. Cell Calcium. 2018;75:89–100. doi: 10.1016/j.ceca.2018.09.002. PubMed DOI

Halling D.B., Liebeskind B.J., Hall A.W., Aldrich R.W. Conserved properties of individual Ca2+-binding sites in calmodulin. Proc. Natl. Acad. Sci. USA. 2016;113:E1216–E1225. doi: 10.1073/pnas.1600385113. PubMed DOI PMC

Jensen H.H., Brohus M., Nyegaard M., Overgaard M.T. Human Calmodulin Mutations. Front. Mol. Neurosci. 2018;11:396. doi: 10.3389/fnmol.2018.00396. PubMed DOI PMC

Barbato G., Ikura M., Kay L.E., Pastor R.W., Bax A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: The central helix is flexible. Biochemistry. 1992;31:5269–5278. doi: 10.1021/bi00138a005. PubMed DOI

Babu Y.S., Bugg C.E., Cook W.J. Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol. 1988;204:191–204. doi: 10.1016/0022-2836(88)90608-0. PubMed DOI

Grabarek Z. Structural basis for diversity of the EF-hand calcium-binding proteins. J. Mol. Biol. 2006;359:509–525. doi: 10.1016/j.jmb.2006.03.066. PubMed DOI

Liu X.R., Zhang M.M., Rempel D.L., Gross M.L. A Single Approach Reveals the Composite Conformational Changes, Order of Binding, and Affinities for Calcium Binding to Calmodulin. Anal. Chem. 2019;91:5508–5512. doi: 10.1021/acs.analchem.9b01062. PubMed DOI PMC

Lau S.Y., Procko E., Gaudet R. Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. J. Gen. Physiol. 2012;140:541–555. doi: 10.1085/jgp.201210810. PubMed DOI PMC

Ataman Z.A., Gakhar L., Sorensen B.R., Hell J.W., Shea M.A. The NMDA receptor NR1 C1 region bound to calmodulin: Structural insights into functional differences between homologous domains. Structure. 2007;15:1603–1617. doi: 10.1016/j.str.2007.10.012. PubMed DOI PMC

Johnson C.N., Potet F., Thompson M.K., Kroncke B.M., Glazer A.M., Voehler M.W., Knollmann B.C., George A.L., Jr., Chazin W.J. A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel. Structure. 2018;26:683–694.e3. doi: 10.1016/j.str.2018.03.005. PubMed DOI PMC

Liu Y., Zheng X., Mueller G.A., Sobhany M., DeRose E.F., Zhang Y., London R.E., Birnbaumer L. Crystal structure of calmodulin binding domain of orai1 in complex with Ca2+ calmodulin displays a unique binding mode. J. Biol. Chem. 2012;287:43030–43041. doi: 10.1074/jbc.M112.380964. PubMed DOI PMC

Strotmann R., Schultz G., Plant T.D. Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J. Biol. Chem. 2003;278:26541–26549. doi: 10.1074/jbc.M302590200. PubMed DOI

Numazaki M., Tominaga T., Takeuchi K., Murayama N., Toyooka H., Tominaga M. Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc. Natl. Acad. Sci. USA. 2003;100:8002–8006. doi: 10.1073/pnas.1337252100. PubMed DOI PMC

Rosenbaum T., Gordon-Shaag A., Munari M., Gordon S.E. Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J. Gen. Physiol. 2004;123:53–62. doi: 10.1085/jgp.200308906. PubMed DOI PMC

Xiao R., Tang J., Wang C., Colton C.K., Tian J., Zhu M.X. Calcium plays a central role in the sensitization of TRPV3 channel to repetitive stimulations. J. Biol. Chem. 2008;283:6162–6174. doi: 10.1074/jbc.M706535200. PubMed DOI PMC

De Groot T., Kovalevskaya N.V., Verkaart S., Schilderink N., Felici M., van der Hagen E.A., Bindels R.J., Vuister G.W., Hoenderop J.G. Molecular mechanisms of calmodulin action on TRPV5 and modulation by parathyroid hormone. Mol. Cell. Biol. 2011;31:2845–2853. doi: 10.1128/MCB.01319-10. PubMed DOI PMC

Derler I., Hofbauer M., Kahr H., Fritsch R., Muik M., Kepplinger K., Hack M.E., Moritz S., Schindl R., Groschner K., et al. Dynamic but not constitutive association of calmodulin with rat TRPV6 channels enables fine tuning of Ca2+-dependent inactivation. Pt 1J. Physiol. 2006;577:31–44. doi: 10.1113/jphysiol.2006.118661. PubMed DOI PMC

Hasan R., Leeson-Payne A.T., Jaggar J.H., Zhang X. Calmodulin is responsible for Ca(2+)-dependent regulation of TRPA1 Channels. Sci. Rep. 2017;7:45098. doi: 10.1038/srep45098. PubMed DOI PMC

Jung J., Shin J.S., Lee S.Y., Hwang S.W., Koo J., Cho H., Oh U. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J. Biol. Chem. 2004;279:7048–7054. doi: 10.1074/jbc.M311448200. PubMed DOI

Shi J., Mori E., Mori Y., Mori M., Li J., Ito Y., Inoue R. Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. Pt 2J. Physiol. 2004;561:415–432. doi: 10.1113/jphysiol.2004.075051. PubMed DOI PMC

Hsieh C.-C., Su Y.-C., Jiang K.-Y., Ito T., Li T.-W., Kaku-Ito Y., Cheng S.-T., Chen L.-T., Hwang D.-Y., Shen C.-H. TRPM1 promotes tumor progression in acral melanoma by activating the Ca2+/CaMKIIδ/AKT pathway. J. Adv. Res. 2023;43:45–57. doi: 10.1016/j.jare.2022.03.005. PubMed DOI PMC

Wang Q., Guo W., Hao B., Shi X., Lu Y., Wong C.W., Ma V.W., Yip T.T., Au J.S., Hao Q., et al. Mechanistic study of TRPM2-Ca(2+)-CAMK2-BECN1 signaling in oxidative stress-induced autophagy inhibition. Autophagy. 2016;12:1340–1354. doi: 10.1080/15548627.2016.1187365. PubMed DOI PMC

Qian N., Ichimura A., Takei D., Sakaguchi R., Kitani A., Nagaoka R., Tomizawa M., Miyazaki Y., Miyachi H., Numata T., et al. TRPM7 channels mediate spontaneous Ca(2+) fluctuations in growth plate chondrocytes that promote bone development. Sci. Signal. 2019;12:eaaw4847. doi: 10.1126/scisignal.aaw4847. PubMed DOI

Bahler M., Rhoads A. Calmodulin signaling via the IQ motif. FEBS Lett. 2002;513:107–113. doi: 10.1016/S0014-5793(01)03239-2. PubMed DOI

Rhoads A.R., Friedberg F. Sequence motifs for calmodulin recognition. FASEB J. 1997;11:331–340. doi: 10.1096/fasebj.11.5.9141499. PubMed DOI

Yap K.L., Kim J., Truong K., Sherman M., Yuan T., Ikura M. Calmodulin target database. J. Struct. Funct. Genom. 2000;1:8–14. doi: 10.1023/A:1011320027914. PubMed DOI

Rodríguez-Castañeda F., Maestre-Martínez M., Coudevylle N., Dimova K., Junge H., Lipstein N., Lee D., Becker S., Brose N., Jahn O. Modular architecture of Munc13/calmodulin complexes: Dual regulation by Ca2+ and possible function in short-term synaptic plasticity. EMBO J. 2010;29:680–691. doi: 10.1038/emboj.2009.373. PubMed DOI PMC

Osawa M., Tokumitsu H., Swindells M.B., Kurihara H., Orita M., Shibanuma T., Furuya T., Ikura M. A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase. Nat. Struct. Biol. 1999;6:819–824. PubMed

Maximciuc A.A., Putkey J.A., Shamoo Y., Mackenzie K.R. Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode. Structure. 2006;14:1547–1556. doi: 10.1016/j.str.2006.08.011. PubMed DOI

Juranic N., Atanasova E., Filoteo A.G., Macura S., Prendergast F.G., Penniston J.T., Strehler E.E. Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif. J. Biol. Chem. 2010;285:4015–4024. doi: 10.1074/jbc.M109.060491. PubMed DOI PMC

Yamauchi E., Nakatsu T., Matsubara M., Kato H., Taniguchi H. Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin. Nat. Struct. Biol. 2003;10:226–231. doi: 10.1038/nsb900. PubMed DOI

Zouharova M., Herman P., Hofbauerova K., Vondrasek J., Bousova K. TRPM6 N-Terminal CaM- and S100A1-Binding Domains. Int. J. Mol. Sci. 2019;20:4430. doi: 10.3390/ijms20184430. PubMed DOI PMC

Holakovska B., Grycova L., Jirku M., Sulc M., Bumba L., Teisinger J. Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel. J. Biol. Chem. 2012;287:16645–16655. doi: 10.1074/jbc.M112.350686. PubMed DOI PMC

Bousova K., Herman P., Vecer J., Bednarova L., Monincova L., Majer P., Vyklicky L., Vondrasek J., Teisinger J. Shared CaM- and S100A1-binding epitopes in the distal TRPM4 N terminus. FEBS J. 2018;285:599–613. doi: 10.1111/febs.14362. PubMed DOI

Bousova K., Barvik I., Herman P., Hofbauerová K., Monincova L., Majer P., Zouharova M., Vetyskova V., Postulkova K., Vondrasek J. Mapping of CaM, S100A1 and PIP2-Binding Epitopes in the Intracellular N-and C-Termini of TRPM4. Int. J. Mol. Sci. 2020;21:4323. doi: 10.3390/ijms21124323. PubMed DOI PMC

Bousova K., Zouharova M., Herman P., Vymetal J., Vetyskova V., Jiraskova K., Vondrasek J. TRPM5 Channel Binds Calcium-Binding Proteins Calmodulin and S100A1. Biochemistry. 2022;61:413–423. doi: 10.1021/acs.biochem.1c00647. PubMed DOI

Bousova K., Zouharova M., Herman P., Vetyskova V., Jiraskova K., Vondrasek J. TRPM7 N-terminal region forms complexes with calcium binding proteins CAm. and S100A1. Heliyon. 2021;7:e08490. doi: 10.1016/j.heliyon.2021.e08490. PubMed DOI PMC

Bily J., Grycova L., Holendova B., Jirku M., Janouskova H., Bousova K., Teisinger J. Characterization of the S100A1 protein binding site on TRPC6 C-terminus. PLoS ONE. 2013;8:e62677. doi: 10.1371/journal.pone.0062677. PubMed DOI PMC

Jirku M., Lansky Z., Bednarova L., Sulc M., Monincova L., Majer P., Vyklicky L., Vondrasek J., Teisinger J., Bousova K. The characterization of a novel S100A1 binding site in the N-terminus of TRPM1. Int. J. Biochem. Cell Biol. 2016;78:186–193. doi: 10.1016/j.biocel.2016.07.014. PubMed DOI

Palladino A., Papa A.A., Petillo R., Scutifero M., Morra S., Passamano L., Nigro V., Politano L. The role of TRPM4 gene mutations in causing familial progressive cardiac conduction disease: A further contribution. Genes. 2022;13:258. doi: 10.3390/genes13020258. PubMed DOI PMC

Wang H., Xu Z., Lee B.H., Vu S., Hu L., Lee M., Bu D., Cao X., Hwang S., Yang Y. Gain-of-function mutations in TRPM4 activation gate cause progressive symmetric erythrokeratodermia. J. Investig. Dermatol. 2019;139:1089–1097. doi: 10.1016/j.jid.2018.10.044. PubMed DOI

Schlingmann K.P., Weber S., Peters M., Niemann Nejsum L., Vitzthum H., Klingel K., Kratz M., Haddad E., Ristoff E., Dinour D. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 2002;31:166–170. doi: 10.1038/ng889. PubMed DOI

Lainez S., Schlingmann K.P., Van Der Wijst J., Dworniczak B., Van Zeeland F., Konrad M., Bindels R.J., Hoenderop J.G. New TRPM6 missense mutations linked to hypomagnesemia with secondary hypocalcemia. Eur. J. Hum. Genet. 2014;22:497–504. doi: 10.1038/ejhg.2013.178. PubMed DOI PMC

Leddy H.A., McNulty A.L., Guilak F., Liedtke W. Unraveling the mechanism by which TRPV4 mutations cause skeletal dysplasias. Rare Dis. 2014;2:e962971. doi: 10.4161/2167549X.2014.962971. PubMed DOI PMC

Schlöndorff J., Del Camino D., Carrasquillo R., Lacey V., Pollak M.R. TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am. J. Physiol. Cell Physiol. 2009;296:C558–C569. doi: 10.1152/ajpcell.00077.2008. PubMed DOI PMC

Dang S., van Goor M.K., Asarnow D., Wang Y., Julius D., Cheng Y., van der Wijst J. Structural insight into TRPV5 channel function and modulation. Proc. Natl. Acad. Sci. USA. 2019;116:8869–8878. doi: 10.1073/pnas.1820323116. PubMed DOI PMC

Hughes T.E., Pumroy R.A., Yazici A.T., Kasimova M.A., Fluck E.C., Huynh K.W., Samanta A., Molugu S.K., Zhou Z.H., Carnevale V. Structural insights on TRPV5 gating by endogenous modulators. Nat. Commun. 2018;9:4198. doi: 10.1038/s41467-018-06753-6. PubMed DOI PMC

Singh A.K., McGoldrick L.L., Twomey E.C., Sobolevsky A.I. Mechanism of calmodulin inactivation of the calcium-selective TRP channel TRPV6. Sci. Adv. 2018;4:eaau6088. doi: 10.1126/sciadv.aau6088. PubMed DOI PMC

Vinayagam D., Quentin D., Yu-Strzelczyk J., Sitsel O., Merino F., Stabrin M., Hofnagel O., Yu M., Ledeboer M.W., Nagel G. Structural basis of TRPC4 regulation by calmodulin and pharmacological agents. eLife. 2020;9:e60603. doi: 10.7554/eLife.60603. PubMed DOI PMC

Venkatachalam K., Montell C. TRP channels. Annu. Rev. Biochem. 2007;76:387–417. doi: 10.1146/annurev.biochem.75.103004.142819. PubMed DOI PMC

Vriens J., Owsianik G., Hofmann T., Philipp S.E., Stab J., Chen X.D., Benoit M., Xue F.Q., Janssens A., Kerselaers S., et al. TRPM3 Is a Nociceptor Channel Involved in the Detection of Noxious Heat. Neuron. 2011;70:482–494. doi: 10.1016/j.neuron.2011.02.051. PubMed DOI

Alonso-Carbajo L., Kecskes M., Jacobs G., Pironet A., Syam N., Talavera K., Vennekens R. Muscling in on TRP channels in vascular smooth muscle cells and cardiomyocytes. Cell Calcium. 2017;66:48–61. doi: 10.1016/j.ceca.2017.06.004. PubMed DOI

Thiel G., Rubil S., Lesch A., Guethlein L.A., Rossler O.G. Transient receptor potential TRPM3 channels: Pharmacology, signaling, and biological functions. Pharmacol. Res. 2017;124:92–99. doi: 10.1016/j.phrs.2017.07.014. PubMed DOI

Dyment D.A., Terhal P.A., Rustad C.F., Tveten K., Griffith C., Jayakar P., Shinawi M., Ellingwood S., Smith R., van Gassen K., et al. De novo substitutions of TRPM3 cause intellectual disability and epilepsy. Eur. J. Hum. Genet. 2019;27:1611–1618. doi: 10.1038/s41431-019-0462-x. PubMed DOI PMC

Wagner T.F., Loch S., Lambert S., Straub I., Mannebach S., Mathar I., Dufer M., Lis A., Flockerzi V., Philipp S.E., et al. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat. Cell Biol. 2008;10:1421–1430. doi: 10.1038/ncb1801. PubMed DOI

Toth B.I., Konrad M., Ghosh D., Mohr F., Halaszovich C.R., Leitner M.G., Vriens J., Oberwinkler J., Voets T. Regulation of the transient receptor potential channel TRPM3 by phosphoinositides. J. Gen. Physiol. 2015;146:51–63. doi: 10.1085/jgp.201411339. PubMed DOI PMC

Badheka D., Borbiro I., Rohacs T. Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel. J. Gen. Physiol. 2015;146:65–77. doi: 10.1085/jgp.201411336. PubMed DOI PMC

Holendova B., Grycova L., Jirku M., Teisinger J. PtdIns(4,5)P2 interacts with Cam. binding domains on TRPM3 N-terminus. Channels. 2012;6:479–482. doi: 10.4161/chan.22177. PubMed DOI PMC

Oberwinkler J., Philipp S.E. Trpm3. Handb. Exp. Pharmacol. 2014;222:427–459. PubMed

Thiel G., Rössler O.G. Calmodulin Regulates Transient Receptor Potential TRPM3 and TRPM8-Induced Gene Transcription. Int. J. Mol. Sci. 2023;24:7902. doi: 10.3390/ijms24097902. PubMed DOI PMC

Prawitt D., Monteilh-Zoller M.K., Brixel L., Spangenberg C., Zabel B., Fleig A., Penner R. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc. Natl. Acad. Sci. USA. 2003;100:15166–15171. doi: 10.1073/pnas.2334624100. PubMed DOI PMC

Liu D., Liman E.R. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl. Acad. Sci. USA. 2003;100:15160–15165. doi: 10.1073/pnas.2334159100. PubMed DOI PMC

Zhang Z., Zhao Z., Margolskee R., Liman E. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J. Neurosci. 2007;27:5777–5786. doi: 10.1523/JNEUROSCI.4973-06.2007. PubMed DOI PMC

Voets T., Nilius B., Hoefs S., van der Kemp A.W., Droogmans G., Bindels R.J., Hoenderop J.G. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 2004;279:19–25. doi: 10.1074/jbc.M311201200. PubMed DOI

Xie J., Sun B., Du J., Yang W., Chen H.C., Overton J.D., Runnels L.W., Yue L. Phosphatidylinositol 4,5-bisphosphate (PIP(2)) controls magnesium gatekeeper TRPM6 activity. Sci. Rep. 2011;1:146. doi: 10.1038/srep00146. PubMed DOI PMC

Groenestege W.M., Hoenderop J.G., van den Heuvel L., Knoers N., Bindels R.J. The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and estrogens. J. Am. Soc. Nephrol. 2006;17:1035–1043. doi: 10.1681/ASN.2005070700. PubMed DOI

Runnels L.W., Yue L., Clapham D.E. The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat. Cell Biol. 2002;4:329–336. doi: 10.1038/ncb781. PubMed DOI

Nadler M.J., Hermosura M.C., Inabe K., Perraud A.L., Zhu Q., Stokes A.J., Kurosaki T., Kinet J.P., Penner R., Scharenberg A.M., et al. LTRPC7 is a Mg·ATP-regulated divalent cation channel required for cell viability. Nature. 2001;411:590–595. doi: 10.1038/35079092. PubMed DOI

Sisco N.J., Luu D.D., Kim M., Van Horn W.D. PIRT the TRP Channel Regulating Protein Binds Calmodulin and Cholesterol-Like Ligands. Biomolecules. 2020;10:421. doi: 10.3390/biom10030478. PubMed DOI PMC

Belrose J.C., Jackson M.F. TRPM2: A candidate therapeutic target for treating neurological diseases. Acta Pharmacol. Sin. 2018;39:722–732. doi: 10.1038/aps.2018.31. PubMed DOI PMC

Miller B.A., Wang J., Hirschler-Laszkiewicz I., Gao E., Song J., Zhang X.Q., Koch W.J., Madesh M., Mallilankaraman K., Gu T., et al. The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2013;304:H1010–H1022. doi: 10.1152/ajpheart.00906.2012. PubMed DOI PMC

Mittal M., Nepal S., Tsukasaki Y., Hecquet C.M., Soni D., Tiruppathi C., Malik A.B., Rehman J. Response by Mittal et al to Letter Regarding Article, “Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury”. Circ. Res. 2017;121:e87. doi: 10.1161/CIRCRESAHA.117.312146. PubMed DOI PMC

Ito K., Dezaki K., Yoshida M., Yamada H., Miura R., Rita R.S., Ookawara S., Tabei K., Kawakami M., Hara K., et al. Endogenous alpha2A-Adrenoceptor-Operated Sympathoadrenergic Tones Attenuate Insulin Secretion via cAMP/TRPM2 Signaling. Diabetes. 2017;66:699–709. doi: 10.2337/db16-1166. PubMed DOI

Massullo P., Sumoza-Toledo A., Bhagat H., Partida-Sanchez S. TRPM channels, calcium and redox sensors during innate immune responses. Semin. Cell Dev. Biol. 2006;17:654–666. doi: 10.1016/j.semcdb.2006.11.006. PubMed DOI

Yamamoto S., Shimizu S. Targeting TRPM2 in ROS-Coupled Diseases. Pharmaceuticals. 2016;9:57. doi: 10.3390/ph9030057. PubMed DOI PMC

McHugh D., Flemming R., Xu S.Z., Perraud A.L., Beech D.J. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J. Biol. Chem. 2003;278:11002–11006. doi: 10.1074/jbc.M210810200. PubMed DOI

Starkus J., Beck A., Fleig A., Penner R. Regulation of TRPM2 by extra- and intracellular calcium. J. Gen. Physiol. 2007;130:427–440. doi: 10.1085/jgp.200709836. PubMed DOI PMC

Tan C.H., McNaughton P.A. The TRPM2 ion channel is required for sensitivity to warmth. Nature. 2016;536:460–463. doi: 10.1038/nature19074. PubMed DOI PMC

Song K., Wang H., Kamm G.B., Pohle J., Reis F.C., Heppenstall P., Wende H., Siemens J. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science. 2016;353:1393–1398. doi: 10.1126/science.aaf7537. PubMed DOI PMC

Kashio M., Tominaga M. The TRPM2 channel: A thermo-sensitive metabolic sensor. Channels. 2017;11:426–433. doi: 10.1080/19336950.2017.1344801. PubMed DOI PMC

Yu P., Xue X., Zhang J., Hu X., Wu Y., Jiang L.H., Jin H., Luo J., Zhang L., Liu Z., et al. Identification of the ADPR binding pocket in the NUDT9 homology domain of TRPM2. J. Gen. Physiol. 2017;149:219–235. doi: 10.1085/jgp.201611675. PubMed DOI PMC

Togashi K., Hara Y., Tominaga T., Higashi T., Konishi Y., Mori Y., Tominaga M. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J. 2006;25:1804–1815. doi: 10.1038/sj.emboj.7601083. PubMed DOI PMC

Cai X., Yu X., Yang J., Lu L., Hua N., Duan X., Ye P., Ni L., Jiang L., Yang W. TRPM2 regulates cell cycle through the Ca2+-CaM-CaMKII signaling pathway to promote HCC. Hepatol. Commun. 2023;7:e0101. doi: 10.1097/HC9.0000000000000101. PubMed DOI PMC

Harteneck C. Function and pharmacology of TRPM cation channels. Naunyn. Schmiedebergs Arch. Pharmacol. 2005;371:307–314. doi: 10.1007/s00210-005-1034-x. PubMed DOI

Fonfria E., Murdock P.R., Cusdin F.S., Benham C.D., Kelsell R.E., McNulty S. Tissue distribution profiles of the human TRPM cation channel family. J. Recept. Signal Transduct. Res. 2006;26:159–178. doi: 10.1080/10799890600637506. PubMed DOI

Xu X.-Z.S., Moebius F., Gill D.L., Montell C. Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc. Natl. Acad. Sci. USA. 2001;98:10692–10697. doi: 10.1073/pnas.191360198. PubMed DOI PMC

Launay P., Cheng H., Srivatsan S., Penner R., Fleig A., Kinet J.-P. TRPM4 regulates calcium oscillations after T cell activation. Science. 2004;306:1374–1377. doi: 10.1126/science.1098845. PubMed DOI

Schattling B., Steinbach K., Thies E., Kruse M., Menigoz A., Ufer F., Flockerzi V., Bruck W., Pongs O., Vennekens R., et al. TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 2012;18:1805–1811. doi: 10.1038/nm.3015. PubMed DOI

Borgstrom A., Peinelt C., Stoklosa P. TRPM4 in Cancer—A New Potential Drug Target. Biomolecules. 2021;11:229. doi: 10.3390/biom11020229. PubMed DOI PMC

Bianchi B., Ozhathil L.C., Medeiros-Domingo A., Gollob M.H., Abriel H. Four TRPM4 Cation Channel Mutations Found in Cardiac Conduction Diseases Lead to Altered Protein Stability. Front. Physiol. 2018;9:177. doi: 10.3389/fphys.2018.00177. PubMed DOI PMC

Daumy X., Amarouch M.Y., Lindenbaum P., Bonnaud S., Charpentier E., Bianchi B., Nafzger S., Baron E., Fouchard S., Thollet A., et al. Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I. Int. J. Cardiol. 2016;207:349–358. doi: 10.1016/j.ijcard.2016.01.052. PubMed DOI

Wang C., Naruse K., Takahashi K. Role of the TRPM4 Channel in Cardiovascular Physiology and Pathophysiology. Cells. 2018;7:62. doi: 10.3390/cells7060062. PubMed DOI PMC

Yamaguchi S., Tanimoto A., Otsuguro K., Hibino H., Ito S. Negatively charged amino acids near and in transient receptor potential (TRP) domain of TRPM4 channel are one determinant of its Ca2+ sensitivity. J. Biol. Chem. 2014;289:35265–35282. doi: 10.1074/jbc.M114.606087. PubMed DOI PMC

Nilius B., Prenen J., Janssens A., Voets T., Droogmans G. Decavanadate modulates gating of TRPM4 cation channels. Pt 3J. Physiol. 2004;560:753–765. doi: 10.1113/jphysiol.2004.070839. PubMed DOI PMC

Nilius B., Mahieu F., Prenen J., Janssens A., Owsianik G., Vennekens R., Voets T. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J. 2006;25:467–478. doi: 10.1038/sj.emboj.7600963. PubMed DOI PMC

Zhang Z., Okawa H., Wang Y., Liman E.R. Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J. Biol. Chem. 2005;280:39185–39192. doi: 10.1074/jbc.M506965200. PubMed DOI

Hu Y., Kaschitza D.R., Essers M., Arullampalam P., Fujita T., Abriel H., Inoue R. Pathological activation of CaMKII induces arrhythmogenicity through TRPM4 overactivation. Pflug. Arch. 2021;473:507–519. doi: 10.1007/s00424-020-02507-w. PubMed DOI

Hofmann T., Chubanov V., Gudermann T., Montell C. TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr. Biol. 2003;13:1153–1158. doi: 10.1016/S0960-9822(03)00431-7. PubMed DOI

Dutta Banik D., Martin L.E., Freichel M., Torregrossa A.M., Medler K.F. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proc. Natl. Acad. Sci. USA. 2018;115:E772–E781. doi: 10.1073/pnas.1718802115. PubMed DOI PMC

Vennekens R., Mesuere M., Philippaert K. TRPM5 in the battle against diabetes and obesity. Acta Physiol. 2018;222:e12949. doi: 10.1111/apha.12949. PubMed DOI

Maeda T., Suzuki A., Koga K., Miyamoto C., Maehata Y., Ozawa S., Hata R.-I., Nagashima Y., Nabeshima K., Miyazaki K. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells. Oncotarget. 2017;8:78312. doi: 10.18632/oncotarget.20826. PubMed DOI PMC

Launay P., Fleig A., Perraud A.L., Scharenberg A.M., Penner R., Kinet J.P. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell. 2002;109:397–407. doi: 10.1016/S0092-8674(02)00719-5. PubMed DOI

Ryazanova L.V., Rondon L.J., Zierler S., Hu Z., Galli J., Yamaguchi T.P., Mazur A., Fleig A., Ryazanov A.G. TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat. Commun. 2010;1:109. doi: 10.1038/ncomms1108. PubMed DOI PMC

Clark K., Middelbeek J., Morrice N.A., Figdor C.G., Lasonder E., van Leeuwen F.N. Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS ONE. 2008;3:e1876. doi: 10.1371/journal.pone.0001876. PubMed DOI PMC

Romagnani A., Vettore V., Rezzonico-Jost T., Hampe S., Rottoli E., Nadolni W., Perotti M., Meier M.A., Hermanns C., Geiger S., et al. TRPM7 kinase activity is essential for T cell colonization and alloreactivity in the gut. Nat. Commun. 2017;8:1917. doi: 10.1038/s41467-017-01960-z. PubMed DOI PMC

Costa A., Tejpar S., Prenen H., Van Cutsem E. Hypomagnesaemia and targeted anti-epidermal growth factor receptor (EGFR) agents. Target. Oncol. 2011;6:227–233. doi: 10.1007/s11523-011-0200-y. PubMed DOI

Krapivinsky G., Krapivinsky L., Renthal N.E., Santa-Cruz A., Manasian Y., Clapham D.E. Histone phosphorylation by TRPM6’s cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc. Natl. Acad. Sci. USA. 2017;114:E7092–E7100. doi: 10.1073/pnas.1708427114. PubMed DOI PMC

Zou Z.G., Rios F.J., Montezano A.C., Touyz R.M. TRPM7, Magnesium, and Signaling. Int. J. Mol. Sci. 2019;20:1877. doi: 10.3390/ijms20081877. PubMed DOI PMC

Abumaria N., Li W., Clarkson A.N. Role of the chanzyme TRPM7 in the nervous system in health and disease. Cell Mol. Life Sci. 2019;76:3301–3310. doi: 10.1007/s00018-019-03124-2. PubMed DOI PMC

Miyazaki Y., Ichimura A., Kitayama R., Okamoto N., Yasue T., Liu F., Kawabe T., Nagatomo H., Ueda Y., Yamauchi I. C-type natriuretic peptide facilitates autonomic Ca2+ entry in growth plate chondrocytes for stimulating bone growth. eLife. 2022;11:e71931. doi: 10.7554/eLife.71931. PubMed DOI PMC

Chubanov V., Ferioli S., Wisnowsky A., Simmons D.G., Leitzinger C., Einer C., Jonas W., Shymkiv Y., Bartsch H., Braun A., et al. Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. eLife. 2016;5:e20914. doi: 10.7554/eLife.20914. PubMed DOI PMC

McKemy D.D., Neuhausser W.M., Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 2002;416:52–58. doi: 10.1038/nature719. PubMed DOI

Peier A.M., Moqrich A., Hergarden A.C., Reeve A.J., Andersson D.A., Story G.M., Earley T.J., Dragoni I., McIntyre P., Bevan S., et al. A TRP channel that senses cold stimuli and menthol. Cell. 2002;108:705–715. doi: 10.1016/S0092-8674(02)00652-9. PubMed DOI

Abe J., Hosokawa H., Okazawa M., Kandachi M., Sawada Y., Yamanaka K., Matsumura K., Kobayashi S. TRPM8 protein localization in trigeminal ganglion and taste papillae. Brain Res. Mol. Brain Res. 2005;136:91–98. doi: 10.1016/j.molbrainres.2005.01.013. PubMed DOI

Nealen M.L., Gold M.S., Thut P.D., Caterina M.J. TRPM8 mRNA is expressed in a subset of cold-responsive trigeminal neurons from rat. J. Neurophysiol. 2003;90:515–520. doi: 10.1152/jn.00843.2002. PubMed DOI

Winchester W.J., Gore K., Glatt S., Petit W., Gardiner J.C., Conlon K., Postlethwaite M., Saintot P.-P., Roberts S., Gosset J.R. Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans. J. Pharmacol. Exp. Ther. 2014;351:259–269. doi: 10.1124/jpet.114.216010. PubMed DOI

Qin N., Flores C.M. Polypeptide Complex of TRPM8 and Calmodulin and Its Uses Thereof. 8,399,201. U.S. Patent. 2007 May 18;

Premkumar L.S., Raisinghani M., Pingle S.C., Long C., Pimentel F. Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J. Neurosci. 2005;25:11322–11329. doi: 10.1523/JNEUROSCI.3006-05.2005. PubMed DOI PMC

Iftinca M., Basso L., Flynn R., Kwok C., Roland C., Hassan A., Defaye M., Ramachandran R., Trang T., Altier C. Chronic morphine regulates TRPM8 channels via MOR-PKCβ signaling. Mol. Brain. 2020;13:61. doi: 10.1186/s13041-020-00599-0. PubMed DOI PMC

Iftinca M., Altier C. The cool things to know about TRPM8! Channels. 2020;14:413–420. doi: 10.1080/19336950.2020.1841419. PubMed DOI PMC

Behrendt M. Transient receptor potential channels in the context of nociception and pain–recent insights into TRPM3 properties and function. Biol. Chem. 2019;400:917–926. doi: 10.1515/hsz-2018-0455. PubMed DOI

Kruse M., Pongs O. TRPM4 channels in the cardiovascular system. Curr. Opin. Pharmacol. 2014;15:68–73. doi: 10.1016/j.coph.2013.12.003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...