Xeno-Hybrid Bone Graft Releasing Biomimetic Proteins Promotes Osteogenic Differentiation of hMSCs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33415112
PubMed Central
PMC7784409
DOI
10.3389/fcell.2020.619111
Knihovny.cz E-zdroje
- Klíčová slova
- bioactive proteins, bone graft, bone regeneration biomimetic, bone scaffold, intrinsically disordered, mesenchymal stem cells, xenograft,
- Publikační typ
- časopisecké články MeSH
Bone defect is a noteworthy health problem and is the second most transplanted tissue after blood. Numerous bone grafts are designed and applied in clinics. Limitations, however, from different aspects still exist, including limited supply, mechanical strength, and bioactivity. In this study, two biomimetic peptides (P2 and P6) are incorporated into a composite bioactive xeno hybrid bone graft named SmartBonePep®, with the aim to increase the bioactivity of the bone graft. The results, which include cytotoxicity, proliferation rate, confocal microscopy, gene expression, and protein qualification, successfully prove that the SmartBonePep® has multi-modal biological effects on human mesenchymal stem cells from bone marrow. The effective physical entrapment of P6 into a composite xeno-hybrid bone graft, withstanding manufacturing processes including exposure to strong organic solvents and ethylene oxide sterilization, increases the osteogenic potential of the stem cells as well as cell attachment and proliferation. P2 and P6 both show a strong biological potential and may be future candidates for enhancing the clinical performance of bone grafts.
Department of Biomaterials Faculty of Dentistry University of Oslo Oslo Norway
Department of Biophysics 2nd Faculty of Medicine Charles University Prague Czechia
Faculty of Biomedical Sciences University of Southern Switzerland Lugano Switzerland
Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt Neuherberg Germany
Industrie Biomediche Insubri S A Mezzovico Vira Switzerland
Ludwig Boltzmann Institute for Experimental and Clinical Traumatology Vienna Austria
Zobrazit více v PubMed
Athanasiou V. T., Papachristou D. J., Panagopoulos A., Saridis A., Scopa C. D., Megas P. (2010). Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits. Med. Sci. Monit. 16 BR24–BR31. PubMed
Cama G., Nkhwa S., Gharibi B., Lagazzo A., Cabella R., Carbone C., et al. (2017). The role of new zinc incorporated monetite cements on osteogenic differentiation of human mesenchymal stem cells. Mater. Sci. Eng. C Mater. Biol. Appl. 78 485–494. 10.1016/j.msec.2017.04.086 PubMed DOI
Campana V., Milano G., Pagano E., Barba M., Cicione C., Salonna G., et al. (2014). Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J. Mater. Sci. Mater. Med. 25 2445–2461. 10.1007/s10856-014-5240-2 PubMed DOI PMC
Carragee E. J., Hurwitz E. L., Weiner B. K. (2011). A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 11 471–491. 10.1016/j.spinee.2011.04.023 PubMed DOI
Chahal A. S., Schweikle M., Lian A. M., Reseland J. E., Haugen H. J., Tiainen H. (2020). Osteogenic potential of poly(ethylene glycol)-amorphous calcium phosphate composites on human mesenchymal stem cells. J. Tissue Eng. 11:2041731420926840. 10.1177/2041731420926840 PubMed DOI PMC
Cingolani A., Grottoli C. F., Esposito R., Villa T., Rossi F., Perale G. (2018). Improving bovine bone mechanical characteristics for the development of xenohybrid bone grafts. Curr. Pharm. Biotechnol. 19 1005–1013. 10.2174/1389201020666181129115839 PubMed DOI
Cornu O. (2012). “Influence of freeze-drying and irradiation on mechanical properties of human cancellous bone: application to impaction bone grafting,” in Bone Grafting, ed. Zorzi A. (Croatia: InTech; ), 41–58.
D’Alessandro D., Perale G., Milazzo M., Moscato S., Stefanini C., Pertici G., et al. (2017). Bovine bone matrix/poly(l-lactic-co-epsilon-caprolactone)/gelatin hybrid scaffold (SmartBone((R))) for maxillary sinus augmentation: a histologic study on bone regeneration. Int. J. Pharm. 523 534–544. 10.1016/j.ijpharm.2016.10.036 PubMed DOI
Delawi D., Jacobs W., van Susante J. L., Rillardon L., Prestamburgo D., Specchia N., et al. (2016). OP-1 compared with iliac crest autograft in instrumented posterolateral fusion: a randomized, multicenter non-inferiority trial. J. Bone Joint Surg. Am. 98 441–448. 10.2106/JBJS.O.00209 PubMed DOI
Eastell R., Hannon R. A. (2007). “CHAPTER 27 – Biochemical markers of bone turnover,” in Treatment of the Postmenopausal Woman, 3rd Edn, ed. Lobo R. A. (St. Louis, MO: Academic Press; ), 337–349.
Epstein N. E. (2013). Complications due to the use of BMP/INFUSE in spine surgery: the evidence continues to mount. Surg. Neurol. Int. 4(Suppl. 5) S343–S352. 10.4103/2152-7806.114813 PubMed DOI PMC
Esposito M., Lausmaa J., Hirsch J. M., Thomsen P. (1999). Surface analysis of failed oral titanium implants. J. Biomed. Mater. Res. 48 559–568. 10.1002/(sici)1097-4636199948:4<559::aid-jbm23<3.0.co;2-m PubMed DOI
Fang P. A., Conway J. F., Margolis H. C., Simmer J. P., Beniash E. (2011). Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proc. Natl. Acad. Sci. U.S.A. 108 14097–14102. 10.1073/pnas.1106228108 PubMed DOI PMC
Ferracini R., Bistolfi A., Garibaldi R., Furfaro V., Battista A., Perale G. (2019). Composite xenohybrid bovine bone-derived scaffold as bone substitute for the treatment of tibial plateau fractures. Appl. Sci. 9:2675 10.3390/app9132675 DOI
Fletcher J. W. A., Williams S., Whitehouse M. R., Gill H. S., Preatoni E. (2018). Juvenile bovine bone is an appropriate surrogate for normal and reduced density human bone in biomechanical testing: a validation study. Sci. Rep. 8:10181. 10.1038/s41598-018-28155-w PubMed DOI PMC
Fu R., Selph S., McDonagh M., Peterson K., Tiwari A., Chou R., et al. (2013). Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann. Intern. Med. 158 890–902. 10.7326/0003-4819-158-12-201306180-00006 PubMed DOI
Gallop P. M., Lian J. B., Hauschka P. V. (1980). Carboxylated calcium-binding proteins and vitamin K. N. Engl. J. Med. 302 1460–1466. 10.1056/NEJM198006263022608 PubMed DOI
Giannoudis P. V., Dinopoulos H., Tsiridis E. (2005). Bone substitutes: an update. Injury 36(Suppl. 3) S20–S27. 10.1016/j.injury.2005.07.029 PubMed DOI
Haugen H. J., Lyngstadaas S. P., Rossi F., Perale G. (2019). Bone grafts: which is the ideal biomaterial? J. Clin. Periodontol. 46(Suppl. 21) 92–102. 10.1111/jcpe.13058 PubMed DOI
Ionita M., Crica L. E., Tiainen H., Haugen H. J., Vasile E., Dinescu S., et al. (2016). Gelatin-poly(vinyl alcohol) porous biocomposites reinforced with graphene oxide as biomaterials. J. Mater. Chem. B 4 282–291. 10.1039/c5tb02132d PubMed DOI
James A. W., LaChaud G., Shen J., Asatrian G., Nguyen V., Zhang X., et al. (2016). A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng. Part B Rev. 22 284–297. 10.1089/ten.TEB.2015.0357 PubMed DOI PMC
Janicki P., Schmidmaier G. (2011). What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury 42(Suppl. 2) S77–S81. 10.1016/j.injury.2011.06.014 PubMed DOI
Kalmar L., Homola D., Varga G., Tompa P. (2012). Structural disorder in proteins brings order to crystal growth in biomineralization. Bone 51 528–534. 10.1016/j.bone.2012.05.009 PubMed DOI
Kapp T. G., Rechenmacher F., Neubauer S., Maltsev O. V., Cavalcanti-Adam E. A., Zarka R., et al. (2017). A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Sci. Rep. 7:39805. 10.1038/srep39805 PubMed DOI PMC
Lin X., Hunziker E. B., Liu T., Hu Q., Liu Y. (2019). Enhanced biocompatibility and improved osteogenesis of coralline hydroxyapatite modified by bone morphogenetic protein 2 incorporated into a biomimetic coating. Mater. Sci. Eng. C Mater. Biol. Appl. 96 329–336. 10.1016/j.msec.2018.11.017 PubMed DOI
Lukasova V., Buzgo M., Sovkova V., Dankova J., Rampichova M., Amler E. (2017). Osteogenic differentiation of 3D cultured mesenchymal stem cells induced by bioactive peptides. Cell Prolif. 50:e12357. 10.1111/cpr.12357 PubMed DOI PMC
Lv J., Xiu P., Tan J., Jia Z., Cai H., Liu Z. (2015). Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue. Biomed. Mater. 10:035013 10.1088/1748-6041/10/3/035013 PubMed DOI
McKee M. D., Cole W. G. (2012). “Chapter 2 – Bone matrix and mineralization,” in Pediatric Bone, 2nd Edn, eds Glorieux F. H., Pettifor J. M., Jüppner H. (San Diego, CA: Academic Press; ), 9–37. 10.1016/b978-0-12-382040-2.10002-4 DOI
Meloni S. M., Jovanovic S. A., Pisano M., Xhanari E., De Riu G., Tullio A., et al. (2017). Sinus lift grafting with anorganic bovine bone vs 50% autologous bone mixed with 50% anorganic bovine bone: 2 years after loading results from a randomised controlled trial. Eur. J. Oral Implantol. 10 425–432. PubMed
Oryan A., Alidadi S., Moshiri A., Bigham-Sadegh A. (2014). Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors 40 459–481. 10.1002/biof.1177 PubMed DOI
Pape H. C., Evans A., Kobbe P. (2010). Autologous bone graft: properties and techniques. J. Orthop. Trauma 24(Suppl. 1) S36–S40. 10.1097/BOT.0b013e3181cec4a1 PubMed DOI
Perale G., Monjo M., Ramis J. M., Ovrebo O., Betge F., Lyngstadaas P., et al. (2019). Biomimetic biomolecules in next generation xeno-hybrid bone graft material show enhanced in vitro bone cells response. J. Clin. Med. 8:2159. 10.3390/jcm8122159 PubMed DOI PMC
Pertici G., Rossi F., Casalini T., Perale G. (2014). Composite polymer-coated mineral grafts for bone regeneration: material characterisation and model study. Ann. Oral Maxillofac. Surg. 2:4.
Planell J. A., Best S., Lacroix D., Merolli A. (2009). Bone Repair Biomaterials. Boca Raton, FL: CRC Press.
Poumarat G., Squire P. (1993). Comparison of mechanical-properties of human, bovine bone and a new processed bone xenograft. Biomaterials 14 337–340. 10.1016/0142-9612(93)90051-3 PubMed DOI
Price P. A., Otsuka A. A., Poser J. W., Kristaponis J., Raman N. (1976). Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc. Natl. Acad. Sci. U.S.A. 73 1447–1451. 10.1073/pnas.73.5.1447 PubMed DOI PMC
Rahmati M., Silva E. A., Reseland J. E., Heyward C. A., Haugen H. J. (2020). Biological responses to physicochemical properties of biomaterial surface. Chem. Soc. Rev. 49 5178–5224. 10.1039/d0cs00103a PubMed DOI
Ramis J. M., Rubert M., Vondrasek J., Gaya A., Lyngstadaas S. P., Monjo M. (2012). Effect of enamel matrix derivative and of proline-rich synthetic peptides on the differentiation of human mesenchymal stem cells toward the osteogenic lineage. Tissue Eng. Part A 18 1253–1263. 10.1089/ten.tea.2011.0404 PubMed DOI
Reczyńska K., Wrona M., Tiainen H., Haugen H., Pamuła E. (2015). The influence of sintering conditions on microstructure and mechanical properties of titanium dioxide scaffolds for the treatment of bone tissue defects. Acta Bioeng. Biomech. 17 3–9. PubMed
Roato I., Belisario D. C., Compagno M., Verderio L., Sighinolfi A., Mussano F., et al. (2018). Adipose-derived stromal vascular fraction/xenohybrid bone scaffold: an alternative source for bone regeneration. Stem Cells Int. 2018:4126379. 10.1155/2018/4126379 PubMed DOI PMC
Rossi F., Santoro M., Perale G. (2015). Polymeric scaffolds as stem cell carriers in bone repair. J. Tissue Eng. Regen. Med. 9 1093–1119. 10.1002/term.1827 PubMed DOI
Ruan Q., Moradian-Oldak J. (2015). Amelogenin and enamel biomimetics. J. Mater. Chem. B 3 3112–3129. 10.1039/C5TB00163C PubMed DOI PMC
Rubert M., Ramis J. M., Vondrasek J., Gaya A., Lyngstadaas S. P., Monjo M. (2011). Synthetic peptides analogue to enamel proteins promote osteogenic differentiation of MC3T3-E1 and mesenchymal stem cells. J. Biomater. Tissue Eng. 1 198–209. 10.1166/jbt.2011.1018 DOI
Rumpel E., Wolf E., Kauschke E., Bienengraber V., Bayerlein T., Gedrange T., et al. (2006). The biodegradation of hydroxyapatite bone graft substitutes in vivo. Folia Morphol. (Warsz) 65 43–48. PubMed
Sakka S., Coulthard P. (2011). Implant failure: etiology and complications. Med. Oral Patol. Oral Cir. Bucal 16 e42–e44. 10.4317/medoral.16.e42 PubMed DOI
Sanz M., Dahlin C., Apatzidou D., Artzi Z., Bozic D., Calciolari E., et al. (2019). Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: consensus report of group 2 of the 15th European Workshop on Periodontology on bone regeneration. J. Clin. Periodontol. 46(Suppl. 21) 82–91. 10.1111/jcpe.13123 PubMed DOI
Schmitt C. M., Moest T., Lutz R., Neukam F. W., Schlegel K. A. (2015). Anorganic bovine bone (ABB) vs. autologous bone (AB) plus ABB in maxillary sinus grafting. A prospective non-randomized clinical and histomorphometrical trial. Clin. Oral Implants Res. 26 1043–1050. 10.1111/clr.12396 PubMed DOI
Sohn H. S., Oh J. K. (2019). Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater. Res. 23:9. 10.1186/s40824-019-0157-y PubMed DOI PMC
Sukul M., Cama G., Dubruel P., Reseland J. E., Haugen H. J. (2020). Methacrylation increase growth and differentiation of primary human osteoblasts for gelatin hydrogels. Emergent Mater. 3 559–566. 10.1007/s42247-020-00101-5 DOI
Villa O., Wohlfahrt J. C., Koldsland O. C., Brookes S. J., Lyngstadaas S. P., Aass A. M., et al. (2016). EMD in periodontal regenerative surgery modulates cytokine profiles: a randomised controlled clinical trial. Sci. Rep. 6:23060. 10.1038/srep23060 PubMed DOI PMC
Wald T., Bednarova L., Osicka R., Pachl P., Sulc M., Lyngstadaas S. P., et al. (2011). Biophysical characterization of recombinant human ameloblastin. Eur. J. Oral Sci. 119(Suppl. 1) 261–269. 10.1111/j.1600-0722.2011.00913.x PubMed DOI
Wald T., Spoutil F., Osickova A., Prochazkova M., Benada O., Kasparek P., et al. (2017). Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif. Proc. Natl. Acad. Sci. U.S.A. 114 E1641–E1650. 10.1073/pnas.1615334114 PubMed DOI PMC
Wang W., Yeung K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2 224–247. 10.1016/j.bioactmat.2017.05.007 PubMed DOI PMC
Winkler T., Sass F. A., Duda G. N., Schmidt-Bleek K. (2018). A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: the unsolved challenge. Bone Joint Res. 7 232–243. 10.1302/2046-3758.73.BJR-2017-0270.R1 PubMed DOI PMC
Wright P. E., Dyson H. J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16 18–29. 10.1038/nrm3920 PubMed DOI PMC
Zhang H., Tompkins K., Garrigues J., Snead M. L., Gibson C. W., Somerman M. J. (2010). Full length amelogenin binds to cell surface LAMP-1 on tooth root/periodontium associated cells. Arch. Oral Biol. 55 417–425. 10.1016/j.archoralbio.2010.03.009 PubMed DOI PMC
Zhu H., Gomez M., Xiao J., Perale G., Betge F., Lyngstadaas S. P., et al. (2020). Xenohybrid bone graft containing intrinsically disordered proteins shows enhanced in vitro bone formation. ACS Appl. Bio Mater. 3 2263–2274. 10.1021/acsabm.0c00064 PubMed DOI