Mapping of CaM, S100A1 and PIP2-Binding Epitopes in the Intracellular N- and C-Termini of TRPM4
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO: 61388963
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
OP VaVpICZ.1.05/4.1.00/16.0340
EU Operational Program
GACR 19-04099S
Czech Science Foundation
PubMed
32560560
PubMed Central
PMC7352223
DOI
10.3390/ijms21124323
PII: ijms21124323
Knihovny.cz E-zdroje
- Klíčová slova
- CaM, PIP2, S100A1, TRPM4 channel, binding epitope, docking, fluorescence anisotropy, molecular dynamics simulations,
- MeSH
- akvaporiny chemie metabolismus MeSH
- interakční proteinové domény a motivy * MeSH
- kalmodulin chemie metabolismus MeSH
- kationtové kanály TRPM chemie metabolismus MeSH
- kinetika MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- multiproteinové komplexy chemie metabolismus MeSH
- peptidové fragmenty MeSH
- proteiny S100 chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- vazebná místa * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akvaporiny MeSH
- kalmodulin MeSH
- kationtové kanály TRPM MeSH
- multiproteinové komplexy MeSH
- peptidové fragmenty MeSH
- proteiny S100 MeSH
- S100A1 protein MeSH Prohlížeč
- TRPM4 protein, human MeSH Prohlížeč
Molecular determinants of the binding of various endogenous modulators to transient receptor potential (TRP) channels are crucial for the understanding of necessary cellular pathways, as well as new paths for rational drug designs. The aim of this study was to characterise interactions between the TRP cation channel subfamily melastatin member 4 (TRPM4) and endogenous intracellular modulators-calcium-binding proteins (calmodulin (CaM) and S100A1) and phosphatidylinositol 4, 5-bisphosphate (PIP2). We have found binding epitopes at the N- and C-termini of TRPM4 shared by CaM, S100A1 and PIP2. The binding affinities of short peptides representing the binding epitopes of N- and C-termini were measured by means of fluorescence anisotropy (FA). The importance of representative basic amino acids and their combinations from both peptides for the binding of endogenous TRPM4 modulators was proved using point alanine-scanning mutagenesis. In silico protein-protein docking of both peptides to CaM and S100A1 and extensive molecular dynamics (MD) simulations enabled the description of key stabilising interactions at the atomic level. Recently solved cryo-Electron Microscopy (EM) structures made it possible to put our findings into the context of the entire TRPM4 channel and to deduce how the binding of these endogenous modulators could allosterically affect the gating of TRPM4. Moreover, both identified binding epitopes seem to be ideally positioned to mediate the involvement of TRPM4 in higher-order hetero-multimeric complexes with important physiological functions.
2nd Faculty of Medicine Charles University 5 Uvalu 84 150 06 Prague Czech Republic
Faculty of Mathematics and Physics Charles University Ke Karlovu 5 12116 Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Videnska 1083 14220 Prague Czech Republic
Zobrazit více v PubMed
Nilius B., Prenen J., Tang J., Wang C., Owsianik G., Janssens A., Voets T., Zhu M.X. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J. Biol. Chem. 2005;280:6423–6433. doi: 10.1074/jbc.M411089200. PubMed DOI
Clapham D.E., Runnels L.W., Strübing C. The TRP ion channel family. Nat. Rev. Neurosci. 2001;2:387. doi: 10.1038/35077544. PubMed DOI
Ehara T., Noma A., Ono K. Calcium-activated non-selective cation channel in ventricular cells isolated from adult guinea-pig hearts. J. Physiol. 1988;403:117–133. doi: 10.1113/jphysiol.1988.sp017242. PubMed DOI PMC
Launay P., Fleig A., Perraud A.-L., Scharenberg A.M., Penner R., Kinet J.-P. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell. 2002;109:397–407. doi: 10.1016/S0092-8674(02)00719-5. PubMed DOI
Tian J., An X., Fu M. Transient receptor potential melastatin 4 cation channel in pediatric heart block. Eur. Rev. Med. Pharmacol. Sci. 2017;21:79–84. PubMed
Nilius B., Prenen J., Droogmans G., Voets T., Vennekens R., Freichel M., Wissenbach U., Flockerzi V. Voltage dependence of the Ca2+-activated cation channel TRPM4. J. Biol. Chem. 2003;278:30813–30820. doi: 10.1074/jbc.M305127200. PubMed DOI
Mathar I., Jacobs G., Kecskes M., Menigoz A., Philippaert K., Vennekens R. Mammalian Transient Receptor Potential (TRP) Cation Channels. Springer; Berlin, Germany: 2014. Trpm4; pp. 461–487.
Duan J., Li Z., Li J., Santa-Cruz A., Sanchez-Martinez S., Zhang J., Clapham D.E. Structure of full-length human TRPM4. Proc. Natl. Acad. Sci. USA. 2018;115:2377–2382. doi: 10.1073/pnas.1722038115. PubMed DOI PMC
Autzen H.E., Myasnikov A.G., Campbell M.G., Asarnow D., Julius D., Cheng Y. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science. 2018;359:228–232. doi: 10.1126/science.aar4510. PubMed DOI PMC
Winkler P.A., Huang Y., Sun W., Du J., Lü W. Electron cryo-microscopy structure of a human TRPM4 channel. Nature. 2017;552:200. doi: 10.1038/nature24674. PubMed DOI
Guo J., She J., Zeng W., Chen Q., Bai X.-c., Jiang Y. Structures of the calcium-activated, non-selective cation channel TRPM4. Nature. 2017;552:205. doi: 10.1038/nature24997. PubMed DOI PMC
Nilius B., Mahieu F., Prenen J., Janssens A., Owsianik G., Vennekens R., Voets T. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4, 5-biphosphate. EMBO J. 2006;25:467–478. doi: 10.1038/sj.emboj.7600963. PubMed DOI PMC
Zhang Z., Okawa H., Wang Y., Liman E.R. Phosphatidylinositol 4, 5-bisphosphate rescues TRPM4 channels from desensitization. J. Biol. Chem. 2005;280:39185–39192. doi: 10.1074/jbc.M506965200. PubMed DOI
Vennekens R., Nilius B. Transient Receptor Potential (TRP) Channels. Springer; Berlin, Germany: 2007. Insights into TRPM4 function, regulation and physiological role; pp. 269–285. PubMed
Singh A.K., McGoldrick L.L., Twomey E.C., Sobolevsky A.I. Mechanism of calmodulin inactivation of the calcium-selective TRP channel TRPV6. Sci. Adv. 2018;4:eaau6088. doi: 10.1126/sciadv.aau6088. PubMed DOI PMC
De Groot T., Kovalevskaya N.V., Verkaart S., Schilderink N., Felici M., van der Hagen E.A., Bindels R.J., Vuister G.W., Hoenderop J.G. The molecular mechanisms of calmodulin action on TRPV5 and the modulation by parathyroid hormone. Mol. Cell. Biol. 2011;31:2845–2853. doi: 10.1128/MCB.01319-10. PubMed DOI PMC
Villalobo A., González-Muñoz M., Berchtold M.W. Proteins with calmodulin-like domains: Structures and functional roles. Cell. Mol. Life Sci. 2019;76:2299–2328. doi: 10.1007/s00018-019-03062-z. PubMed DOI PMC
Tabernero L., Taylor D.A., Chandross R.J., VanBerkum M.F., Means A.R., Quiocho F.A., Sack J.S. The structure of a calmodulin mutant with a deletion in the central helix: Implications for molecular recognition and protein binding. Structure. 1997;5:613–622. doi: 10.1016/S0969-2126(97)00217-7. PubMed DOI
Rhoads A.R., Friedberg F. Sequence motifs for calmodulin recognition. FASEB J. 1997;11:331–340. doi: 10.1096/fasebj.11.5.9141499. PubMed DOI
Zhu M.X. Multiple roles of calmodulin and other Ca2+-binding proteins in the functional regulation of TRP channels. Pflügers Archiv. 2005;451:105–115. doi: 10.1007/s00424-005-1427-1. PubMed DOI
Hasan R., Zhang X. Ca2+ regulation of TRP ion channels. Int. J. Mol. Sci. 2018;19:1256. doi: 10.3390/ijms19041256. PubMed DOI PMC
Rohacs T., Nilius B. Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflügers Archiv. Eur. J. Physiol. 2007;455:157–168. doi: 10.1007/s00424-007-0275-6. PubMed DOI
Lemmon M.A., Ferguson K.M., O’Brien R., Sigler P.B., Schlessinger J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc. Natl. Acad. Sci. USA. 1995;92:10472–10476. doi: 10.1073/pnas.92.23.10472. PubMed DOI PMC
Yamaguchi S., Tanimoto A., Iwasa S., Otsuguro K.-i. TRPM4 and TRPM5 Channels Share Crucial Amino Acid Residues for Ca2+ Sensitivity but Not Significance of PI (4, 5) P2. Int. J. Mol. Sci. 2019;20:2012. doi: 10.3390/ijms20082012. PubMed DOI PMC
Bousova K., Jirku M., Bumba L., Bednarova L., Sulc M., Franek M., Vyklicky L., Vondrasek J., Teisinger J. PIP2 and PIP3 interact with N-terminus region of TRPM4 channel. Biophys. Chem. 2015;205:24–32. doi: 10.1016/j.bpc.2015.06.004. PubMed DOI
Ufret-Vincenty C.A., Klein R.M., Hua L., Angueyra J., Gordon S.E. Localization of the PIP2 sensor of TRPV1 ion channels. J. Biol. Chem. 2011;286:9688–9698. doi: 10.1074/jbc.M110.192526. PubMed DOI PMC
Yin Y., Le S.C., Hsu A.L., Borgnia M.J., Yang H., Lee S.-Y. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science. 2019;363:eaav9334. doi: 10.1126/science.aav9334. PubMed DOI PMC
Hughes T.E., Pumroy R.A., Yazici A.T., Kasimova M.A., Fluck E.C., Huynh K.W., Samanta A., Molugu S.K., Zhou Z.H., Carnevale V. Structural insights on TRPV5 gating by endogenous modulators. Nat. Commun. 2018;9:4198. doi: 10.1038/s41467-018-06753-6. PubMed DOI PMC
Fine M., Schmiege P., Li X. Structural basis for PtdInsP 2-mediated human TRPML1 regulation. Nat. Commun. 2018;9:4192. doi: 10.1038/s41467-018-06493-7. PubMed DOI PMC
Stokum J.A., Kwon M.S., Woo S.K., Tsymbalyuk O., Vennekens R., Gerzanich V., Simard J.M. SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia. 2018;66:108–125. doi: 10.1002/glia.23231. PubMed DOI PMC
Woo S.K., Kwon M.S., Ivanov A., Gerzanich V., Simard J.M. The sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm4) channel. J. Biol. Chem. 2013;288:3655–3667. doi: 10.1074/jbc.M112.428219. PubMed DOI PMC
Pratt E.B., Tewson P., Bruederle C.E., Skach W.R., Shyng S.-L. N-terminal transmembrane domain of SUR1 controls gating of Kir6. 2 by modulating channel sensitivity to PIP2. J. Gen. Physiol. 2011;137:299–314. doi: 10.1085/jgp.201010557. PubMed DOI PMC
Galizia L., Pizzoni A., Fernandez J., Rivarola V., Capurro C., Ford P. Functional interaction between AQP2 and TRPV4 in renal cells. J. Cell. Biochem. 2012;113:580–589. doi: 10.1002/jcb.23382. PubMed DOI
Yap K.L., Kim J., Truong K., Sherman M., Yuan T., Ikura M. Calmodulin target database. J. Struct. Funct. Genom. 2000;1:8–14. doi: 10.1023/A:1011320027914. PubMed DOI
Roche J.V., Törnroth-Horsefield S. Aquaporin protein-protein interactions. Int. J. Mol. Sci. 2017;18:2255. doi: 10.3390/ijms18112255. PubMed DOI PMC
Bily J., Grycova L., Holendova B., Jirku M., Janouskova H., Bousova K., Teisinger J. Characterization of the S100A1 protein binding site on TRPC6 C-terminus. PLoS ONE. 2013;8:e62677. doi: 10.1371/journal.pone.0062677. PubMed DOI PMC
Grycova L., Holendova B., Bumba L., Bily J., Jirku M., Lansky Z., Teisinger J. Integrative binding sites within intracellular termini of TRPV1 receptor. PLoS ONE. 2012;7:e48437. doi: 10.1371/journal.pone.0048437. PubMed DOI PMC
Holakovska B., Grycova L., Bily J., Teisinger J. Characterization of calmodulin binding domains in TRPV2 and TRPV5 C-tails. Amino Acids. 2011;40:741–748. doi: 10.1007/s00726-010-0712-2. PubMed DOI
Prosser B.L., Hernández-Ochoa E.O., Schneider M.F. S100A1 and calmodulin regulation of ryanodine receptor in striated muscle. Cell Calcium. 2011;50:323–331. doi: 10.1016/j.ceca.2011.06.001. PubMed DOI PMC
Bousova K., Herman P., Vecer J., Bednarova L., Monincova L., Majer P., Vyklicky L., Vondrasek J., Teisinger J. Shared CaM-and S100A1-binding epitopes in the distal TRPM 4 N terminus. FEBS J. 2018;285:599–613. doi: 10.1111/febs.14362. PubMed DOI
Lau S.-Y., Procko E., Gaudet R. Distinct properties of Ca2+–calmodulin binding to N-and C-terminal regulatory regions of the TRPV1 channel. J. Gen. Physiol. 2012;140:541–555. doi: 10.1085/jgp.201210810. PubMed DOI PMC
Meador W.E., Means A.R., Quiocho F.A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992;257:1251–1255. doi: 10.1126/science.1519061. PubMed DOI
Maximciuc A.A., Putkey J.A., Shamoo Y., MacKenzie K.R. Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode. Structure. 2006;14:1547–1556. doi: 10.1016/j.str.2006.08.011. PubMed DOI
Wright N.T., Prosser B.L., Varney K.M., Zimmer D.B., Schneider M.F., Weber D.J. S100A1 and calmodulin compete for the same binding site on ryanodine receptor. J. Biol. Chem. 2008;283:26676–26683. doi: 10.1074/jbc.M804432200. PubMed DOI PMC
Prosser B.L., Wright N.T., Hernandez-Ochoa E.O., Varney K.M., Liu Y., Olojo R.O., Zimmer D.B., Weber D.J., Schneider M.F. S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling. J. Biol. Chem. 2008;283:5046–5057. doi: 10.1074/jbc.M709231200. PubMed DOI PMC
Grycova L., Holendova B., Lansky Z., Bumba L., Jirku M., Bousova K., Teisinger J. Ca2+ Binding Protein S100A1 Competes with Calmodulin and PIP2 for Binding Site on the C-Terminus of the TPRV1 Receptor. ACS Chem. Neurosci. 2014;6:386–392. doi: 10.1021/cn500250r. PubMed DOI
Holakovska B., Grycova L., Jirku M., Sulc M., Bumba L., Teisinger J. Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel. J. Biol. Chem. 2012;287:16645–16655. doi: 10.1074/jbc.M112.350686. PubMed DOI PMC
Jirku M., Lansky Z., Bednarova L., Sulc M., Monincova L., Majer P., Vyklicky L., Vondrasek J., Teisinger J., Bousova K. The characterization of a novel S100A1 binding site in the N-terminus of TRPM1. Int. J. Biochem. Cell Biol. 2016;78:186–193. doi: 10.1016/j.biocel.2016.07.014. PubMed DOI
Uhlén M., Fagerberg L., Hallström B.M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson Å., Kampf C., Sjöstedt E., Asplund A. Tissue-based map of the human proteome. Science. 2015;347:1260419. doi: 10.1126/science.1260419. PubMed DOI
Sierra-Valdez F., Azumaya C.M., Romero L.O., Nakagawa T., Cordero-Morales J.F. Structure–function analyses of the ion channel TRPC3 reveal that its cytoplasmic domain allosterically modulates channel gating. J. Biol. Chem. 2018;293:16102–16114. doi: 10.1074/jbc.RA118.005066. PubMed DOI PMC
Huynh K.W., Cohen M.R., Jiang J., Samanta A., Lodowski D.T., Zhou Z.H., Moiseenkova-Bell V.Y. Structure of the full-length TRPV2 channel by cryo-EM. Nat. Commun. 2016;7:1–8. doi: 10.1038/ncomms11130. PubMed DOI PMC
Zubcevic L., Le S., Yang H., Lee S.-Y. Conformational plasticity in the selectivity filter of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 2018;25:405–415. doi: 10.1038/s41594-018-0059-z. PubMed DOI PMC
Zhu M.X., Tang J. TRPC channel interactions with calmodulin and IP3 receptors. Novartis Found. Symp. 2004;258:44–58. doi: 10.1002/0470862580.ch4. PubMed DOI
Martin G.M., Yoshioka C., Rex E.A., Fay J.F., Xie Q., Whorton M.R., Chen J.Z., Shyng S.-L. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. Elife. 2017;6:e24149. doi: 10.7554/eLife.24149. PubMed DOI PMC
Subbotina E., Williams N., Sampson B.A., Tang Y., Coetzee W.A. Functional characterization of TRPM4 variants identified in sudden unexpected natural death. Forensic Sci. Int. 2018;293:37–46. doi: 10.1016/j.forsciint.2018.10.006. PubMed DOI
Lindsay C., Sitsapesan M., Chan W.M., Venturi E., Welch W., Musgaard M., Sitsapesan R. Promiscuous attraction of ligands within the ATP binding site of RyR2 promotes diverse gating behaviour. Sci. Rep. 2018;8:1–13. doi: 10.1038/s41598-018-33328-8. PubMed DOI PMC
Kohda D. “Multiple partial recognitions in dynamic equilibrium” in the binding sites of proteins form the molecular basis of promiscuous recognition of structurally diverse ligands. Biophys. Rev. 2018;10:421–433. doi: 10.1007/s12551-017-0365-4. PubMed DOI PMC
Brix J., Dietmeier K., Pfanner N. Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 1997;272:20730–20735. doi: 10.1074/jbc.272.33.20730. PubMed DOI
Hainzl T., Huang S., Meriläinen G., Brännström K., Sauer-Eriksson A.E. Structural basis of signal-sequence recognition by the signal recognition particle. Nat. Struct. Mol. Biol. 2011;18:389. doi: 10.1038/nsmb.1994. PubMed DOI
Hansen S.B., Tao X., MacKinnon R. Structural basis of PIP 2 activation of the classical inward rectifier K+ channel Kir2. 2. Nature. 2011;477:495. doi: 10.1038/nature10370. PubMed DOI PMC
Suh B.-C., Hille B. Regulation of ion channels by phosphatidylinositol 4, 5-bisphosphate. Curr. Opin. Neurobiol. 2005;15:370–378. doi: 10.1016/j.conb.2005.05.005. PubMed DOI
Lakowicz J.R., Ray K., Chowdhury M., Szmacinski H., Fu Y., Zhang J., Nowaczyk K. Plasmon-controlled fluorescence: A new paradigm in fluorescence spectroscopy. Analyst. 2008;133:1308–1346. doi: 10.1039/b802918k. PubMed DOI PMC
Harper C.C., Berg J.M., Gould S.J. PEX5 binds the PTS1 independently of Hsp70 and the peroxin PEX12. J. Biol. Chem. 2003;278:7897–7901. doi: 10.1074/jbc.M206651200. PubMed DOI
Kohler J.J., Schepartz A. Kinetic studies of fos- jun- DNA complex formation: DNA binding prior to dimerization. Biochemistry. 2001;40:130–142. doi: 10.1021/bi001881p. PubMed DOI
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Kozakov D., Hall D.R., Xia B., Porter K.A., Padhorny D., Yueh C., Beglov D., Vajda S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017;12:255. doi: 10.1038/nprot.2016.169. PubMed DOI PMC
Kozakov D., Beglov D., Bohnuud T., Mottarella S.E., Xia B., Hall D.R., Vajda S. How good is automated protein docking? Proteins Struct. Funct. Bioinform. 2013;81:2159–2166. doi: 10.1002/prot.24403. PubMed DOI PMC
Kozakov D., Brenke R., Comeau S.R., Vajda S. PIPER: An FFT-based protein docking program with pairwise potentials. Proteins Struct. Funct. Bioinform. 2006;65:392–406. doi: 10.1002/prot.21117. PubMed DOI
Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinform. 2010;78:1950–1958. doi: 10.1002/prot.22711. PubMed DOI PMC
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Salomon-Ferrer R., Götz A.W., Poole D., Le Grand S., Walker R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 2013;9:3878–3888. doi: 10.1021/ct400314y. PubMed DOI
Le Grand S., Götz A.W., Walker R.C. SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013;184:374–380. doi: 10.1016/j.cpc.2012.09.022. DOI
Cheatham T.I., Miller J., Fox T., Darden T., Kollman P. Molecular dynamics simulations on solvated biomolecular systems: The particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J. Am. Chem. Soc. 1995;117:4193–4194. doi: 10.1021/ja00119a045. DOI
Miyamoto S., Kollman P.A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI
Feenstra K.A., Hess B., Berendsen H.J. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comput. Chem. 1999;20:786–798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B. PubMed DOI
Vanommeslaeghe K., MacKerell A., Jr. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2015;1850:861–871. doi: 10.1016/j.bbagen.2014.08.004. PubMed DOI PMC
Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R.D., Kale L., Schulten K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005;26:1781–1802. doi: 10.1002/jcc.20289. PubMed DOI PMC
Ryckaert J.-P., Ciccotti G., Berendsen H.J. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI
Roe D.R., Cheatham T.E., III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013;9:3084–3095. doi: 10.1021/ct400341p. PubMed DOI
Biovia D.S. Discovery Studio Modeling Environment. Dassault Systèmes; San Diego, CA, USA: 2016. Release 2017.