GOLEM: A tool for visualizing the distribution of Gene regulatOry eLEMents within the plant promoters with a focus on male gametophyte
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
DAAD-23-06
German Academic Exchange Service
INTER-COST LUC24056
Ministry of Education, Youth and Sports of the Czech Republic, TANGENC
CZ.02.01.01/00/22_008/0004581
Ministry of Education, Youth and Sports of the Czech Republic, TANGENC
21-15841S
Czech Science Foundation
PubMed
40025784
PubMed Central
PMC11873679
DOI
10.1111/tpj.70037
Knihovny.cz E-zdroje
- Klíčová slova
- GOLEM, Gene regulatOry eLEMents, TSS, gametophyte, motif localization, plant genes, promoter elements, technical advance,
- MeSH
- genom rostlinný genetika MeSH
- počátek transkripce MeSH
- promotorové oblasti (genetika) * genetika MeSH
- pyl genetika MeSH
- regulace genové exprese u rostlin * MeSH
- regulační oblasti nukleových kyselin genetika MeSH
- software MeSH
- Publikační typ
- časopisecké články MeSH
Gene expression regulation during tissue development is extremely complex. A key mechanism of gene regulation is the recognition of regulatory motifs, also known as cis-regulatory elements (CREs), by various proteins in gene promoter regions. Localization of these motifs near the transcription start site (TSS) or translation start site (ATG) is crucial for transcription initiation and rate. Transcription levels of individual genes, regulated by these motifs, can vary significantly across tissues and developmental stages, especially in processes like sexual reproduction. However, the precise localization and visualization of these motifs in relation to gene expression in specific tissues can be challenging. Here, we introduce a freely available tool called GOLEM (Gene regulatOry eLEMents; https://golem.ncbr.muni.cz), which enables users to precisely locate any motif of interest with respect to TSS or ATG within the relevant plant genomes across the plant Tree of Life (Chara, Marchantia, Physcomitrium, Azolla, Ceratopteris, Amborella, Oryza, Zea, Solanum and Arabidopsis). The visualization of the motifs is performed with respect to the transcript levels of particular genes in leaves and male reproductive tissues and can be compared with genome-wide distribution regardless of the transcription level. Additionally, genes with specific CREs at defined positions and high expression in selected tissues can be exported for further analysis. GOLEM's functionality is illustrated by its application to conserved motifs (e.g. TATA-box, ABRE, I-box, and TC-element), hormone-responsive elements (GCC-box, ARR10_binding motif), as well as to male gametophyte-related motifs (e.g., LAT52, MEF2, and DOF_core).
Zobrazit více v PubMed
Agarwal, P.K. , Gupta, K. , Lopato, S. & Agarwal, P. (2017) Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. Journal of Experimental Botany, 68, 2135–2148. Available from: 10.1093/jxb/erx118 PubMed DOI
Atallah, N.M. & Banks, J.A. (2015) Reproduction and the pheromonal regulation of sex type in fern gametophytes. Frontiers in Plant Science, 6, 100. Available from: 10.3389/fpls.2015.00100 PubMed DOI PMC
Bailey, T.L. , Johnson, J. , Grant, C.E. & Noble, W.S. (2015) The MEME suite. Nucleic Acids Research, 43, W39–W49. Available from: 10.1093/nar/gkv416 PubMed DOI PMC
Basehoar, A.D. , Zanton, S.J. & Pugh, B.F. (2004) Identification and distinct regulation of yeast TATA box‐containing genes. Cell, 116(5), 699–709. Available from: 10.1016/s0092-8674(04)00205-3 PubMed DOI
Bate, N. & Twell, D. (1998) Functional architecture of a late pollen promoter: pollen‐specific transcription is developmentally regulated by multiple stage‐specific and co‐dependent activator elements. Plant Molecular Biology, 37, 859–869. Available from: 10.1023/A:1006095023050 PubMed DOI
Bernard, V. , Brunaud, V. & Lecharny, A. (2010) TC‐motifs at the TATA‐box expected position in plant genes: a novel class of motifs involved in the transcription regulation. BMC Genomics, 11, 166. Available from: 10.1186/1471-2164-11-166 PubMed DOI PMC
Blaby, I.K. , Blaby‐Haas, C.E. , Tourasse, N. , Hom, E.F.Y. , Lopez, D. , Aksoy, M. et al. (2014) The Chlamydomonas genome project: a decade on. Trends in Plant Science, 19, 672–680. Available from: 10.1016/j.tplants.2014.05.008 PubMed DOI PMC
Bokvaj, P. , Hafidh, S. & Honys, D. (2015) Transcriptome profiling of male gametophyte development in Nicotiana tabacum . Genomics Data, 3, 106–111. Available from: 10.1016/j.gdata.2014.12.002 PubMed DOI PMC
Bowman, J.L. , Kohchi, T. , Yamato, K.T. , Jenkins, J. , Shu, S. , Ishizaki, K. et al. (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell, 171(2), 287–304.e15. Available from: 10.1016/j.cell.2017.09.030 PubMed DOI
Boyce, J.M. , Knight, H. , Deyholos, M. , Openshaw, M.R. , Galbraith, D.W. , Warren, G. et al. (2003) The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress. The Plant Journal, 34, 395–406. Available from: 10.1046/j.1365-313X.2003.01734.x PubMed DOI
Carninci, P. , Sandelin, A. , Lenhard, B. , Katayama, S. , Shimokawa, K. , Ponjavic, J. et al. (2006) Genome‐wide analysis of mammalian promoter architecture and evolution. Nature Genetics, 38(6), 626–635. Available from: 10.1038/ng1789 PubMed DOI
Castresana, C. , Staneloni, R. , Malik, V.S. & Cashmore, A.R. (1987) Molecular characterization of two clusters of genes encoding the type I CAB polypeptides of PSII in Nicotiana plumbaginifolia . Plant Molecular Biology, 10, 117–126. Available from: 10.1007/BF00016149 PubMed DOI
Champ, K.I. , Febres, V.J. & Moore, G.A. (2007) The role of CBF transcriptional activators in two citrus species (Poncirus and citrus) with contrasting levels of freezing tolerance. Physiologia Plantarum, 129(3), 529–541. Available from: 10.1111/j.1399-3054.2006.00826.x DOI
Chen, X. , Wu, X. , Qiu, S. , Zheng, H. , Lu, Y. , Peng, J. et al. (2021) Genome‐wide identification and expression profiling of the BZR transcription factor gene family in Nicotiana benthamiana . International Journal of Molecular Sciences, 22, 10379. Available from: 10.3390/ijms221910379 PubMed DOI PMC
Cheng, M.‐C. , Liao, P.‐M. , Kuo, W.‐W. & Lin, T.‐P. (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress‐responsive gene expression by binding to different cis‐acting elements in response to different stress signals. Plant Physiology, 162, 1566–1582. Available from: 10.1104/pp.113.221911 PubMed DOI PMC
Civán, P. & Svec, M. (2009) Genome‐wide analysis of rice (Oryza sativa L. subsp. japonica) TATA box and Y patch promoter elements. Genome, 52, 294–297. Available from: 10.1139/G09-001 PubMed DOI
Dobin, A. , Davis, C.A. , Schlesinger, F. , Drenkow, J. , Zaleski, C. , Jha, S. et al. (2013) STAR: ultrafast universal RNA‐seq aligner. Bioinformatics, 29, 15–21. Available from: 10.1093/bioinformatics/bts635 PubMed DOI PMC
Eyal, Y. , Meller, Y. , Lev‐Yadun, S. & Fluhr, R. (1993) A basic‐type PR‐1 promoter directs ethylene responsiveness, vascular and abscission zone‐specific expression. The Plant Journal, 4(2), 225–234. Available from: 10.1046/j.1365-313x.1993.04020225.x PubMed DOI
Feng, Y. , Zhang, Y. & Ebright, R.H. (2016) Structural basis of transcription activation. Science, 352, 1330–1333. Available from: 10.1126/science.aaf4417 PubMed DOI PMC
Galli, M. , Feng, F. & Gallavotti, A. (2020) Mapping regulatory determinants in plants. Frontiers in Genetics, 11, 591194. Available from: 10.3389/fgene.2020.591194 PubMed DOI PMC
Gidoni, D. , Brosio, P. , Bond‐Nutter, D. , Bedbrook, J. & Dunsmuir, P. (1989) Novel cis‐acting elements in petunia cab gene promoters. Molecular and General Genetics MGG, 215, 337–344. Available from: 10.1007/BF00339739 PubMed DOI
Grant, C.E. , Bailey, T.L. & Noble, W.S. (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics, 27, 1017–1018. Available from: 10.1093/bioinformatics/btr064 PubMed DOI PMC
Hafidh, S. , Fíla, J. & Honys, D. (2016) Male gametophyte development and function in angiosperms: a general concept. Plant Reproduction, 29, 31–51. Available from: 10.1007/s00497-015-0272-4 PubMed DOI
Hafidh, S. & Honys, D. (2021) Reproduction multitasking: the male gametophyte. Annual Review of Plant Biology, 72, 581–614. Available from: 10.1146/annurev-arplant-080620-021907 PubMed DOI
Hafidh, S. , Potěšil, D. , Müller, K. , Fíla, J. , Michailidis, C. , Herrmannová, A. et al. (2018) Dynamics of the pollen Sequestrome defined by subcellular coupled omics. Plant Physiology, 178, 258–282. Available from: 10.1104/pp.18.00648 PubMed DOI PMC
Hamilton, D.A. , Schwarz, Y.H. & Mascarenhas, J.P. (1998) A monocot pollen‐specific promoter contains separable pollen‐specific and quantitative elements. Plant Molecular Biology, 38, 663–669. Available from: 10.1023/A:1006083725102 PubMed DOI
Hao, D. , Ohme‐Takagi, M. & Sarai, A. (1998) Unique mode of GCC box recognition by the DNA‐binding domain of ethylene‐responsive element‐binding factor (ERF domain) in plant. Journal of Biological Chemistry, 273, 26857–26861. Available from: 10.1074/jbc.273.41.26857 PubMed DOI
Hao, Y. , Zong, X. , Ren, P. , Qian, Y. & Fu, A. (2021) Basic helix‐loop‐helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. International Journal of Molecular Sciences, 22, 7152. Available from: 10.3390/ijms22137152 PubMed DOI PMC
Hattori, T. , Totsuka, M. , Hobo, T. , Kagaya, Y. & Yamamoto‐Toyoda, A. (2002) Experimentally determined sequence requirement of ACGT‐containing abscisic acid response element. Plant & Cell Physiology, 43, 136–140. Available from: 10.1093/pcp/pcf014 PubMed DOI
Hoffmann, R.D. , Olsen, L.I. , Husum, J.O. , Nicolet, J.S. , Thøfner, J.F.B. , Wätjen, A.P. et al. (2017) A cis‐regulatory sequence acts as a repressor in the Arabidopsis thaliana sporophyte but as an activator in pollen. Molecular Plant, 10, 775–778. Available from: 10.1016/j.molp.2016.12.010 PubMed DOI
Honys, D. & Twell, D. (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiology, 132, 640–652. Available from: 10.1104/pp.103.020925 PubMed DOI PMC
Honys, D. & Twell, D. (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biology, 5, R85. Available from: 10.1186/gb-2004-5-11-r85 PubMed DOI PMC
Hosoda, K. , Imamura, A. , Katoh, E. , Hatta, T. , Tachiki, M. , Yamada, H. et al. (2002) Molecular structure of the GARP family of plant Myb‐related DNA binding motifs of the Arabidopsis response regulators. The Plant Cell, 14, 2015–2029. Available from: 10.1105/tpc.002733 PubMed DOI PMC
PlantTFDB . (2022) Plant transcription factor database @ CBI, PKU . https://planttfdb.gao‐lab.org/family_ext.php?sp=Cbr&fam=ERF [Accessed 2024 Dec 17]
Johnson, M.A. , Harper, J.F. & Palanivelu, R. (2019) A fruitful journey: pollen tube navigation from germination to fertilization. Annual Review of Plant Biology, 70(1), 809–837. Available from: 10.1146/annurev-arplant-050718-100133 PubMed DOI
Julca, I. , Ferrari, C. , Flores‐Tornero, M. , Proost, S. , Lindner, A.‐C. , Hackenberg, D. et al. (2021) Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. Nature Plants, 7(8), 1143–1159. Available from: 10.1038/s41477-021-00958-2 PubMed DOI
Klodová, B. , Potěšil, D. , Steinbachová, L. , Michailidis, C. , Lindner, A.‐C. , Hackenberg, D. et al. (2023) Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis. Plant Reproduction, 36(3), 213–241. Available from: 10.1007/s00497-022-00452-5 PubMed DOI PMC
Knight, H. , Mugford, S.G. , Ülker, B. , Gao, D. , Thorlby, G. & Knight, M.R. (2009) Identification of SFR6, a key component in cold acclimation acting post‐translationally on CBF function. The Plant Journal, 58, 97–108. Available from: 10.1111/j.1365-313X.2008.03763.x PubMed DOI
Kohchi, T. , Yamato, K.T. , Ishizaki, K. , Yamaoka, S. & Nishihama, R. (2021) Development and molecular genetics of Marchantia polymorpha. Annual Review of Plant Biology, 72, 677–702. Available from: 10.1146/annurev-arplant-082520-094256 PubMed DOI
Kolberg, L. , Raudvere, U. , Kuzmin, I. , Adler, P. , Vilo, J. & Peterson, H. (2023) G:Profiler—interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Research, 51(W1), W207–W212. Available from: 10.1093/nar/gkad347 PubMed DOI PMC
Li, B. & Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA‐seq data with or without a reference genome. BMC Bioinformatics, 12, 1–16. Available from: 10.1186/1471-2105-12-323 PubMed DOI PMC
Li, J. , Yuan, J. & Li, M. (2014) Characterization of putative cis‐regulatory elements in genes preferentially expressed in Arabidopsis male meiocytes. BioMed Research International, 2014, 708364. Available from: 10.1155/2014/708364 PubMed DOI PMC
Lifton, R.P. , Goldberg, M.L. , Karp, R.W. & Hogness, D.S. (1978) The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications. Cold Spring Harbor Symposia on Quantitative Biology, 42, 1047–1051. Available from: 10.1101/sqb.1978.042.01.105 PubMed DOI
Liu, Q. , Kasuga, M. , Sakuma, Y. , Abe, H. , Miura, S. , Yamaguchi‐Shinozaki, K. et al. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought‐ and low‐temperature‐responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10(8), 1391–1406. Available from: 10.1105/tpc.10.8.1391 PubMed DOI PMC
Manzara, T. , Carrasco, P. & Gruissem, W. (1991) Developmental and organ‐specific changes in promoter DNA‐protein interactions in the tomato rbcS gene family. The Plant Cell, 3, 1305–1316. Available from: 10.1105/tpc.3.12.1305 PubMed DOI PMC
Marand, A.P. , Eveland, A.L. , Kaufmann, K. & Springer, N.M. (2023) Cis‐regulatory elements in plant development, adaptation, and evolution. Annual Review of Plant Biology, 74, 111–137. Available from: 10.1146/annurev-arplant-070122-030236 PubMed DOI PMC
McCouch, S.R. (2008) CGSNL (committee on gene symbolization N and L Rice genetics cooperative). Gene Nomenclature System for Rice. Rice, 1, 72–84. Available from: 10.1007/s12284-008-9004-9 DOI
McKnight, S.L. & Kingsbury, R. (1982) Transcriptional control signals of a eukaryotic protein‐coding gene. Science, 217, 316–324. Available from: 10.1126/science.6283634 PubMed DOI
Meiller, D. (2021) Modern app development with Dart and Flutter 2: A comprehensive introduction to flutter. Berlin: Walter de Gruyter GmbH & Co KG.
Meissner, S.T. (2021) Plant sexual reproduction: perhaps the current plant two‐sex model should be replaced with three‐ and four‐sex models? Plant Reproduction, 34, 175–189. Available from: 10.1007/s00497-021-00420-5 PubMed DOI PMC
Muschietti, J. , Dircks, L. , Vancanneyt, G. & McCormick, S. (1994) LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. The Plant Journal, 6, 321–338. Available from: 10.1046/j.1365-313X.1994.06030321.x PubMed DOI
Nishiyama, T. , Sakayama, H. , de Vries, J. , Buschmann, H. , Saint‐Marcoux, D. , Ullrich, K.K. et al. (2018) The Chara genome: secondary complexity and implications for plant terrestrialization. Cell, 174, 448–464.e24. Available from: 10.1016/j.cell.2018.06.033 PubMed DOI
Nolan, T.M. , Vukašinović, N. , Liu, D. , Russinova, E. & Yin, Y. (2020) Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell, 32(2), 295–318. Available from: 10.1105/tpc.19.00335 PubMed DOI PMC
Ohme‐Takagi, M. & Shinshi, H. (1990) Structure and expression of a tobacco ?‐1,3‐glucanase gene. Plant Molecular Biology, 15(6), 941–946. Available from: 10.1007/BF00039434 PubMed DOI
Ohme‐Takagi, M. & Shinshi, H. (1995) Ethylene‐inducible DNA binding proteins that interact with an ethylene‐responsive element. The Plant Cell, 7, 173–182. Available from: 10.1105/tpc.7.2.173 PubMed DOI PMC
Pan, R. , Hu, H. , Xiao, Y. , Xu, L. , Xu, Y. , Ouyang, K. et al. (2023) High‐quality wild barley genome assemblies and annotation with nanopore long reads and hi‐C sequencing data. Scientific Data, 10(1), 535. Available from: 10.1038/s41597-023-02434-2 PubMed DOI PMC
Pavlu, S. , Nikumbh, S. , Kovacik, M. , An, T. , Lenhard, B. , Simkova, H. et al. (2024) Core promoterome of barley embryo. Computational and Structural Biotechnology Journal, 23, 264–277. Available from: 10.1016/j.csbj.2023.12.003 PubMed DOI PMC
Peng, J. , Qi, X. , Chen, X. , Li, N. & Yu, J. (2017) ZmDof30 negatively regulates the promoter activity of the pollen‐specific gene Zm908. Frontiers in Plant Science, 8, 685. Available from: 10.3389/fpls.2017.00685 PubMed DOI PMC
Peters, B. , Casey, J. , Aidley, J. , Zohrab, S. , Borg, M. , Twell, D. et al. (2017) A conserved cis‐regulatory module determines germline fate through activation of the transcription factor DUO1 promoter. Plant Physiology, 173, 280–293. Available from: 10.1104/pp.16.01192 PubMed DOI PMC
Powell, A.E. & Heyl, A. (2023) The origin and early evolution of cytokinin signaling. Frontiers in Plant Science, 14, 1142748. Available from: 10.3389/fpls.2023.1142748 PubMed DOI PMC
Preissl, S. , Gaulton, K.J. & Ren, B. (2023) Characterizing cis‐regulatory elements using single‐cell epigenomics. Nature Reviews Genetics, 24, 21–43. Available from: 10.1038/s41576-022-00509-1 PubMed DOI PMC
Reimand, J. , Kull, M. , Peterson, H. , Hansen, J. & Vilo, J. (2007) G:Profiler—a web‐based toolset for functional profiling of gene lists from large‐scale experiments. Nucleic Acids Research, 35, W193–W200. Available from: 10.1093/nar/gkm226 PubMed DOI PMC
Rensing, S.A. , Goffinet, B. , Meyberg, R. , Wu, S.‐Z. & Bezanilla, M. (2020) The Moss Physcomitrium (Physcomitrella) patens: a model organism for non‐seed plants. The Plant Cell, 32, 1361–1376. Available from: 10.1105/tpc.19.00828 PubMed DOI PMC
Rogers, H.J. , Bate, N. , Combe, J. , Sullivan, J. , Sweetman, J. , Swan, C. et al. (2001) Functional analysis of cis‐regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Molecular Biology, 45(5), 577–585. Available from: 10.1023/A:1010695226241 PubMed DOI
Rose, A. , Meier, I. & Wienand, U. (1999) The tomato I‐box binding factor LeMYBI is a member of a novel class of Myb‐like proteins. The Plant Journal, 20, 641–652. Available from: 10.1046/j.1365-313X.1999.00638.x PubMed DOI
Savinkova, L.K. , Sharypova, E.B. & Kolchanov, N.A. (2023) On the role of TATA boxes and TATA‐binding protein in Arabidopsis thaliana . Plants, 12, 1000. Available from: 10.3390/plants12051000 PubMed DOI PMC
Schmitz, R.J. , Grotewold, E. & Stam, M. (2022) Cis‐regulatory sequences in plants: their importance, discovery, and future challenges. The Plant Cell, 34, 718–741. Available from: 10.1093/plcell/koab281 PubMed DOI PMC
Sebastian, A. , Deepa, P. & Prasad, M.N.V. (2021) Farming for sustainable environmental remediation. In: Handbook of assisted and amendment‐enhanced sustainable remediation technology. Hoboken, NJ: John Wiley & Sons, Ltd, p. 517–529.
Sharma, N. , Russell, S.D. , Bhalla, P.L. & Singh, M.B. (2011) Putative cis‐regulatory elements in genes highly expressed in rice sperm cells. BMC Research Notes, 4, 319. Available from: 10.1186/1756-0500-4-319 PubMed DOI PMC
She, W. & Baroux, C. (2014) Chromatin dynamics during plant sexual reproduction. Frontiers in Plant Science, 5, 354. Available from: 10.3389/fpls.2014.00354 PubMed DOI PMC
Shen, Q. & Ho, T.H. (1995) Functional dissection of an abscisic acid (ABA)‐inducible gene reveals two independent ABA‐responsive complexes each containing a G‐box and a novel cis‐acting element. The Plant Cell, 7, 295–307. Available from: 10.1105/tpc.7.3.295 PubMed DOI PMC
Shi, D. , Jouannet, V. , Agustí, J. , Kaul, V. , Levitsky, V. , Sanchez, P. et al. (2021) Tissue‐specific transcriptome profiling of the Arabidopsis inflorescence stem reveals local cellular signatures. The Plant Cell, 33, 200–223. Available from: 10.1093/plcell/koaa019 PubMed DOI PMC
Shi, W. & Zhou, W. (2006) Frequency distribution of TATA box and extension sequences on human promoters. BMC Bioinformatics, 7, S2. Available from: 10.1186/1471-2105-7-S4-S2 PubMed DOI PMC
Shiu, S.‐H. , Shih, M.‐C. & Li, W.‐H. (2005) Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiology, 139, 18–26. Available from: 10.1104/pp.105.065110 PubMed DOI PMC
Shore, P. & Sharrocks, A.D. (1995) The MADS‐box family of transcription factors. European Journal of Biochemistry, 229, 1–13. Available from: 10.1111/j.1432-1033.1995.tb20430.x PubMed DOI
Šmeringai, J. , Schrumpfová, P.P. & Pernisová, M. (2023) Cytokinins—regulators of de novo shoot organogenesis. Frontiers in Plant Science, 14, 1239133. Available from: 10.3389/fpls.2023.1239133 PubMed DOI PMC
Snel, B. , Lehmann, G. , Bork, P. & Huynen, M.A. (2000) STRING: a web‐server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Research, 28, 3442–3444. Available from: 10.1093/nar/28.18.3442 PubMed DOI PMC
Srivastava, A.K. , Lu, Y. , Zinta, G. , Lang, Z. & Zhu, J.‐K. (2018) UTR‐dependent control of gene expression in plants. Trends in Plant Science, 23, 248–259. Available from: 10.1016/j.tplants.2017.11.003 PubMed DOI PMC
Sun, M. , Shen, Y. , Chen, Y. , Wang, Y. , Cai, X. , Yang, J. et al. (2022) Osa‐miR1320 targets the ERF transcription factor OsERF096 to regulate cold tolerance via JA‐mediated signaling. Plant Physiology, 189(4), 2500–2516. Available from: 10.1093/plphys/kiac208 PubMed DOI PMC
Suzuki, Y. , Tsunoda, T. , Sese, J. , Taira, H. , Mizushima‐Sugano, J. , Hata, H. et al. (2001) Identification and characterization of the potential promoter regions of 1031 kinds of human genes. Genome Research, 11(5), 677–684. Available from: 10.1101/gr.gr-1640r PubMed DOI PMC
Szklarczyk, D. , Kirsch, R. , Koutrouli, M. , Nastou, K. , Mehryary, F. , Hachilif, R. et al. (2023) The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51, D638–D646. Available from: 10.1093/nar/gkac1000 PubMed DOI PMC
Terceros, G.C. , Resentini, F. , Cucinotta, M. , Manrique, S. , Colombo, L. & Mendes, M.A. (2020) The importance of Cytokinins during reproductive development in Arabidopsis and beyond. International Journal of Molecular Sciences, 21, 8161. Available from: 10.3390/ijms21218161 PubMed DOI PMC
Tyagi, P. , Singh, D. , Mathur, S. , Singh, A. & Ranjan, R. (2022) Upcoming progress of transcriptomics studies on plants: an overview. Frontiers in Plant Science, 13, 1030890. Available from: 10.3389/fpls.2022.1030890 PubMed DOI PMC
Vazquez‐Hernandez, M. , Romero, I. , Escribano, M.I. , Merodio, C. & Sanchez‐Ballesta, M.T. (2017) Deciphering the role of CBF/DREB transcription factors and dehydrins in maintaining the quality of table grapes cv. Autumn Royal Treated with high CO2 levels and stored at 0°C. Frontiers in Plant Science, 8, 1591. Available from: 10.3389/fpls.2017.01591 PubMed DOI PMC
Verelst, W. , Saedler, H. & Münster, T. (2007) MIKC* MADS‐protein complexes bind motifs enriched in the proximal region of late pollen‐specific Arabidopsis promoters. Plant Physiology, 143, 447–460. Available from: 10.1104/pp.106.089805 PubMed DOI PMC
Vo Ngoc, L. , Wang, Y.‐L. , Kassavetis, G.A. & Kadonaga, J.T. (2017) The punctilious RNA polymerase II core promoter. Genes & Development, 31, 1289–1301. Available from: 10.1101/gad.303149.117 PubMed DOI PMC
Voichek, Y. , Hristova, G. , Mollá‐Morales, A. , Weigel, D. & Nordborg, M. (2024) Widespread position‐dependent transcriptional regulatory sequences in plants. Nature Genetics, 56, 2238–2246. PubMed PMC
Wang, S. , Li, L. , Li, H. , Sahu, S.K. , Wang, H. , Xu, Y. et al. (2020) Genomes of early‐diverging streptophyte algae shed light on plant terrestrialization. Nature Plants, 6, 95–106. Available from: 10.1038/s41477-019-0560-3 PubMed DOI PMC
Wang, X. , Lin, S. , Liu, D. , Gan, L. , McAvoy, R. , Ding, J. et al. (2020) Evolution and roles of cytokinin genes in angiosperms 1: do ancient IPTs play housekeeping while non‐ancient IPTs play regulatory roles? Horticultural Research, 7, 28. Available from: 10.1038/s41438-019-0211-x PubMed DOI PMC
Wang, Z.‐Y. , Nakano, T. , Gendron, J. , He, J. , Chen, M. , Vafeados, D. et al. (2002) Nuclear‐localized BZR1 mediates Brassinosteroid‐induced growth and feedback suppression of Brassinosteroid biosynthesis. Developmental Cell, 2, 505–513. Available from: 10.1016/S1534-5807(02)00153-3 PubMed DOI
Watanabe, K.A. , Homayouni, A. , Gu, L. , Huang, K.‐Y. , Ho, T.‐H.D. & Shen, Q.J. (2017) Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element. Plant, Cell & Environment, 40, 2004–2016. Available from: 10.1111/pce.13006 PubMed DOI
Williams, J.H. & Reese, J.B. (2019) Chapter 12—Evolution of development of pollen performance. Current Topics in Developmental Biology, 131, 299–336. PubMed
Williams, J.H. , Taylor, M.L. & O'Meara, B.C. (2014) Repeated evolution of tricellular (and bicellular) pollen. American Journal of Botany, 101, 559–571. Available from: 10.3732/ajb.1300423 PubMed DOI
Wu, Y. , Li, X. , Zhang, J. , Zhao, H. , Tan, S. , Xu, W. et al. (2022) ERF subfamily transcription factors and their function in plant responses to abiotic stresses. Frontiers in Plant Science, 13, 1042084. Available from: 10.3389/fpls.2022.1042084 PubMed DOI PMC
Xie, M. , Chen, H. , Huang, L. , O'Neil, R.C. , Shokhirev, M.N. & Ecker, J.R. (2018) A B‐ARR‐mediated cytokinin transcriptional network directs hormone cross‐regulation and shoot development. Nature Communications, 9, 1604. Available from: 10.1038/s41467-018-03921-6 PubMed DOI PMC
Yamaguchi‐Shinozaki, K. , Mundy, J. & Chua, N.H. (1990) Four tightly linked rab genes are differentially expressed in rice. Plant Molecular Biology, 14, 29–39. Available from: 10.1007/BF00015652 PubMed DOI
Yamaguchi‐Shinozaki, K. & Shinozaki, K. (1994) A novel cis‐acting element in an Arabidopsis gene is involved in responsiveness to drought, low‐temperature, or high‐salt stress. The Plant Cell, 6, 251–264. Available from: 10.1105/tpc.6.2.251 PubMed DOI PMC
Yamoune, A. , Zdarska, M. , Depaepe, T. , Rudolfova, A. , Skalak, J. , Berendzen, K.W. et al. (2024) Cytokinins regulate spatially specific ethylene production to control root growth in Arabidopsis. Plant Communications, 5, 101013. Available from: 10.1016/j.xplc.2024.101013 PubMed DOI PMC
Yanagisawa, S. (2002) The Dof family of plant transcription factors. Trends in Plant Science, 7, 555–560. Available from: 10.1016/S1360-1385(02)02362-2 PubMed DOI
Yang, C. , Bolotin, E. , Jiang, T. , Sladek, F.M. & Martinez, E. (2007) Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA‐less core promoters. Gene, 389, 52–65. Available from: 10.1016/j.gene.2006.09.029 PubMed DOI PMC
Yang, Y. , Al‐Baidhani, H.H.J. , Harris, J. , Riboni, M. , Li, Y. , Mazonka, I. et al. (2020) DREB/CBF expression in wheat and barley using the stress‐inducible promoters of HD‐zip I genes: impact on plant development, stress tolerance and yield. Plant Biotechnology Journal, 18, 829–844. Available from: 10.1111/pbi.13252 PubMed DOI PMC
Yu, C.‐P. , Lin, J.‐J. & Li, W.‐H. (2016) Positional distribution of transcription factor binding sites in Arabidopsis thaliana . Scientific Reports, 6, 25164. Available from: 10.1038/srep25164 PubMed DOI PMC
Zdarska, M. , Cuyacot, A.R. , Tarr, P.T. , Yamoune, A. , Szmitkowska, A. , Hrdinová, V. et al. (2019) ETR1 integrates response to ethylene and Cytokinins into a single multistep Phosphorelay pathway to control root growth. Molecular Plant, 12, 1338–1352. Available from: 10.1016/j.molp.2019.05.012 PubMed DOI PMC
Zhang, H. , Wang, Y. , Wu, X. , Tang, X. , Wu, C. & Lu, J. (2021) Determinants of genome‐wide distribution and evolution of uORFs in eukaryotes. Nature Communications, 12(1), 1076. Available from: 10.1038/s41467-021-21394-y PubMed DOI PMC
Zhang, H. , Xie, B. , Lu, X. , Yang, Y. & Huang, R. (2004) GCC box inArabidopsis PDF1.2 promoter is an essential and sufficient cis‐acting element in response to MeJA treatment. Chinese Science Bulletin, 49, 2476–2480. Available from: 10.1007/BF03183717 DOI
Zhao, S. , Ye, Z. & Stanton, R. (2020) Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA, 26, 903–909. Available from: 10.1261/rna.074922.120 PubMed DOI PMC
Zou, X. & Sun, H. (2023) DOF transcription factors: specific regulators of plant biological processes. Frontiers in Plant Science, 14, 1044918. Available from: 10.3389/fpls.2023.1044918 PubMed DOI PMC