TRPM7 N-terminal region forms complexes with calcium binding proteins CaM and S100A1

. 2021 Dec ; 7 (12) : e08490. [epub] 20211127

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34917797
Odkazy

PubMed 34917797
PubMed Central PMC8645431
DOI 10.1016/j.heliyon.2021.e08490
PII: S2405-8440(21)02593-7
Knihovny.cz E-zdroje

Transient receptor potential melastatin 7 (TRPM7) represents melastatin TRP channel with two significant functions, cation permeability and kinase activity. TRPM7 is widely expressed among tissues and is therefore involved in a variety of cellular functions representing mainly Mg2+ homeostasis, cellular Ca2+ flickering, and the regulation of DNA transcription by a cleaved kinase domain translocated to the nucleus. TRPM7 participates in several important biological processes in the nervous and cardiovascular systems. Together with the necessary function of the TRPM7 in these tissues and its recently analyzed overall structure, this channel requires further studies leading to the development of potential therapeutic targets. Here we present the first study investigating the N-termini of TRPM7 with binding regions for important intracellular modulators calmodulin (CaM) and calcium-binding protein S1 (S100A1) using in vitro and in silico approaches. Molecular simulations of the discovered complexes reveal their potential binding interfaces with common interaction patterns and the important role of basic residues present in the N-terminal binding region of TRPM.

Zobrazit více v PubMed

Zou Z.G., Rios F.J., Montezano A.C., Touyz R.M. TRPM7, magnesium, and signaling. Int. J. Mol. Sci. 2019;20(8) PubMed PMC

Abumaria N., Li W., Clarkson A.N. Role of the chanzyme TRPM7 in the nervous system in health and disease. Cell. Mol. Life Sci. 2019;76(17):3301–3310. PubMed PMC

Ryazanova L.V., Dorovkov M.V., Ansari A., Ryazanov A.G. Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J. Biol. Chem. 2004;279(5):3708–3716. PubMed

Kim T.Y., Shin S.K., Song M.-Y., Lee J.E., Park K.-S. Identification of the phosphorylation sites on intact TRPM7 channels from mammalian cells. Biochem. Biophys. Res. Commun. 2012;417(3):1030–1034. PubMed

Clark K., Middelbeek J., Morrice N.A., Figdor C.G., Lasonder E., van Leeuwen F.N. Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS One. 2008;3(3) PubMed PMC

Romagnani A., Vettore V., Rezzonico-Jost T., Hampe S., Rottoli E., Nadolni W., et al. TRPM7 kinase activity is essential for T cell colonization and alloreactivity in the gut. Nat. Commun. 2017;8(1):1–14. PubMed PMC

Krapivinsky G., Krapivinsky L., Manasian Y., Clapham D.E. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell. 2014;157(5):1061–1072. PubMed PMC

Krapivinsky G., Krapivinsky L., Renthal N.E., Santa-Cruz A., Manasian Y., Clapham D.E. Histone phosphorylation by TRPM6's cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc. Natl. Acad. Sci. U. S. A. 2017;114(34):E7092–E7100. PubMed PMC

Ferioli S., Zierler S., Zaißerer J., Schredelseker J., Gudermann T., Chubanov V. TRPM6 and TRPM7 differentially contribute to the relief of heteromeric TRPM6/7 channels from inhibition by cytosolic Mg 2+ and Mg· ATP. Sci. Rep. 2017;7(1):1–19. PubMed PMC

Duan J., Li Z., Li J., Hulse R.E., Santa-Cruz A., Valinsky W.C., et al. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc. Natl. Acad. Sci. U. S. A. 2018;115(35):E8201–E8210. PubMed PMC

Runnels L.W., Yue L., Clapham D.E. The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat. Cell Biol. 2002;4(5):329–336. PubMed

Nadler M.J., Hermosura M.C., Inabe K., Perraud A.L., Zhu Q., Stokes A.J., et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature. 2001;411(6837):590–595. PubMed

Mishra R., Rao V., Ta R., Shobeiri N., Hill C.E. Mg2+- and MgATP-inhibited and Ca2+/calmodulin-sensitive TRPM7-like current in hepatoma and hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;297(4):G687–G694. PubMed

Turlova E., Wong R., Xu B., Li F., Du L., Habbous S., et al. TRPM7 mediates neuronal cell death upstream of calcium/calmodulin-dependent protein kinase II and calcineurin mechanism in neonatal hypoxic-Ischemic brain injury. Transl. Stroke Res. 2021;12(1):164–184. PubMed

Zouharova M., Herman P., Hofbauerova K., Vondrasek J., Bousova K. TRPM6 N-terminal CaM- and S100A1-binding domains. Int. J. Mol. Sci. 2019;20(18) PubMed PMC

Clapham D.E. Calcium signaling. Cell. 2007;131(6):1047–1058. PubMed

Bagur R., Hajnoczky G. Intracellular Ca(2+) sensing: its role in calcium homeostasis and signaling. Mol. Cell. 2017;66(6):780–788. PubMed PMC

Stevens F.C. Calmodulin: an introduction. Can. J. Biochem. Cell Biol. 1983;61(8):906–910. PubMed

Babu Y.S., Sack J.S., Greenhough T.J., Bugg C.E., Means A.R., Cook W.J. Three-dimensional structure of calmodulin. Nature. 1985;315(6014):37. PubMed

Melville Z., Aligholizadeh E., McKnight L.E., Weber D.J., Pozharski E., Weber D.J. X-ray crystal structure of human calcium-bound S100A1. Acta Crystallogr. F Struct. Biol. Commun. 2017;73(Pt 4):215–221. PubMed PMC

Ritterhoff J., Most P. Targeting S100A1 in heart failure. Gene Ther. 2012;19(6):613–621. PubMed

Wright N.T., Prosser B.L., Varney K.M., Zimmer D.B., Schneider M.F., Weber D.J. S100A1 and calmodulin compete for the same binding site on ryanodine receptor. J. Biol. Chem. 2008;283(39):26676–26683. PubMed PMC

Rebbeck R.T., Nitu F.R., Rohde D., Most P., Bers D.M., Thomas D.D., et al. S100A1 protein does not compete with calmodulin for ryanodine receptor binding but structurally alters the ryanodine receptor· calmodulin complex. J. Biol. Chem. 2016;291(30):15896–15907. PubMed PMC

Yap K.L., Kim J., Truong K., Sherman M., Yuan T., Ikura M. Calmodulin target database. J. Struct. Funct. Genom. 2000;1(1):8–14. PubMed

Bousova K., Herman P., Vecer J., Bednarova L., Monincova L., Majer P., et al. Shared CaM-and S100A1-binding epitopes in the distal TRPM 4 N terminus. FEBS J. 2018;285(3):599–613. PubMed

Harper C.C., Berg J.M., Gould S.J. PEX5 binds the PTS1 independently of Hsp70 and the peroxin PEX12. J. Biol. Chem. 2003;278(10):7897–7901. PubMed

Lacourciere K.A., Stivers J.T., Marino J.P. Mechanism of neomycin and Rev peptide binding to the Rev responsive element of HIV-1 as determined by fluorescence and NMR spectroscopy. Biochemistry. 2000;39(19):5630–5641. PubMed

Chubanov V., Mittermeier L., Gudermann T. TRPM7 reflected in Cryo-EMirror. Cell Calcium. 2018;76:129–131. PubMed

Vilar S., Cozza G., Moro S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem. 2008;8(18):1555–1572. PubMed

Neshich G., Togawa R.C., Mancini A.L., Kuser P.R., Yamagishi M.E., Pappas G., Jr., et al. STING Millennium: a web-based suite of programs for comprehensive and simultaneous analysis of protein structure and sequence. Nucleic Acids Res. 2003;31(13):3386–3392. PubMed PMC

Wiederstein M., Sippl M.J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(Web Server issue):W407–W410. PubMed PMC

Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7(1) PubMed PMC

Kozakov D., Beglov D., Bohnuud T., Mottarella S.E., Xia B., Hall D.R., et al. How good is automated protein docking? Proteins: Struct. Funct. Bioinformat. 2013;81(12):2159–2166. PubMed PMC

Kozakov D., Hall D.R., Xia B., Porter K.A., Padhorny D., Yueh C., et al. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017;12(2):255. PubMed PMC

Vajda S., Yueh C., Beglov D., Bohnuud T., Mottarella S.E., Xia B., et al. New additions to the C lus P ro server motivated by CAPRI. Proteins: Struct. Funct. Bioinformat. 2017;85(3):435–444. PubMed PMC

Biovia D.S. 2017. Discovery Studio Modeling Environment. Release.

Holakovska B., Grycova L., Jirku M., Sulc M., Bumba L., Teisinger J. Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel. J. Biol. Chem. 2012;287(20):16645–16655. PubMed PMC

Bousova K., Barvik I., Herman P., Hofbauerová K., Monincova L., Majer P., et al. Mapping of CaM, S100A1 and PIP2-binding epitopes in the intracellular N-and C-termini of TRPM4. Int. J. Mol. Sci. 2020;21(12):4323. PubMed PMC

Grycova L., Holendova B., Bumba L., Bily J., Jirku M., Lansky Z., et al. Integrative binding sites within intracellular termini of TRPV1 receptor. PLoS One. 2012;7(10) PubMed PMC

Bily J., Grycova L., Holendova B., Jirku M., Janouskova H., Bousova K., et al. Characterization of the S100A1 protein binding site on TRPC6 C-terminus. PLoS One. 2013;8(5) PubMed PMC

Jirku M., Lansky Z., Bednarova L., Sulc M., Monincova L., Majer P., et al. The characterization of a novel S100A1 binding site in the N-terminus of TRPM1. Int. J. Biochem. Cell Biol. 2016;78:186–193. PubMed

Lau S.-Y., Procko E., Gaudet R. Distinct properties of Ca2+–calmodulin binding to N-and C-terminal regulatory regions of the TRPV1 channel. J. Gen. Physiol. 2012;140(5):541–555. PubMed PMC

Prosser B.L., Wright N.T., Hernandez-Ochoa E.O., Varney K.M., Liu Y., Olojo R.O., et al. S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling. J. Biol. Chem. 2008;283(8):5046–5057. PubMed PMC

Singh A.K., McGoldrick L.L., Twomey E.C., Sobolevsky A.I. Mechanism of calmodulin inactivation of the calcium-selective TRP channel TRPV6. Sci. Adv. 2018;4(8) PubMed PMC

Dang S., van Goor M.K., Asarnow D., Wang Y., Julius D., Cheng Y., et al. Structural insight into TRPV5 channel function and modulation. Proc. Natl. Acad. Sci. Unit. States Am. 2019;116(18):8869–8878. PubMed PMC

Demeuse P., Penner R., Fleig A. TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J. Gen. Physiol. 2006;127(4):421–434. PubMed PMC

Hasan R., Zhang X. Ca(2+) regulation of TRP ion channels. Int. J. Mol. Sci. 2018;19(4) PubMed PMC

Liu D., Liman E.R. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl. Acad. Sci. U. S. A. 2003;100(25):15160–15165. PubMed PMC

Owsianik G., D'hoedt D., Voets T., Nilius B. Structure-function relationship of the TRP channel superfamily. Rev. Physiol. Biochem. Pharmacol. 2006;156:61–90. PubMed

Chen W., Shen Z., Asteriti S., Chen Z., Ye F., Sun Z., et al. Calmodulin binds to Drosophila TRP with an unexpected mode. Structure. 2021;29(4):330–344. e4. PubMed

Nilius B., Prenen J., Tang J., Wang C., Owsianik G., Janssens A., et al. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J. Biol. Chem. 2005;280(8):6423–6433. PubMed

Liu B., Qin F. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 2005;25(7):1674–1681. PubMed PMC

Rohacs T., Lopes C.M.B., Michailidis I., Logothetis D.E. PI(4,5)P-2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci. 2005;8(5):626–634. PubMed

Hu Y., Li Q., Kurahara L.-H., Shioi N., Hiraishi K., Fujita T., et al. An Arrhythmic mutation E7K facilitates TRPM4 channel activation via enhanced PIP2 interaction. Cells. 2021;10(5):983. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Interaction of Calmodulin with TRPM: An Initiator of Channel Modulation

. 2023 Oct 13 ; 24 (20) : . [epub] 20231013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...