Integrative binding sites within intracellular termini of TRPV1 receptor
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23119017
PubMed Central
PMC3485206
DOI
10.1371/journal.pone.0048437
PII: PONE-D-12-07328
Knihovny.cz E-zdroje
- MeSH
- ankyriny chemie MeSH
- fosfatidylinositolfosfáty metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- kalmodulin chemie metabolismus MeSH
- kationtové kanály TRPV chemie genetika metabolismus MeSH
- konformace proteinů MeSH
- krysa rodu Rattus MeSH
- ligandy MeSH
- liposomy metabolismus MeSH
- mutace MeSH
- rekombinantní fúzní proteiny chemie genetika metabolismus MeSH
- simulace molekulového dockingu MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ankyriny MeSH
- fosfatidylinositolfosfáty MeSH
- kalmodulin MeSH
- kationtové kanály TRPV MeSH
- ligandy MeSH
- liposomy MeSH
- rekombinantní fúzní proteiny MeSH
- TRPV1 receptor MeSH Prohlížeč
TRPV1 is a nonselective cation channel that integrates wide range of painful stimuli. It has been shown that its activity could be modulated by intracellular ligands PIP2 or calmodulin (CaM). The detailed localization and description of PIP2 interaction sites remain unclear. Here, we used synthesized peptides and purified fusion proteins of intracellular regions of TRPV1 expressed in E.coli in combination with fluorescence anisotropy and surface plasmon resonance measurements to characterize the PIP2 binding to TRPV1. We characterized one PIP2 binding site in TRPV1 N-terminal region, residues F189-V221, and two independent PIP2 binding sites in C-terminus: residues K688-K718 and L777-S820. Moreover we show that two regions, namely F189-V221 and L777-S820, overlap with previously localized CaM binding sites. For all the interactions the equilibrium dissociation constants were estimated. As the structural data regarding C-terminus of TRPV1 are lacking, restraint-based molecular modeling combined with ligand docking was performed providing us with structural insight to the TRPV1/PIP2 binding. Our experimental results are in excellent agreement with our in silico predictions.
Zobrazit více v PubMed
Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, et al. (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci U S A 97: 6155–6160. PubMed PMC
Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, et al. (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400: 452–457. PubMed
Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24: 487–517. PubMed
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, et al. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816–824. PubMed
Boukalova S, Marsakova L, Teisinger J, Vlachova V (2010) Conserved residues within the putative S4–S5 region serve distinct functions among thermosensitive vanilloid transient receptor potential (TRPV) channels. J Biol Chem 285: 41455–41462. PubMed PMC
Moiseenkova-Bell VY, Stanciu LA, Serysheva, II, Tobe BJ, Wensel TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci U S A 105: 7451–7455. PubMed PMC
Novakova-Tousova K, Vyklicky L, Susankova K, Benedikt J, Samad A, et al. (2007) Functional changes in the vanilloid receptor subtype 1 channel during and after acute desensitization. Neuroscience 149: 144–154. PubMed
Grycova L, Lansky Z, Friedlova E, Obsilova V, Janouskova H, et al. (2008) Ionic interactions are essential for TRPV1 C-terminus binding to calmodulin. Biochem Biophys Res Commun 375: 680–683. PubMed
Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300: 1284–1288. PubMed
Brauchi S, Orta G, Mascayano C, Salazar M, Raddatz N, et al. (2007) Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc Natl Acad Sci U S A 104: 10246–10251. PubMed PMC
Rosenbaum T, Gordon-Shaag A, Munari M, Gordon SE (2004) Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123: 53–62. PubMed PMC
Kwon Y, Hofmann T, Montell C (2007) Integration of phosphoinositide- and calmodulin-mediated regulation of TRPC6. Mol Cell 25: 491–503. PubMed PMC
Zhu MX (2005) Multiple roles of calmodulin and other Ca(2+)-binding proteins in the functional regulation of TRP channels. Pflugers Arch 451: 105–115. PubMed
Grycova L, Lansky Z, Friedlova E, Vlachova V, Kubala M, et al. (2007) ATP binding site on the C-terminus of the vanilloid receptor. Arch Biochem Biophys 465: 389–398. PubMed
Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54: 905–918. PubMed
Hurley JH, Meyer T (2001) Subcellular targeting by membrane lipids. Curr Opin Cell Biol 13: 146–152. PubMed
DiNitto JP, Cronin TC, Lambright DG (2003) Membrane recognition and targeting by lipid-binding domains. Sci STKE 2003: re16. PubMed
Cho W, Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34: 119–151. PubMed
Lemmon MA (2003) Phosphoinositide recognition domains. Traffic 4: 201–213. PubMed
Dietrich A, Kalwa H, Rost BR, Gudermann T (2005) The diacylgylcerol-sensitive TRPC3/6/7 subfamily of cation channels: functional characterization and physiological relevance. Pflugers Arch 451: 72–80. PubMed
Hilgemann DW, Feng S, Nasuhoglu C (2001) The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001: re19. PubMed
Ufret-Vincenty CA, Klein RM, Hua L, Angueyra J, Gordon SE (2011) Localization of the PIP2 sensor of TRPV1 ion channels. J Biol Chem 286: 9688–9698. PubMed PMC
Kim AY, Tang Z, Liu Q, Patel KN, Maag D, et al. (2008) Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 133: 475–485. PubMed PMC
Yao J, Qin F (2009) Interaction with phosphoinositides confers adaptation onto the TRPV1 pain receptor. PLoS Biol 7: e46. PubMed PMC
Klein RM, Ufret-Vincenty CA, Hua L, Gordon SE (2008) Determinants of molecular specificity in phosphoinositide regulation. Phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is the endogenous lipid regulating TRPV1. J Biol Chem 283: 26208–26216. PubMed PMC
Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, et al. (2007) Dual regulation of TRPV1 by phosphoinositides. J Neurosci 27: 7070–7080. PubMed PMC
Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128: 509–522. PubMed PMC
Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11: 331–340. PubMed
Suh BC, Hille B (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 15: 370–378. PubMed
Friedlova E, Grycova L, Holakovska B, Silhan J, Janouskova H, et al. (2010) The interactions of the C-terminal region of the TRPC6 channel with calmodulin. Neurochem Int 56: 363–366. PubMed
McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438: 605–611. PubMed
Holakovska B, Grycova L, Bily J, Teisinger J (2011) Characterization of calmodulin binding domains in TRPV2 and TRPV5 C-tails. Amino Acids 40: 741–748. PubMed
Lakowicz J, (2006) Principles of fluorescence spectroscopy; Springer, editor. New York.
Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779–815. PubMed
Lima CD, D’Amico KL, Naday I, Rosenbaum G, Westbrook EM, et al. (1997) MAD analysis of FHIT, a putative human tumor suppressor from the HIT protein family. Structure 5: 763–774. PubMed
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680. PubMed PMC
Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723. PubMed
Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35: W407–410. PubMed PMC
Hansen SB, Tao X, Mackinnon R (2011) Structural basis of PIP(2) activation of the classical inward rectifier K(+) channel Kir2.2. Nature. PubMed PMC
TRPM7 N-terminal region forms complexes with calcium binding proteins CaM and S100A1
Mapping of CaM, S100A1 and PIP2-Binding Epitopes in the Intracellular N- and C-Termini of TRPM4
PDB
1FIT, 3SPI