TRPM7 N-terminal region forms complexes with calcium binding proteins CaM and S100A1
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34917797
PubMed Central
PMC8645431
DOI
10.1016/j.heliyon.2021.e08490
PII: S2405-8440(21)02593-7
Knihovny.cz E-zdroje
- Klíčová slova
- Binding region, CaM, Calcium, Fluorescence anisotropy, S100A1, TRPM7,
- Publikační typ
- časopisecké články MeSH
Transient receptor potential melastatin 7 (TRPM7) represents melastatin TRP channel with two significant functions, cation permeability and kinase activity. TRPM7 is widely expressed among tissues and is therefore involved in a variety of cellular functions representing mainly Mg2+ homeostasis, cellular Ca2+ flickering, and the regulation of DNA transcription by a cleaved kinase domain translocated to the nucleus. TRPM7 participates in several important biological processes in the nervous and cardiovascular systems. Together with the necessary function of the TRPM7 in these tissues and its recently analyzed overall structure, this channel requires further studies leading to the development of potential therapeutic targets. Here we present the first study investigating the N-termini of TRPM7 with binding regions for important intracellular modulators calmodulin (CaM) and calcium-binding protein S1 (S100A1) using in vitro and in silico approaches. Molecular simulations of the discovered complexes reveal their potential binding interfaces with common interaction patterns and the important role of basic residues present in the N-terminal binding region of TRPM.
Zobrazit více v PubMed
Zou Z.G., Rios F.J., Montezano A.C., Touyz R.M. TRPM7, magnesium, and signaling. Int. J. Mol. Sci. 2019;20(8) PubMed PMC
Abumaria N., Li W., Clarkson A.N. Role of the chanzyme TRPM7 in the nervous system in health and disease. Cell. Mol. Life Sci. 2019;76(17):3301–3310. PubMed PMC
Ryazanova L.V., Dorovkov M.V., Ansari A., Ryazanov A.G. Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J. Biol. Chem. 2004;279(5):3708–3716. PubMed
Kim T.Y., Shin S.K., Song M.-Y., Lee J.E., Park K.-S. Identification of the phosphorylation sites on intact TRPM7 channels from mammalian cells. Biochem. Biophys. Res. Commun. 2012;417(3):1030–1034. PubMed
Clark K., Middelbeek J., Morrice N.A., Figdor C.G., Lasonder E., van Leeuwen F.N. Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS One. 2008;3(3) PubMed PMC
Romagnani A., Vettore V., Rezzonico-Jost T., Hampe S., Rottoli E., Nadolni W., et al. TRPM7 kinase activity is essential for T cell colonization and alloreactivity in the gut. Nat. Commun. 2017;8(1):1–14. PubMed PMC
Krapivinsky G., Krapivinsky L., Manasian Y., Clapham D.E. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell. 2014;157(5):1061–1072. PubMed PMC
Krapivinsky G., Krapivinsky L., Renthal N.E., Santa-Cruz A., Manasian Y., Clapham D.E. Histone phosphorylation by TRPM6's cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc. Natl. Acad. Sci. U. S. A. 2017;114(34):E7092–E7100. PubMed PMC
Ferioli S., Zierler S., Zaißerer J., Schredelseker J., Gudermann T., Chubanov V. TRPM6 and TRPM7 differentially contribute to the relief of heteromeric TRPM6/7 channels from inhibition by cytosolic Mg 2+ and Mg· ATP. Sci. Rep. 2017;7(1):1–19. PubMed PMC
Duan J., Li Z., Li J., Hulse R.E., Santa-Cruz A., Valinsky W.C., et al. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc. Natl. Acad. Sci. U. S. A. 2018;115(35):E8201–E8210. PubMed PMC
Runnels L.W., Yue L., Clapham D.E. The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat. Cell Biol. 2002;4(5):329–336. PubMed
Nadler M.J., Hermosura M.C., Inabe K., Perraud A.L., Zhu Q., Stokes A.J., et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature. 2001;411(6837):590–595. PubMed
Mishra R., Rao V., Ta R., Shobeiri N., Hill C.E. Mg2+- and MgATP-inhibited and Ca2+/calmodulin-sensitive TRPM7-like current in hepatoma and hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;297(4):G687–G694. PubMed
Turlova E., Wong R., Xu B., Li F., Du L., Habbous S., et al. TRPM7 mediates neuronal cell death upstream of calcium/calmodulin-dependent protein kinase II and calcineurin mechanism in neonatal hypoxic-Ischemic brain injury. Transl. Stroke Res. 2021;12(1):164–184. PubMed
Zouharova M., Herman P., Hofbauerova K., Vondrasek J., Bousova K. TRPM6 N-terminal CaM- and S100A1-binding domains. Int. J. Mol. Sci. 2019;20(18) PubMed PMC
Clapham D.E. Calcium signaling. Cell. 2007;131(6):1047–1058. PubMed
Bagur R., Hajnoczky G. Intracellular Ca(2+) sensing: its role in calcium homeostasis and signaling. Mol. Cell. 2017;66(6):780–788. PubMed PMC
Stevens F.C. Calmodulin: an introduction. Can. J. Biochem. Cell Biol. 1983;61(8):906–910. PubMed
Babu Y.S., Sack J.S., Greenhough T.J., Bugg C.E., Means A.R., Cook W.J. Three-dimensional structure of calmodulin. Nature. 1985;315(6014):37. PubMed
Melville Z., Aligholizadeh E., McKnight L.E., Weber D.J., Pozharski E., Weber D.J. X-ray crystal structure of human calcium-bound S100A1. Acta Crystallogr. F Struct. Biol. Commun. 2017;73(Pt 4):215–221. PubMed PMC
Ritterhoff J., Most P. Targeting S100A1 in heart failure. Gene Ther. 2012;19(6):613–621. PubMed
Wright N.T., Prosser B.L., Varney K.M., Zimmer D.B., Schneider M.F., Weber D.J. S100A1 and calmodulin compete for the same binding site on ryanodine receptor. J. Biol. Chem. 2008;283(39):26676–26683. PubMed PMC
Rebbeck R.T., Nitu F.R., Rohde D., Most P., Bers D.M., Thomas D.D., et al. S100A1 protein does not compete with calmodulin for ryanodine receptor binding but structurally alters the ryanodine receptor· calmodulin complex. J. Biol. Chem. 2016;291(30):15896–15907. PubMed PMC
Yap K.L., Kim J., Truong K., Sherman M., Yuan T., Ikura M. Calmodulin target database. J. Struct. Funct. Genom. 2000;1(1):8–14. PubMed
Bousova K., Herman P., Vecer J., Bednarova L., Monincova L., Majer P., et al. Shared CaM-and S100A1-binding epitopes in the distal TRPM 4 N terminus. FEBS J. 2018;285(3):599–613. PubMed
Harper C.C., Berg J.M., Gould S.J. PEX5 binds the PTS1 independently of Hsp70 and the peroxin PEX12. J. Biol. Chem. 2003;278(10):7897–7901. PubMed
Lacourciere K.A., Stivers J.T., Marino J.P. Mechanism of neomycin and Rev peptide binding to the Rev responsive element of HIV-1 as determined by fluorescence and NMR spectroscopy. Biochemistry. 2000;39(19):5630–5641. PubMed
Chubanov V., Mittermeier L., Gudermann T. TRPM7 reflected in Cryo-EMirror. Cell Calcium. 2018;76:129–131. PubMed
Vilar S., Cozza G., Moro S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem. 2008;8(18):1555–1572. PubMed
Neshich G., Togawa R.C., Mancini A.L., Kuser P.R., Yamagishi M.E., Pappas G., Jr., et al. STING Millennium: a web-based suite of programs for comprehensive and simultaneous analysis of protein structure and sequence. Nucleic Acids Res. 2003;31(13):3386–3392. PubMed PMC
Wiederstein M., Sippl M.J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(Web Server issue):W407–W410. PubMed PMC
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7(1) PubMed PMC
Kozakov D., Beglov D., Bohnuud T., Mottarella S.E., Xia B., Hall D.R., et al. How good is automated protein docking? Proteins: Struct. Funct. Bioinformat. 2013;81(12):2159–2166. PubMed PMC
Kozakov D., Hall D.R., Xia B., Porter K.A., Padhorny D., Yueh C., et al. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017;12(2):255. PubMed PMC
Vajda S., Yueh C., Beglov D., Bohnuud T., Mottarella S.E., Xia B., et al. New additions to the C lus P ro server motivated by CAPRI. Proteins: Struct. Funct. Bioinformat. 2017;85(3):435–444. PubMed PMC
Biovia D.S. 2017. Discovery Studio Modeling Environment. Release.
Holakovska B., Grycova L., Jirku M., Sulc M., Bumba L., Teisinger J. Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel. J. Biol. Chem. 2012;287(20):16645–16655. PubMed PMC
Bousova K., Barvik I., Herman P., Hofbauerová K., Monincova L., Majer P., et al. Mapping of CaM, S100A1 and PIP2-binding epitopes in the intracellular N-and C-termini of TRPM4. Int. J. Mol. Sci. 2020;21(12):4323. PubMed PMC
Grycova L., Holendova B., Bumba L., Bily J., Jirku M., Lansky Z., et al. Integrative binding sites within intracellular termini of TRPV1 receptor. PLoS One. 2012;7(10) PubMed PMC
Bily J., Grycova L., Holendova B., Jirku M., Janouskova H., Bousova K., et al. Characterization of the S100A1 protein binding site on TRPC6 C-terminus. PLoS One. 2013;8(5) PubMed PMC
Jirku M., Lansky Z., Bednarova L., Sulc M., Monincova L., Majer P., et al. The characterization of a novel S100A1 binding site in the N-terminus of TRPM1. Int. J. Biochem. Cell Biol. 2016;78:186–193. PubMed
Lau S.-Y., Procko E., Gaudet R. Distinct properties of Ca2+–calmodulin binding to N-and C-terminal regulatory regions of the TRPV1 channel. J. Gen. Physiol. 2012;140(5):541–555. PubMed PMC
Prosser B.L., Wright N.T., Hernandez-Ochoa E.O., Varney K.M., Liu Y., Olojo R.O., et al. S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling. J. Biol. Chem. 2008;283(8):5046–5057. PubMed PMC
Singh A.K., McGoldrick L.L., Twomey E.C., Sobolevsky A.I. Mechanism of calmodulin inactivation of the calcium-selective TRP channel TRPV6. Sci. Adv. 2018;4(8) PubMed PMC
Dang S., van Goor M.K., Asarnow D., Wang Y., Julius D., Cheng Y., et al. Structural insight into TRPV5 channel function and modulation. Proc. Natl. Acad. Sci. Unit. States Am. 2019;116(18):8869–8878. PubMed PMC
Demeuse P., Penner R., Fleig A. TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J. Gen. Physiol. 2006;127(4):421–434. PubMed PMC
Hasan R., Zhang X. Ca(2+) regulation of TRP ion channels. Int. J. Mol. Sci. 2018;19(4) PubMed PMC
Liu D., Liman E.R. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl. Acad. Sci. U. S. A. 2003;100(25):15160–15165. PubMed PMC
Owsianik G., D'hoedt D., Voets T., Nilius B. Structure-function relationship of the TRP channel superfamily. Rev. Physiol. Biochem. Pharmacol. 2006;156:61–90. PubMed
Chen W., Shen Z., Asteriti S., Chen Z., Ye F., Sun Z., et al. Calmodulin binds to Drosophila TRP with an unexpected mode. Structure. 2021;29(4):330–344. e4. PubMed
Nilius B., Prenen J., Tang J., Wang C., Owsianik G., Janssens A., et al. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J. Biol. Chem. 2005;280(8):6423–6433. PubMed
Liu B., Qin F. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 2005;25(7):1674–1681. PubMed PMC
Rohacs T., Lopes C.M.B., Michailidis I., Logothetis D.E. PI(4,5)P-2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci. 2005;8(5):626–634. PubMed
Hu Y., Li Q., Kurahara L.-H., Shioi N., Hiraishi K., Fujita T., et al. An Arrhythmic mutation E7K facilitates TRPM4 channel activation via enhanced PIP2 interaction. Cells. 2021;10(5):983. PubMed PMC
Interaction of Calmodulin with TRPM: An Initiator of Channel Modulation