Cytokinins regulate spatially specific ethylene production to control root growth in Arabidopsis
Jazyk angličtina Země Čína Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38961625
PubMed Central
PMC11589326
DOI
10.1016/j.xplc.2024.101013
PII: S2590-3462(24)00330-4
Knihovny.cz E-zdroje
- Klíčová slova
- ACC OXIDASE, ACC SYNTHASE, Arabidopsis, cytokinin, ethylene, multistep phosphorelay,
- MeSH
- Arabidopsis * genetika růst a vývoj metabolismus MeSH
- cytokininy * metabolismus MeSH
- ethyleny * metabolismus biosyntéza MeSH
- kořeny rostlin * růst a vývoj genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokininy * MeSH
- ethylene MeSH Prohlížeč
- ethyleny * MeSH
- proteiny huseníčku MeSH
Two principal growth regulators, cytokinins and ethylene, are known to interact in the regulation of plant growth. However, information about the underlying molecular mechanism and positional specificity of cytokinin/ethylene crosstalk in the control of root growth is scarce. We have identified the spatial specificity of cytokinin-regulated root elongation and root apical meristem (RAM) size, both of which we demonstrate to be dependent on ethylene biosynthesis. Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE (IPT) in proximal and peripheral tissues leads to both root and RAM shortening. By contrast, IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to that of mock-treated controls. We show that cytokinins regulate two steps specific to ethylene biosynthesis: production of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) by ACC SYNTHASEs (ACSs) and its conversion to ethylene by ACC OXIDASEs (ACOs). We describe cytokinin- and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes. Using direct ethylene measurements, we identify ACO2, ACO3, and ACO4 as being responsible for ethylene biosynthesis and ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis. Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), a member of the multistep phosphorelay cascade, and the C-terminal portion of ETHYLENE INSENSITIVE 2 (EIN2-C), a key regulator of canonical ethylene signaling, is involved in the cytokinin-induced, ethylene-mediated control of ACO4. We propose tight cooperation between cytokinin and ethylene signaling in the spatially specific regulation of ethylene biosynthesis as a key aspect of the hormonal control of root growth.
CEITEC Masaryk University Brno Czech Republic
Center for Plant Molecular Biology University of Tübingen Tübingen Germany
Laboratory of Functional Plant Biology Department of Biology Ghent University Gent Belgium
Zobrazit více v PubMed
Bakker P., Pieterse C.M.J., de Jonge R., Berendsen R.L. The Soil-Borne Legacy. Cell. 2018;172:1178–1180. doi: 10.1016/j.cell.2018.02.024. PubMed DOI
Beemster G.T., Baskin T.I. Stunted plant 1 mediates effects of cytokinin, but not of auxin, on cell division and expansion in the root of Arabidopsis. Plant Physiol. 2000;124:1718–1727. PubMed PMC
Bielach A., Podlesakova K., Marhavy P., Duclercq J., Cuesta C., Muller B., Grunewald W., Tarkowski P., Benkova E. Spatiotemporal regulation of lateral root organogenesis in Arabidopsis by cytokinin. Plant Cell. 2012;24:3967–3981. doi: 10.1105/tpc.112.103044. PubMed DOI PMC
Binder B.M. Ethylene signaling in plants. J. Biol. Chem. 2020;295:7710–7725. doi: 10.1074/jbc.REV120.010854. PubMed DOI PMC
Bohner S., Gatz C. Characterisation of novel target promoters for the dexamethasone-inducible/tetracycline-repressible regulator TGV using luciferase and isopentenyl transferase as sensitive reporter genes. Mol. Gen. Genet. 2001;264:860–870. doi: 10.1007/s004380000376. PubMed DOI
Brady S.M., Orlando D.A., Lee J.Y., Wang J.Y., Koch J., Dinneny J.R., Mace D., Ohler U., Benfey P.N. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science. 2007;318:801–806. doi: 10.1126/science.1146265. 318/5851/801 [pii] PubMed DOI
Cary A.J., Liu W., Howell S.H. Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol. 1995;107:1075–1082. 107/4/1075 [pii] PubMed PMC
Clough S.J., Bent A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. PubMed
Clouse R.M., Carraro N. A novel phylogeny and morphological reconstruction of the PIN genes and first phylogeny of the ACC-oxidases (ACOs) Front. Plant Sci. 2014;5:296. doi: 10.3389/fpls.2014.00296. PubMed DOI PMC
Comas L.H., Becker S.R., Cruz V.M., Byrne P.F., Dierig D.A. Root traits contributing to plant productivity under drought. Front. Plant Sci. 2013;4:442. doi: 10.3389/fpls.2013.00442. PubMed DOI PMC
Cortleven A., Leuendorf J.E., Frank M., Pezzetta D., Bolt S., Schmulling T. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 2019;42:998–1018. doi: 10.1111/pce.13494. PubMed DOI
Dello Ioio R., Linhares F.S., Scacchi E., Casamitjana-Martinez E., Heidstra R., Costantino P., Sabatini S. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr. Biol. 2007;17:678–682. doi: 10.1016/j.cub.2007.02.047. S0960-9822(07)01056-1 [pii] PubMed DOI
Depaepe T., Van Der Straeten D. Tools of the Ethylene Trade: A Chemical Kit to Influence Ethylene Responses in Plants and Its Use in Agriculture. Small Methods. 2020;4 doi: 10.1002/smtd.201900267. DOI
Di Mambro R., Svolacchia N., Dello Ioio R., Pierdonati E., Salvi E., Pedrazzini E., Vitale A., Perilli S., Sozzani R., Benfey P.N., et al. The Lateral Root Cap Acts as an Auxin Sink that Controls Meristem Size. Curr. Biol. 2019;29:1199–1205.e4. doi: 10.1016/j.cub.2019.02.022. PubMed DOI
Dolan L. The role of ethylene in the development of plant form. J. Exp. Bot. 1997;48:201–210. doi: 10.1093/jxb/48.2.201. DOI
Etheridge N., Hall B.P., Schaller G.E. Progress report: ethylene signaling and responses. Planta. 2006;223:387–391. doi: 10.1007/s00425-005-0163-2. PubMed DOI
Hall B., Shakeel S., Amir M., Ul Haq N., Qu X., Schaller G.E. Histidine-Kinase Activity of the Ethylene Receptor ETR1 Facilitates the Ethylene Response in Arabidopsis. Plant Physiol. 2012;159:682–695. doi: 10.1104/pp.112.196790. PubMed DOI PMC
Hansen M., Chae H.S., Kieber J.J. Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J. 2009;57:606–614. doi: 10.1111/j.1365-313X.2008.03711.x. TPJ3711 [pii] PubMed DOI PMC
Hass C., Lohrmann J., Albrecht V., Sweere U., Hummel F., Yoo S.D., Hwang I., Zhu T., Schafer E., Kudla J. The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J. 2004;23:3290–3302. doi: 10.1038/sj.emboj.7600337. PubMed DOI PMC
Hetherington A.J., Dolan L. Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018;373:20170042. doi: 10.1098/rstb.2017.0042. PubMed DOI PMC
Heyl A., Brault M., Frugier F., Kuderova A., Lindner A.C., Motyka V., Rashotte A.M., Schwartzenberg K.V., Vankova R., Schaller G.E. Nomenclature for members of the two-component signaling pathway of plants. Plant Physiol. 2013;161:1063–1065. doi: 10.1104/pp.112.213207. PubMed DOI PMC
Houben M., Van de Poel B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. Front. Plant Sci. 2019;10:695. doi: 10.3389/fpls.2019.00695. PubMed DOI PMC
Hu Y.M., Vandenbussche F., Van Der Straeten D. Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. Planta. 2017;245:467–489. doi: 10.1007/s00425-017-2651-6. PubMed DOI
Chae H.S., Faure F., Kieber J.J. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell. 2003;15:545–559. PubMed PMC
Chang J., Li X., Fu W., Wang J., Yong Y., Shi H., Ding Z., Kui H., Gou X., He K., Li J. Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Res. 2019;29:984–993. doi: 10.1038/s41422-019-0239-3. PubMed DOI PMC
Chen Y.F., Etheridge N., Schaller G.E. Ethylene signal transduction. Ann. Bot. 2005;95:901–915. doi: 10.1093/aob/mci100. mci100 [pii] PubMed DOI PMC
Ju C., Chang C. Advances in ethylene signalling: protein complexes at the endoplasmic reticulum membrane. AoB Plants. 2012;2012:pls031. doi: 10.1093/aobpla/pls031. PubMed DOI PMC
Karimi M., Depicker A., Hilson P. Recombinational cloning with plant gateway vectors. Plant Physiol. 2007;145:1144–1154. doi: 10.1104/pp.107.106989. PubMed DOI PMC
Kieber J.J., Schaller G.E. Cytokinin signaling in plant development. Development. 2018;145:dev149344. doi: 10.1242/dev.149344. PubMed DOI
Kieber J.J., Rothenberg M., Roman G., Feldmann K.A., Ecker J.R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993;72:427–441. 0092-8674(93)90119-B [pii] PubMed
Kong X., Liu G., Liu J., Ding Z. The Root Transition Zone: A Hot Spot for Signal Crosstalk. Trends Plant Sci. 2018;23:403–409. doi: 10.1016/j.tplants.2018.02.004. PubMed DOI
Kosakivska I.V., Vedenicheva N.P., Babenko L.M., Voytenko L.V., Romanenko K.O., Vasyuk V.A. Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Mol. Biol. Rep. 2022;49:617–628. doi: 10.1007/s11033-021-06802-2. PubMed DOI
Laplaze L., Parizot B., Baker A., Ricaud L., Martiniere A., Auguy F., Franche C., Nussaume L., Bogusz D., Haseloff J. GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J. Exp. Bot. 2005;56:2433–2442. doi: 10.1093/jxb/eri236. eri236 [pii] PubMed DOI
Le J., Vandenbussche F., Van Der Straeten D., Verbelen J.P. In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiol. 2001;125:519–522. PubMed PMC
Lee H.Y., Yoon G.M. Regulation of Ethylene Biosynthesis by Phytohormones in Etiolated Rice (Oryza sativa L.) Seedlings. Mol. Cells. 2018;41:311–319. doi: 10.14348/molcells.2018.2224. PubMed DOI PMC
Lee H.Y., Chen Y.C., Kieber J.J., Yoon G.M. Regulation of the turnover of ACC synthases by phytohormones and heterodimerization in Arabidopsis. Plant J. 2017;91:491–504. doi: 10.1111/tpj.13585. PubMed DOI
Leuendorf J.E., Schmuelling T. Meeting at the DNA: Specifying Cytokinin Responses through Transcription Factor Complex Formation. Plants-Basel. 2021;10 doi: 10.3390/plants10071458. PubMed DOI PMC
Li W., Ma M., Feng Y., Li H., Wang Y., Ma Y., Li M., An F., Guo H. EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell. 2015;163:670–683. doi: 10.1016/j.cell.2015.09.037. PubMed DOI
Li W., Li Q., Lyu M., Wang Z., Song Z., Zhong S., Gu H., Dong J., Dresselhaus T., Zhong S., Qu L.J. Lack of ethylene does not affect reproductive success and synergid cell death in Arabidopsis. Mol. Plant. 2022;15:354–362. doi: 10.1016/j.molp.2021.11.001. PubMed DOI PMC
Liu S., Strauss S., Adibi M., Mosca G., Yoshida S., Dello Ioio R., Runions A., Andersen T.G., Grossmann G., Huijser P., et al. Cytokinin promotes growth cessation in the Arabidopsis root. Curr. Biol. 2022;32:1974–1985.e3. doi: 10.1016/j.cub.2022.03.019. PubMed DOI
Lynch J.P. Roots of the second green revolution. Aust. J. Bot. 2007;55:493–512. doi: 10.1071/Bt06118. DOI
Markakis M.N., De Cnodder T., Lewandowski M., Simon D., Boron A., Balcerowicz D., Doubbo T., Taconnat L., Renou J.P., Hofte H., et al. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana. BMC Plant Biol. 2012;12:208. doi: 10.1186/1471-2229-12-208. PubMed DOI PMC
Mazzoni-Putman S.M., Brumos J., Zhao C., Alonso J.M., Stepanova A.N. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb. Perspect. Biol. 2021;13:a039990. doi: 10.1101/cshperspect.a039990. PubMed DOI PMC
Mira-Rodado V. New Insights into Multistep-Phosphorelay (MSP)/Two-Component System (TCS) Regulation: Are Plants and Bacteria that Different? Plants. 2019;8:590. doi: 10.3390/plants8120590. PubMed DOI PMC
Miyawaki K., Matsumoto-Kitano M., Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 2004;37:128–138. 1945 [pii] PubMed
Ortega-Martinez O., Pernas M., Carol R.J., Dolan L. Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science. 2007;317:507–510. doi: 10.1126/science.1143409. 317/5837/507 [pii] PubMed DOI
Pandey B.K., Huang G., Bhosale R., Hartman S., Sturrock C.J., Jose L., Martin O.C., Karady M., Voesenek L., Ljung K., et al. Plant roots sense soil compaction through restricted ethylene diffusion. Science. 2021;371:276–280. doi: 10.1126/science.abf3013. PubMed DOI
Park C.H., Roh J., Youn J.H., Son S.H., Park J.H., Kim S.Y., Kim T.W., Kim S.K. Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development. Mol. Cells. 2018;41:923–932. doi: 10.14348/molcells.2018.0092. PubMed DOI PMC
Pattyn J., Vaughan-Hirsch J., Van de Poel B. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. New Phytol. 2021;229:770–782. doi: 10.1111/nph.16873. PubMed DOI PMC
Ramireddy E., Hosseini S.A., Eggert K., Gillandt S., Gnad H., von Wiren N., Schmulling T. Root Engineering in Barley: Increasing Cytokinin Degradation Produces a Larger Root System, Mineral Enrichment in the Shoot and Improved Drought Tolerance. Plant Physiol. 2018;177:1078–1095. doi: 10.1104/pp.18.00199. PubMed DOI PMC
Rashotte A.M., Chae H.S., Maxwell B.B., Kieber J.J. The interaction of cytokinin with other signals. Physiol. Plantarum. 2005;123:184–194. doi: 10.1111/j.1399-3054.2004.00445.x. DOI
Rieger J., Fitz M., Fischer S.M., Wallmeroth N., Flores-Romero H., Fischer N.M., Brand L.H., Garcia-Saez A.J., Berendzen K.W., Mira-Rodado V. Exploring the Binding Affinity of the ARR2 GARP DNA Binding Domain via Comparative Methods. Genes. 2023;14:1638. doi: 10.3390/genes14081638. PubMed DOI PMC
Ruzicka K., Ljung K., Vanneste S., Podhorska R., Beeckman T., Friml J., Benkova E. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell. 2007;19:2197–2212. doi: 10.1105/tpc.107.052126. tpc.107.052126 [pii] PubMed DOI PMC
Ruzicka K., Simaskova M., Duclercq J., Petrasek J., Zazimalova E., Simon S., Friml J., Van Montagu M.C., Benkova E. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc. Natl. Acad. Sci. USA. 2009;106:4284–4289. doi: 10.1073/pnas.0900060106. 0900060106 [pii] PubMed DOI PMC
Sakai H., Aoyama T., Oka A. Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 2000;24:703–711. PubMed
Satoh S., Esashi Y. Effects of alpha-aminoisobutyric acid and D- and L-amino acids on ethylene production and content of 1-aminocyclopropane-1-carboxylic acid in cotyledonary segments of cocklebur seeds. Physiol. Plant. 1982;54:147–152. doi: 10.1111/j.1399-3054.1982.tb06318.x. DOI
Satoh S., Esashi Y. α-Aminoisabutyric acid, propyl gallate and cobalt ion and the mode of inhibition of ethylene production by cotyledonary segments of cocklebur seeds. Physiol. Plant. 1983;57:521–526. doi: 10.1111/j.1399-3054.1983.tb02779.x. DOI
Saucedo M., Ponce G., Campos M.E., Eapen D., Garcia E., Lujan R., Sanchez Y., Cassab G.I. An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin. J. Exp. Bot. 2012;63:3587–3601. doi: 10.1093/jxb/ers025. PubMed DOI PMC
Shimada T.L., Shimada T., Hara-Nishimura I. A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J. 2010;61:519–528. doi: 10.1111/j.1365-313X.2009.04060.x. PubMed DOI
Skalak J., Nicolas K.L., Vankova R., Hejatko J. Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. Front. Plant Sci. 2021;12:644823. doi: 10.3389/fpls.2021.644823. PubMed DOI PMC
Stepanova A.N., Alonso J.M. Ethylene signaling and response: where different regulatory modules meet. Curr. Opin. Plant Biol. 2009;12:548–555. doi: 10.1016/j.pbi.2009.07.009. PubMed DOI
Stepanova A.N., Robertson-Hoyt J., Yun J., Benavente J.M., Xie D.Y., Dolezal K., Schlereth A., Jurgens G., Alonso J.M. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133:177–191. doi: 10.1016/j.cell.2008.01.047. PubMed DOI
Street I.H., Aman S., Zubo Y., Ramzan A., Wang X., Shakeel S., Kieber J.J., Schaller G.E. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem. Plant Physiol. 2015;169:338–350. doi: 10.1104/pp.15.00415. PubMed DOI PMC
Street I.H., Mathews D.E., Yamburkenko M.V., Sorooshzadeh A., John R.T., Swarup R., Bennett M.J., Kieber J.J., Schaller G.E. Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development. 2016;143:3982–3993. doi: 10.1242/dev.132035. PubMed DOI PMC
Sun X., Li Y., He W., Ji C., Xia P., Wang Y., Du S., Li H., Raikhel N., Xiao J., Guo H. Pyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase. Nat. Commun. 2017;8:15758. doi: 10.1038/ncomms15758. PubMed DOI PMC
Svolacchia N., Salvi E., Sabatini S. Arabidopsis primary root growth: let it grow, can't hold it back anymore. Curr. Opin. Plant Biol. 2020;57:133–141. doi: 10.1016/j.pbi.2020.08.005. PubMed DOI
Swarup R., Perry P., Hagenbeek D., Van Der Straeten D., Beemster G.T., Sandberg G., Bhalerao R., Ljung K., Bennett M.J. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell. 2007;19:2186–2196. doi: 10.1105/tpc.107.052100. tpc.107.052100 [pii] PubMed DOI PMC
Szmitkowska A., Cuyacot A.R., Pekarova B., Zdarska M., Houser J., Komarek J., Jasenakova Z., Jayasree A., Heunemann M., Ubogoeva E., et al. AHK5 mediates ETR1-initiated multistep phosphorelay in Arabidopsis. bioRxiv. 2021 doi: 10.1101/2021.09.16.460643. Preprint at. DOI
Takatsuka H., Umeda M. Hormonal control of cell division and elongation along differentiation trajectories in roots. J. Exp. Bot. 2014;65:2633–2643. doi: 10.1093/jxb/ert485. PubMed DOI
Tiwari M., Kumar R., Min D., Jagadish S.V.K. Genetic and molecular mechanisms underlying root architecture and function under heat stress-A hidden story. Plant Cell Environ. 2022;45:771–788. doi: 10.1111/pce.14266. PubMed DOI
Tsuchisaka A., Theologis A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 2004;136:2982–3000. doi: 10.1104/pp.104.049999. 49999 [pii] PubMed DOI PMC
Tsuchisaka A., Yu G., Jin H., Alonso J.M., Ecker J.R., Zhang X., Gao S., Theologis A. A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics. 2009;183:979–1003. doi: 10.1534/genetics.109.107102. PubMed DOI PMC
Uga Y., Sugimoto K., Ogawa S., Rane J., Ishitani M., Hara N., Kitomi Y., Inukai Y., Ono K., Kanno N., et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013;45:1097–1102. doi: 10.1038/ng.2725. PubMed DOI
Vandenbussche F., Vaseva I., Vissenberg K., Van Der Straeten D. Ethylene in vegetative development: a tale with a riddle. New Phytol. 2012;194:895–909. doi: 10.1111/j.1469-8137.2012.04100.x. PubMed DOI
Vaseva I.I., Qudeimat E., Potuschak T., Du Y., Genschik P., Vandenbussche F., Van Der Straeten D. The plant hormone ethylene restricts Arabidopsis growth via the epidermis. Proc. Natl. Acad. Sci. USA. 2018;115:E4130–E4139. doi: 10.1073/pnas.1717649115. PubMed DOI PMC
Venado R.E., Wange L.E., Shen D., Pinnau F., Andersen T.G., Enard W., Marin M. Tissue-specific regulation of lipid polyester synthesis genes controlling oxygen permeation into Lotus japonicus nodules. Proc. Natl. Acad. Sci. USA. 2022;119 doi: 10.1073/pnas.2206291119. PubMed DOI PMC
Vogel J.P., Woeste K.E., Theologis A., Kieber J.J. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc. Natl. Acad. Sci. USA. 1998;95:4766–4771. PubMed PMC
Waidmann S., Kleine-Vehn J. Asymmetric cytokinin signaling opposes gravitropism in roots. J. Integr. Plant Biol. 2020;62:882–886. doi: 10.1111/jipb.12929. PubMed DOI PMC
Waidmann S., Ruiz Rosquete M., Scholler M., Sarkel E., Lindner H., LaRue T., Petrik I., Dunser K., Martopawiro S., Sasidharan R., et al. Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots. Nat. Commun. 2019;10:3540. doi: 10.1038/s41467-019-11483-4. PubMed DOI PMC
Wang L., Zhang F., Rode S., Chin K.K., Ko E.E., Kim J., Iyer V.R., Qiao H. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis. BMC Genom. 2017;18:538. doi: 10.1186/s12864-017-3929-6. PubMed DOI PMC
Weits D.A., Kunkowska A.B., Kamps N.C.W., Portz K.M.S., Packbier N.K., Nemec Venza Z., Gaillochet C., Lohmann J.U., Pedersen O., van Dongen J.T., Licausi F. An apical hypoxic niche sets the pace of shoot meristem activity. Nature. 2019;569:714–717. doi: 10.1038/s41586-019-1203-6. PubMed DOI
Wen X., Zhang C., Ji Y., Zhao Q., He W., An F., Jiang L., Guo H. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res. 2012;22:1613–1616. doi: 10.1038/cr.2012.145. PubMed DOI PMC
Woeste K.E., Ye C., Kieber J.J. Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol. 1999;119:521–530. PubMed PMC
Yamoune A., Cuyacot A.R., Zdarska M., Hejatko J. Hormonal orchestration of root apical meristem formation and maintenance in Arabidopsis. J. Exp. Bot. 2021;72:6768–6788. doi: 10.1093/jxb/erab360. PubMed DOI
Yang S.F., Hoffman N.E. Ethylene Biosynthesis and Its Regulation in Higher-Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1984;35:155–189.
Yang Y., Li R., Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 2000;22:543–551. doi: 10.1046/j.1365-313x.2000.00760.x. PubMed DOI
Zd'arska M., Zatloukalova P., Benitez M., Sedo O., Potesil D., Novak O., Svacinova J., Pesek B., Malbeck J., Vasickova J., et al. Proteome analysis in Arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. Plant Physiology. 2013;161:918–930. doi: 10.1104/pp.112.202853. PubMed DOI PMC
Zdarska M., Cuyacot A.R., Tarr P.T., Yamoune A., Szmitkowska A., Hrdinova V., Gelova Z., Meyerowitz E.M., Hejatko J. ETR1 Integrates Response to Ethylene and Cytokinins into a Single Multistep Phosphorelay Pathway to Control Root Growth. Mol. Plant. 2019;12:1338–1352. doi: 10.1016/j.molp.2019.05.012. PubMed DOI PMC
Zemlyanskaya E.V., Omelyanchuk N.A., Ubogoeva E.V., Mironova V.V. Deciphering Auxin-Ethylene Crosstalk at a Systems Level. Int. J. Mol. Sci. 2018;19 doi: 10.3390/ijms19124060. PubMed DOI PMC
Zhang F., Qi B., Wang L., Zhao B., Rode S., Riggan N.D., Ecker J.R., Qiao H. EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nat. Commun. 2016;7:13018. doi: 10.1038/ncomms13018. PubMed DOI PMC
Zhang F., Wang L., Qi B., Zhao B., Ko E.E., Riggan N.D., Chin K., Qiao H. EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proc. Natl. Acad. Sci. USA. 2017;114:10274–10279. doi: 10.1073/pnas.1707937114. PubMed DOI PMC
Zhang Z., Zhang H., Quan R., Wang X.C., Huang R. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol. 2009;150:365–377. doi: 10.1104/pp.109.135830. PubMed DOI PMC
Zhao H., Duan K.X., Ma B., Yin C.C., Hu Y., Tao J.J., Huang Y.H., Cao W.Q., Chen H., Yang C., et al. Histidine kinase MHZ1/OsHK1 interacts with ethylene receptors to regulate root growth in rice. Nat. Commun. 2020;11:518. doi: 10.1038/s41467-020-14313-0. PubMed DOI PMC
Zou X., Shao J., Wang Q., Chen P., Zhu Y., Yin C. Supraoptimal Cytokinin Content Inhibits Rice Seminal Root Growth by Reducing Root Meristem Size and Cell Length via Increased Ethylene Content. Int. J. Mol. Sci. 2018;19:4051. 3390/ijms19124051. PubMed PMC
Epigenetics and plant hormone dynamics: a functional and methodological perspective