Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 29754
Austrian Science Fund FWF - Austria
PubMed
31387989
PubMed Central
PMC6684572
DOI
10.1038/s41467-019-11483-4
PII: 10.1038/s41467-019-11483-4
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis fyziologie MeSH
- celogenomová asociační studie MeSH
- cytokininy metabolismus MeSH
- geneticky modifikované rostliny fyziologie MeSH
- genom rostlinný genetika MeSH
- gravitropismus MeSH
- kořeny rostlin metabolismus MeSH
- oxidoreduktasy genetika metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- proteolýza MeSH
- regulátory růstu rostlin metabolismus MeSH
- systémová biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokinin oxidase MeSH Prohlížeč
- cytokininy MeSH
- oxidoreduktasy MeSH
- proteiny huseníčku MeSH
- regulátory růstu rostlin MeSH
Directional organ growth allows the plant root system to strategically cover its surroundings. Intercellular auxin transport is aligned with the gravity vector in the primary root tips, facilitating downward organ bending at the lower root flank. Here we show that cytokinin signaling functions as a lateral root specific anti-gravitropic component, promoting the radial distribution of the root system. We performed a genome-wide association study and reveal that signal peptide processing of Cytokinin Oxidase 2 (CKX2) affects its enzymatic activity and, thereby, determines the degradation of cytokinins in natural Arabidopsis thaliana accessions. Cytokinin signaling interferes with growth at the upper lateral root flank and thereby prevents downward bending. Our interdisciplinary approach proposes that two phytohormonal cues at opposite organ flanks counterbalance each other's negative impact on growth, suppressing organ growth towards gravity and allow for radial expansion of the root system.
Department of Biology Stanford University 260 Panama Street Stanford CA 94305 USA
Department of Plant Biology Carnegie Institution for Science 260 Panama Street Stanford CA 94305 USA
Zobrazit více v PubMed
Uga Y, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Publ. Group. 2013;45:1097–1102. PubMed
Su S-H, Gibbs NM, Jancewicz AL, Masson PH. Molecular mechanisms of root gravitropism. Curr. Biol. 2017;27:R964–R972. doi: 10.1016/j.cub.2017.07.015. PubMed DOI
Leitz G, Kang BH, Schoenwaelder MEA, Staehelin LA. Statolith sedimentation kinetics and force transduction to the cortical endoplasmic reticulum in gravity-sensing Arabidopsis columella cells. Plant Cell Online. 2009;21:843–860. doi: 10.1105/tpc.108.065052. PubMed DOI PMC
Kleine-Vehn J, et al. Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc. Natl Acad. Sci. USA. 2010;107:22344–22349. doi: 10.1073/pnas.1013145107. PubMed DOI PMC
Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature. 2002;415:806–809. doi: 10.1038/415806a. PubMed DOI
Friml J, et al. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature. 2003;426:147–153. doi: 10.1038/nature02085. PubMed DOI
Rosquete MR, et al. An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr. Biol. 2013;23:817–822. doi: 10.1016/j.cub.2013.03.064. PubMed DOI
Ruiz Rosquete, M., Waidmann, S. & Kleine-Vehn, J. PIN7 auxin carrier has a preferential role in terminating radial root expansion in Arabidopsis thaliana. Int. J. Mol. Sci.19, 1238, (2018). PubMed PMC
Digby J, Firn RD. The gravitropic set-point angle (GSA): the identification of an important developmentally controlled variable governing plant architecture. Plant Cell Environ. 1995;18:1434–1440. doi: 10.1111/j.1365-3040.1995.tb00205.x. PubMed DOI
Wang H-Z, et al. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nat. Commun. 2015;6:1–9. PubMed PMC
Guyomarc’h S, et al. Early development and gravitropic response of lateral roots in Arabidopsis thaliana. Philos. Trans. R. Soc. B. 2012;367:1509–1516. doi: 10.1098/rstb.2011.0231. PubMed DOI PMC
Schöller M, Kleine-Vehn J, Feraru E. Cortical cell length analysis during gravitropic root growth. Methods Mol. Biol. 2018;1761:191–197. doi: 10.1007/978-1-4939-7747-5_14. PubMed DOI
Mullen JL, Hangarter RP. Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis. Adv. Space Res. 2003;31:2229–2236. doi: 10.1016/S0273-1177(03)00249-7. PubMed DOI
Roychoudhry S, Del Bianco M, Kieffer M, Kepinski S. Auxin controls gravitropic setpoint angle in higher plant lateral branches. Curr. Biol. 2013;23:1497–1504. doi: 10.1016/j.cub.2013.06.034. PubMed DOI
Rellán-Álvarez, R. et al. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. Elife4, e07597, (2015). PubMed PMC
Seren Ü, et al. GWAPP: a web application for genome-wide association mapping in Arabidopsis. Plant Cell. 2012;24:4793–4805. doi: 10.1105/tpc.112.108068. PubMed DOI PMC
Schmülling T, Werner T, Riefler M, Krupková E, Bartrina y Manns I. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J. Plant Res. 2003;116:241–252. doi: 10.1007/s10265-003-0096-4. PubMed DOI
Galuszka P, et al. Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J. Plant Growth Regul. 2007;26:255–267. doi: 10.1007/s00344-007-9008-5. DOI
Zatloukal M, et al. Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg. Med. Chem. 2008;16:9268–9275. doi: 10.1016/j.bmc.2008.09.008. PubMed DOI
Rashotte AM, et al. A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc. Natl Acad. Sci. USA. 2006;103:11081–11085. doi: 10.1073/pnas.0602038103. PubMed DOI PMC
Jeon J, Cho C, Lee MR, Van Binh N, Kim J. CYTOKININ RESPONSE FACTOR2(CRF2) and CRF3 regulate lateral root development in response to cold stress in Arabidopsis. Plant Cell Online. 2016;28:1828–1843. doi: 10.1105/tpc.15.00909. PubMed DOI PMC
Skylar A, Hong F, Chory J, Weigel D, Wu X. STIMPY mediates cytokinin signaling during shoot meristem establishment in Arabidopsis seedlings. Development. 2010;137:541–549. doi: 10.1242/dev.041426. PubMed DOI PMC
Raines T, et al. The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis. Plant J. 2015;85:134–147. doi: 10.1111/tpj.13097. PubMed DOI
Šimášková M, et al. Cytokinin response factors regulate PIN-FORMED auxin transporters. Nat. Commun. 2015;6:8717. doi: 10.1038/ncomms9717. PubMed DOI
Brady SM, et al. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science. 2007;318:801–806. doi: 10.1126/science.1146265. PubMed DOI
Duncan S, et al. Seasonal shift in timing of vernalization as an adaptation to extreme winter. Elife. 2015;4:11632. doi: 10.7554/eLife.06620. PubMed DOI PMC
Martz F, Vuosku J, Ovaskainen A, Stark S, Rautio P. The snow must go on: ground ice encasement, snow compaction and absence of snow differently cause soil hypoxia, CO2 accumulation and tree seedling damage in boreal forest. PLoS One. 2016;11:e0156620–18. doi: 10.1371/journal.pone.0156620. PubMed DOI PMC
Shukla Vinay, Lombardi Lara, Iacopino Sergio, Pencik Ales, Novak Ondrej, Perata Pierdomenico, Giuntoli Beatrice, Licausi Francesco. Endogenous Hypoxia in Lateral Root Primordia Controls Root Architecture by Antagonizing Auxin Signaling in Arabidopsis. Molecular Plant. 2019;12(4):538–551. doi: 10.1016/j.molp.2019.01.007. PubMed DOI
Eysholdt-Derzs* E, Sauter M. Root bending is antagonistically affected by hypoxia and ERF-mediated transcription via auxin signaling. Plant Physiol. 2017;175:412–423. doi: 10.1104/pp.17.00555. PubMed DOI PMC
Samalova M, Fricker M, Moore I. Ratiometric fluorescence-imaging assays of plant membrane traffic using polyproteins. Traffic. 2006;7:1701–1723. doi: 10.1111/j.1600-0854.2006.00502.x. PubMed DOI
Marhavý P, et al. Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev. Cell. 2011;21:796–804. doi: 10.1016/j.devcel.2011.08.014. PubMed DOI
Liu J, Müller B. Imaging TCSn::GFP, a synthetic cytokinin reporter, in Arabidopsis thaliana. Methods Mol. Biol. 2017;1497:81–90. doi: 10.1007/978-1-4939-6469-7_9. PubMed DOI
Ruzicka K, et al. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell Online. 2007;19:2197–2212. doi: 10.1105/tpc.107.052126. PubMed DOI PMC
Street IH, et al. Ethylene inhibits cell proliferation of the Arabidopsis root meristem. Plant P. 2015;169:338–350. doi: 10.1104/pp.15.00415. PubMed DOI PMC
Romanov GA, Lomin SN, Schmülling T. Cytokinin signaling: from the ER or from the PM? That is the question! New Phytol. 2018;218:41–53. doi: 10.1111/nph.14991. PubMed DOI
Ding Z, De Smet I. Localised ABA signalling mediates root growth plasticity. Trends Plant Sci. 2013;18:533–535. doi: 10.1016/j.tplants.2013.08.009. PubMed DOI PMC
Pernisova M, et al. Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis. New Phytol. 2016;212:497–509. doi: 10.1111/nph.14049. PubMed DOI
Kang J, Lee Y, Sakakibara H, Martinoia E. Cytokinin transporters: GO and STOP in signaling. Trends Plant Sci. 2017;22:455–461. doi: 10.1016/j.tplants.2017.03.003. PubMed DOI
Riefler M. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell Online. 2006;18:40–54. doi: 10.1105/tpc.105.037796. PubMed DOI PMC
Inoue T, et al. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature. 2001;409:1060–1063. doi: 10.1038/35059117. PubMed DOI
To JPC. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell Online. 2004;16:658–671. doi: 10.1105/tpc.018978. PubMed DOI PMC
Boudolf V. The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell Online. 2004;16:2683–2692. doi: 10.1105/tpc.104.024398. PubMed DOI PMC
Xie Z, et al. Regulation of cell proliferation in the stomatal lineage by the Arabidopsis MYB FOUR LIPS via direct targeting of core cell cycle genes. Plant Cell Online. 2010;22:2306–2321. doi: 10.1105/tpc.110.074609. PubMed DOI PMC
Werner T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell. 2003;15:2532–2550. doi: 10.1105/tpc.014928. PubMed DOI PMC
Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell. 2011;23:69–80. doi: 10.1105/tpc.110.079079. PubMed DOI PMC
Jeon J, et al. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J. Biol. Chem. 2010;285:23371–23386. doi: 10.1074/jbc.M109.096644. PubMed DOI PMC
Ferreira PC, et al. Developmental expression of the arabidopsis cyclin gene cyc1At. Plant Cell Online. 1994;6:1763–1774. PubMed PMC
Zadnikova P, et al. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development. 2010;137:607–617. doi: 10.1242/dev.041277. PubMed DOI
Pernisova M, et al. Cytokinin signalling regulates organ identity via the AHK4 receptor in Arabidopsis. Development. 2018;145:dev163907–48. doi: 10.1242/dev.163907. PubMed DOI
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI
Frébort I, et al. Cytokinin oxidase/cytokinin dehydrogenase assay: optimized procedures and applications. Anal. Biochem. 2002;306:1–7. doi: 10.1006/abio.2002.5670. PubMed DOI
Crone D, Rueda J, Martin KL, Hamilton DA, Mascarenhas JP. The differential expression of a heat shock promoter in floral and reproductive tissues. Plant Cell Environ. 2001;24:869–874. doi: 10.1046/j.1365-3040.2001.00727.x. DOI
Béziat C, Kleine-Vehn J, Feraru E. Histochemical staining of β-glucuronidase and its spatial quantification. Methods Mol. Biol. 2017;1497:73–80. doi: 10.1007/978-1-4939-6469-7_8. PubMed DOI
Hofmann Falko, Schon Michael A., Nodine Michael D. The embryonic transcriptome of Arabidopsis thaliana. Plant Reproduction. 2019;32(1):77–91. doi: 10.1007/s00497-018-00357-2. PubMed DOI
Svačinová J, et al. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods. 2012;8:17. doi: 10.1186/1746-4811-8-17. PubMed DOI PMC
Antoniadi I, et al. Cell-type-specific cytokinin distribution within the Arabidopsis primary root apex. Plant Cell. 2015;27:1955–1967. doi: 10.1105/tpc.15.00176. PubMed DOI PMC
Hoyerová K, et al. Efficiency of different methods of extraction and purification of cytokinins. Phytochemistry. 2006;67:1151–1159. doi: 10.1016/j.phytochem.2006.03.010. PubMed DOI
Schöller M, Sarkel E, Kleine-Vehn J, Feraru E. Growth rate normalization method to assess gravitropic root growth. Methods Mol. Biol. 2018;1761:199–208. doi: 10.1007/978-1-4939-7747-5_15. PubMed DOI
South A. rworldmap: a new R package for mapping global data. R J. 2011;3:35–43. doi: 10.32614/RJ-2011-006. DOI
Žádníková P, et al. A model of differential growth-guided apical hook formation in plants. Plant Cell Online. 2016;28:2464–2477. doi: 10.1105/tpc.15.00569. PubMed DOI PMC
Smith RS, et al. A plausible model of phyllotaxis. Proc. Natl Acad. Sci. USA. 2006;103:1301–1306. doi: 10.1073/pnas.0510457103. PubMed DOI PMC
Smith, C., Prusinkiewicz, P. & Samavati, F. in Applications of Graph Transformations with Industrial Relevance.Editors: John L. Pfaltz, Manfred Nagl and Boris Böhlen, Vol. 3062, 313–327 (Springer, Berlin, Heidelberg, 2003).
Karwowski, R. and Przemyslaw, P. The L-system-based plant-modeling environment L-studio 4.0. In Proc. 4th International Workshop on Functional–Structural Plant Models. Abstracts of papers and posters, 7-11 June 2004, Montpellier, France. Editors: Christophe Godin, Jim Hanan, Winfried Kurth, André Lacointe, Akio Takenaka, Przemyslaw Prusinkiewicz, Thedore M. Dejong, Christine Beveridge. CIRAD-AMIS-UMR AMAP. Montpellier: CIRAD-AMAP, 403–406.
Cytokinins regulate spatially specific ethylene production to control root growth in Arabidopsis
Reaction Wood Anatomical Traits and Hormonal Profiles in Poplar Bent Stem and Root