Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/N005090
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
36282332
PubMed Central
PMC10363097
DOI
10.1007/s00497-022-00452-5
PII: 10.1007/s00497-022-00452-5
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, Male gametophyte, Microgametogenesis, Proteome, RNA-seq,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- proteomika MeSH
- pyl genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- reprodukovatelnost výsledků MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny huseníčku * MeSH
Sexual reproduction in angiosperms requires the production and delivery of two male gametes by a three-celled haploid male gametophyte. This demands synchronized gene expression in a short developmental window to ensure double fertilization and seed set. While transcriptomic changes in developing pollen are known for Arabidopsis, no studies have integrated RNA and proteomic data in this model. Further, the role of alternative splicing has not been fully addressed, yet post-transcriptional and post-translational regulation may have a key role in gene expression dynamics during microgametogenesis. We have refined and substantially updated global transcriptomic and proteomic changes in developing pollen for two Arabidopsis accessions. Despite the superiority of RNA-seq over microarray-based platforms, we demonstrate high reproducibility and comparability. We identify thousands of long non-coding RNAs as potential regulators of pollen development, hundreds of changes in alternative splicing and provide insight into mRNA translation rate and storage in developing pollen. Our analysis delivers an integrated perspective of gene expression dynamics in developing Arabidopsis pollen and a foundation for studying the role of alternative splicing in this model.
Department of Genetics and Genome Biology University of Leicester Leicester LE1 7RH UK
Instituto Gulbenkian de Ciência Rua da Quinta Grande 6 2780 156 Oeiras Portugal
KWS SAAT SE and Co KGaA Grimsehlstraße 31 37574 Einbeck Germany
Zobrazit více v PubMed
Adamczyk BJ, Fernandez DE. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in arabidopsis. Plant Physiol. 2009;149(4):1713–1723. doi: 10.1104/pp.109.135806. PubMed DOI PMC
Aklilu BB, et al. Functional diversification of replication protein a Paralogs and telomere length maintenance in arabidopsis. Genetics. 2020;215(4):989–1002. doi: 10.1534/genetics.120.303222. PubMed DOI PMC
Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-Seq Data. Genome Res. 2012;22(10):2008–2017. doi: 10.1101/gr.133744.111. PubMed DOI PMC
Armenteros A, Juan J, Tsirigos DK, Sønderby KC, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420–23. doi: 10.1038/s41587-019-0036-z. PubMed DOI
Ashapkin VV, Kutueva IK, Aleksandrushkina IN, Vanyushin FV. Epigenetic regulation of plant gametophyte development. Int J Mol Sci. 2019 doi: 10.3390/ijms20123051. PubMed DOI PMC
Azarov AS, Tokarev BI, Netchepurenko AE (1990) Effect of sodium chloride on pollen germination and pollen tube growth in vitro in Arabidopsis thaliana (L.) Heynh. Arabidopsis Inf Serv 27:9–12
Bach-Pages M, et al. Discovering the RNA-binding proteome of plant leaves with an improved RNA interactome capture method. Biomolecules. 2020;10(4):1–21. doi: 10.3390/biom10040661. PubMed DOI PMC
Baym M, et al. Inexpensive multiplexed library preparation for Megabase-sized genomes. PLoS ONE. 2015;10(5):1–15. doi: 10.1371/journal.pone.0128036. PubMed DOI PMC
Becker JD, Boavida LC, Carneiro J, Haury M, Feijó JA. Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol. 2003;133(2):713–725. doi: 10.1104/pp.103.028241. PubMed DOI PMC
Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E. The arabidopsis information resource: making and mining the ‘Gold Standard’ annotated reference plant genome. Genesis. 2015;53(8):474–485. doi: 10.1002/dvg.22877. PubMed DOI PMC
Bleuyard JY, White CI. The arabidopsis homologue of Xrcc3 plays an essential role in meiosis. EMBO J. 2004;23(2):439–449. doi: 10.1038/sj.emboj.7600055. PubMed DOI PMC
Boavida LC, McCormick S. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J. 2007;52(3):570–582. doi: 10.1111/j.1365-313X.2007.03248.x. PubMed DOI
Bock KW. Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol. 2006;140(4):1151–1168. doi: 10.1104/pp.105.074708. PubMed DOI PMC
Boisson-Dernier A, et al. Disruption of the pollen-expressed FERONIA Homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development. 2009;136(19):3279–3288. doi: 10.1242/dev.040071. PubMed DOI PMC
Bokvaj P, Hafidh S, Honys D. Transcriptome profiling of male gametophyte development in Nicotiana Tabacum. Genom Data. 2015;3:106–111. doi: 10.1016/j.gdata.2014.12.002. PubMed DOI PMC
Borg M, Jacob Y, Susaki D, et al. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol. 2020;22(6):621–629. doi: 10.1038/s41556-020-0515-y. PubMed DOI PMC
Cabada Gomez DA, et al. COPI complex isoforms are required for the early acceptance of compatible pollen grains in Arabidopsis thaliana. Plant Reprod. 2020;33(2):97–110. doi: 10.1007/s00497-020-00387-9. PubMed DOI
Cao Y, Han Y, Meng D, Li D, Jiao C, Jin Q, Lin Y, Cai Y. B-BOX Genes: genome-wide identification, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri Rehd) BMC Plant Biol. 2017;17(1):1–12. doi: 10.1186/s12870-017-1105-4. PubMed DOI PMC
Carpenter JL, Ploense SE, Snustad DP, Silflow CD. Preferential expression of an α-Tubulin gene of Arabidopsis in pollen. Plant Cell. 1992;4(5):557–571. doi: 10.1105/tpc.4.5.557. PubMed DOI PMC
Chaturvedi P, Ischebeck T, Egelhofer V, Lichtscheidl I, Weckwerth W. Cell-specific analysis of the tomato pollen proteome from pollen mother cell to mature pollen provides evidence for developmental priming. J Proteome Res. 2013;12(11):4892–4903. doi: 10.1021/pr400197p. PubMed DOI
Chaturvedi P, Ghatak A, Weckwerth W. Pollen proteomics: from stress physiology to developmental priming. Plant Reprod. 2016;29(1–2):119–132. doi: 10.1007/s00497-016-0283-9. PubMed DOI PMC
Cheong BE, Beine-Golovchuk O, Gorka M, et al. Arabidopsis REI-LIKE proteins activate ribosome biogenesis during cold acclimation. Sci Rep. 2021;11(1):1–25. doi: 10.1038/s41598-021-81610-z. PubMed DOI PMC
cRAP database. n.d. atabase. http://Www.Thegpm.Org/Crap/
Datta R, Paul S. Long non-coding RNAs: fine-tuning the developmental responses in Plants. J Biosci. 2019;44(4):1–11. doi: 10.1007/s12038-019-9910-6. PubMed DOI
Dixit A, et al. A stress-associated protein, AtSAP13, from Arabidopsis thaliana provides tolerance to multiple abiotic stresses. Plant Cell Environ. 2018;41(5):1171–1185. doi: 10.1111/pce.13103. PubMed DOI
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-Seq aligner. Bioinformatics. 2013;29(1):15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Dong X, Yi H, Han CT, et al. GDSL Esterase/Lipase genes in Brassica Rapa L.: genome-wide identification and expression analysis. Mol Genet Genom. 2016;291(2):531–42. doi: 10.1007/s00438-015-1123-6. PubMed DOI
Duplakova N, Dobrev PI, Renák D, Honys D. Rapid separation of Arabidopsis male gametophyte developmental stages using a percoll gradient. Nat Protocols. 2016;11(10):1817–32. doi: 10.1038/nprot.2016.107. PubMed DOI
Feuerstein A, Niedermeier M, Bauer K, Engelmann S, Hoth S, Stadler R, Sauer N. Expression of the AtSUC1 gene in the female gametophyte, and ecotype-specific expression differences in male reproductive organs. Plant Biol. 2010;12(SUPPL. 1):105–114. doi: 10.1111/j.1438-8677.2010.00389.x. PubMed DOI
Fíla J, Záveská Drábková L, Gibalová A, Honys D. When simple meets complex: pollen and the –omics. In: Feijó J, Obermeyer G, editors. Pollen tip growth. Cham: Springer; 2017. pp. 247–292.
Fíla J, Božena K, David P, et al. The beta subunit of nascent polypeptide associated complex plays a role in flowers and Siliques development of Arabidopsis Thaliana. Int J Mol Sci. 2020;21(6):1–30. doi: 10.3390/ijms21062065. PubMed DOI PMC
Fleischer TC, Weaver CM, McAfee KJ, Jennings JL, Link AJ. Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev. 2006;20(10):1294–1307. doi: 10.1101/gad.1422006. PubMed DOI PMC
Franchi GG, Piotto B, Nepi M, Baskin CC, Baskin JM, Pacini E. Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal, and survival. J Exp Bot. 2011;62(15):5267–5281. doi: 10.1093/jxb/err154. PubMed DOI
Gallego ME, White CI. RAD50 function is essential for telomere maintenance in arabidopsis. Proc Natl Acad Sci USA. 2001;98(4):1711–1716. doi: 10.1073/pnas.98.4.1711. PubMed DOI PMC
Ge W, Song Y, Zhang C, et al. Proteomic analyses of Apoplastic proteins from germinating Arabidopsis Thaliana Pollen. Biochim Biophys Acta Proteins Proteom. 2011;1814:1964–1973. doi: 10.1016/j.bbapap.2011.07.013. PubMed DOI PMC
Golicz AA, Allu AD, Li W, et al. A dynamic intron retention program regulates the expression of several hundred genes during pollen meiosis. Plant Reprod. 2021 doi: 10.1007/s00497-021-00411-6. PubMed DOI
Grobei MA, Qeli E, Brunner E, et al. Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res. 2009;19(10):1786–1800. doi: 10.1101/gr.089060.108. PubMed DOI PMC
Hackenberg D, Twell D. Current topics in developmental biology. Amsterdam: Elsevier Inc; 2019. The evolution and patterning of male gametophyte development. PubMed
Hafidh S, Honys D. Reproduction multitasking: the male gametophyte. Annu Rev Plant Biol. 2021;72(1):581–614. doi: 10.1146/annurev-arplant-080620-021907. PubMed DOI
Hafidh S, Potěšil D, Fíla J, et al. Quantitative proteomics of the tobacco pollen tube Secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol. 2016;17(1):1–29. doi: 10.1186/s13059-016-0928-x. PubMed DOI PMC
Hafidh S, Potěšil D, Müller K, et al. Dynamics of the pollen Sequestrome defined by subcellular coupled Omics. Plant Physiol. 2018;178(1):258–282. doi: 10.1104/pp.18.00648. PubMed DOI PMC
Hamilton ES, Jensen GS, Maksaev G, et al. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science. 2015;350(6259):438–441. doi: 10.1126/science.aac6014. PubMed DOI PMC
Henriques R, Wang H, Liu J, Boix M, Huang LF, Chua NH. The Antiphasic regulatory module comprising CDF5 and Its Antisense RNA FLORE links the circadian clock to photoperiodic flowering. New Phytol. 2017 doi: 10.1111/nph.14703. PubMed DOI
Hirsche J, García Fernández JM, Stabentheiner E, Großkinsky DK, Roitsch T. Differential effects of carbohydrates on arabidopsis pollen germination. Plant Cell Physiol. 2017;58(4):691–701. doi: 10.1093/pcp/pcx020. PubMed DOI
Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S. Proteome mapping of mature pollen of Arabidopsis Thaliana. Proteomics. 2005;5(18):4864–4884. doi: 10.1002/pmic.200402011. PubMed DOI
Honys D, Twell D (2003) Comparative analysis of the arabidopsis pollen transcriptome. Plant Physiol 132(2): 640–52. 10.1104/pp.103.020925 PubMed PMC
Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in arabidopsis. Genome Biol 5(11). 10.1186/gb-2004-5-11-r854 PubMed PMC
Hu Y, Zhou L, Yang Y, et al. The Gibberellin Signaling negative regulator RGALIKE3 promotes seed storage protein accumulation. Plant Physiol. 2021;185(4):1697–1707. doi: 10.1093/plphys/kiaa114. PubMed DOI PMC
Ischebeck T, Valledor L, Lyon D, et al. Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteom. 2014;13(1):295–310. doi: 10.1074/mcp.M113.028100. PubMed DOI PMC
Johnson MA, Harper JF, Palanivelu R. A fruitful journey: pollen tube navigation from germination to fertilization. Annu Rev Plant Biol. 2019;70:809–837. doi: 10.1146/annurev-arplant-050718-100133. PubMed DOI
Julca I, Ferrari C, Flores-Tornero M, et al. Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. Nat Plants. 2021;7(8):1143–1159. doi: 10.1038/s41477-021-00958-2. PubMed DOI
Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, Gao G. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45(W1):W12–16. doi: 10.1093/nar/gkx428. PubMed DOI PMC
Keller M, Hu Y, Mesihovic A, Fragkostefanakis S, Schleiff E, Simm S. Alternative splicing in tomato pollen in response to heat stress. DNA Res. 2017;24(2):205–217. doi: 10.1093/dnares/dsw051. PubMed DOI PMC
Keller M, Simm S, Bokszczanin KL, et al. The coupling of Transcriptome and proteome adaptation during development and heat stress response of tomato pollen. BMC Genom. 2018;19(1):1–20. doi: 10.1186/s12864-018-4824-5. PubMed DOI PMC
Kim HJ, Ok SH, Bahn SC et al (2011) Endoplasmic reticulum- and Golgi-localized phospholipase A2 plays critical roles in Arabidopsis pollen development and germination. Plant Cell 23(1):94–110. 10.1105/tpc.110.074799 PubMed PMC
Lee JY, Lee DH. Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol. 2003;132(2):517–529. doi: 10.1104/pp.103.020511. PubMed DOI PMC
Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq Data with or without a Reference Genome. BMC Bioinformatics 12:323. 10.1186/1471-2105-12-323 PubMed PMC
Li X, et al. Global identification and analysis revealed differentially expressed LncRNAs associated with meiosis and low fertility in Autotetraploid rice. BMC Plant Biol. 2020;20(1):1–19. doi: 10.1186/s12870-020-2290-0. PubMed DOI PMC
Lin SY, Chen PW, Chuang MH, et al. Profiling of Translatomes of in vivo-grown pollen tubes reveals genes with roles in Micropylar guidance during pollination in arabidopsis. Plant Cell. 2014;26(2):602–618. doi: 10.1105/tpc.113.121335. PubMed DOI PMC
Liu J, Zhong S, Guo X, et al. Membrane-Bound RLCKs LIP1 and LIP2 are essential male factors controlling male-female attraction in Arabidopsis. Curr Biol. 2013;23(11):993–998. doi: 10.1016/j.cub.2013.04.043. PubMed DOI
Liu F, Hu W, Li F. AUTOPHAGY-RELATED14 and its associated phosphatidylinositol 3-kinase complex promote autophagy in Arabidopsis. Plant Cell. 2020;32(12):3939–3960. doi: 10.1105/tpc.20.00285. PubMed DOI PMC
Loraine AE, McCormick S, Estrada A, Patel K, Qin P. RNA-Seq of Arabidopsis pollen uncovers novel transcription and alternative splicing. Plant Physiol. 2013;162(2):1092–1109. doi: 10.1104/pp.112.211441. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15(12):1–21. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinf. 2009;10:1–17. doi: 10.1186/1471-2105-10-161. PubMed DOI PMC
Luo M, Tai R, Yu CW, et al. Regulation of flowering time by the histone Deacetylase HDA5 in Arabidopsis. Plant J. 2015;82(6):925–936. doi: 10.1111/tpj.12868. PubMed DOI
Luo W, Pant G, Bhavnasi YK, Blanchard SG, Brouwer C. Pathview Web: user friendly pathway visualization and data integration. Nucleic Acids Res. 2017;45(W1):W501–W508. doi: 10.1093/nar/gkx372. PubMed DOI PMC
Ma ZX, et al. The THERMOSENSITIVE MALE STERILE 1 Interacts with the BiPs via DnaJ domain and stimulates their ATPase enzyme activities in Arabidopsis. PLoS ONE. 2015;10(7):1–13. doi: 10.1371/journal.pone.0132500. PubMed DOI PMC
Madison LS, Buchanan ML, Glass JD et al (2015) Class XI myosins move specific organelles in pollen tubes and are required for normal fertility and pollen tube growth in Arabidopsis. Plant Physiol 169(3):1946–1960. 10.1104/pp.15.01161 PubMed PMC
Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008;18(9):1509–1517. doi: 10.1101/gr.079558.108. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J. 2011;17(1):10–12. doi: 10.14806/ej.17.1.200. DOI
Mascarenhas JP. Gene activity during pollen development. Annu Rev Plant Physiol Plant Mol Biol. 1990;41(1):317–338. doi: 10.1146/annurev.pp.41.060190.001533. DOI
Mistry J, Chuguransky S, Williams L, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49(D1):D412–D419. doi: 10.1093/nar/gkaa913. PubMed DOI PMC
Mitsuda N, Ohme-Takagi M. Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol. 2009;50(7):1232–1248. doi: 10.1093/pcp/pcp075. PubMed DOI PMC
Náprstková A, Malínská K, Záveská Drábková L, et al. Characterization of ALBA family expression and localization in Arabidopsis thaliana generative organs. Int J Mol Sci. 2021;22(4):1–23. doi: 10.3390/ijms22041652. PubMed DOI PMC
Nelms B, Walbot V. Gametophyte genome activation occurs at pollen mitosis I in Maize. Science. 2022;375(6579):424–429. doi: 10.1126/science.abl7392. PubMed DOI
Ner-Gaon H, Halachmi R, Savaldi-Goldstein S, Rubin E, Ophir R, Fluhr R. Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J. 2004;39(6):877–885. doi: 10.1111/j.1365-313X.2004.02172.x. PubMed DOI
Osborne DJ, Boubriak I. Telomeres and their relevance to the life and death of seeds. Crit Rev Plant Sci. 2002;21(2):127–141. doi: 10.1080/0735-260291044214. DOI
Pasha A, Shabari S, Cleary A, et al. Araport lives: an updated framework for Arabidopsis bioinformatics. Plant Cell. 2020;32(9):2683–2686. doi: 10.1105/TPC.20.00358. PubMed DOI PMC
Passardi F, Dobias J, Valério L, et al. Morphological and physiological traits of three major Arabidopsis thaliana accessions. J Plant Physiol. 2007;164(8):980–992. doi: 10.1016/j.jplph.2006.06.008. PubMed DOI
Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-Seq2 for sensitive full-length Transcriptome profiling in single cells. Nat Methods. 2013;10(11):1096–1100. doi: 10.1038/nmeth.2639. PubMed DOI
Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-Seq2. Nat Protoc. 2014;9(1):171–181. doi: 10.1038/nprot.2014.006. PubMed DOI
Pina C, Pinto F, Feijó JA, Becker JD. Gene Family analysis of the arabidopsis Pollen Transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 2005;138(2):744–756. doi: 10.1104/pp.104.057935. PubMed DOI PMC
Poidevin L, Forment J, Unal D, Ferrando A (2020) Transcriptome and translatome changes in germinated pollen under heat stress uncover roles of transporter genes involved in pollen tube growth. Plant Cell Environ 44(7):2167–2184. 10.1111/pce.13972 PubMed
Qin T, Liu X, Li J, et al. Arabidopsis microtubule-destabilizing Protein 25 functions in pollen tube growth by severing actin filaments. Plant Cell. 2014;26(1):325–339. doi: 10.1105/tpc.113.119768. PubMed DOI PMC
Qin P, Loraine AE, McCormick S (2018) Cell-specific cis-natural antisense transcripts (Cis-NATs) in the sperm and the pollen vegetative cells of Arabidopsis thaliana. F1000Research 7(May):1–10. 10.12688/f1000research.13311.1 PubMed PMC
Raggi S, Demes E, Liu S, Verger S, Robert S. Polar expedition: mechanisms for protein polar localization. Curr Opin Plant Biol. 2020;53:134–140. doi: 10.1016/j.pbi.2019.12.001. PubMed DOI
Reyes A, Anders S, Weatheritt RJ, et al. Drift and conservation of differential exon usage across tissues in primate species. Proc Natl Acad Sci USA. 2013;110(38):15377–15382. doi: 10.1073/pnas.1307202110. PubMed DOI PMC
Robertson WR, Clark K, Young JC, Sussman MR. An Arabidopsis Thaliana plasma membrane proton pump is essential for pollen development. Genetics. 2004;168(3):1677–1687. doi: 10.1534/genetics.104.032326. PubMed DOI PMC
Röckel N, Wolf S, Kost B, Rausch T, Greiner S. Elaborate Spatial Patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J. 2008;53(1):133–143. doi: 10.1111/j.1365-313X.2007.03325.x. PubMed DOI
Rodriguez-Enriquez MJ, Mehdi S, Dickinson HG, Grant-Downton RT. A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. New Phytol. 2013;197(2):668–679. doi: 10.1111/nph.12037. PubMed DOI
Rutley N, Twell D. A decade of pollen transcriptomics. Plant Reprod. 2015;28(2):73–89. doi: 10.1007/s00497-015-0261-7. PubMed DOI PMC
Sauer N, Ludwig A, Knoblauch A, Rothe P, Gahrtz M, Klebl F. AtSUC8 and AtSUC9 encode functional sucrose transporters, but the closely related AtSUC6 and AtSUC7 genes encode aberrant proteins in different Arabidopsis ecotypes. Plant J. 2004;40(1):120–130. doi: 10.1111/j.1365-313X.2004.02196.x. PubMed DOI
Schmitz J, Rossoni AW, Maurino VG. Dissecting the physiological function of plant glyoxalase I and glyoxalase I-like proteins. Front Plant Sci. 2018;871(November):1–7. doi: 10.3389/fpls.2018.01618. PubMed DOI PMC
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-Seq: transcript-level estimates improve gene-level inferences. F1000Research. 2015;4(2):1521. doi: 10.12688/f1000research.7563.1. PubMed DOI PMC
Sun CW, Callis J. Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs and in response to environmental changes. Plant J. 1997;11(5):1017–1027. doi: 10.1046/j.1365-313X.1997.11051017.x. PubMed DOI
Supek F, Bošnjak M, Škunca N, Šmuc T. Revigo summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011 doi: 10.1371/journal.pone.0021800. PubMed DOI PMC
Tabas-Madrid D, Méndez-Vigo B, Arteaga N et al (2018) Genome-wide signatures of flowering adaptation to climate temperature: regional analyses in a highly diverse native range of Arabidopsis thaliana. Plant Cell Environ 41(8):1806–1820. 10.1111/pce.13189 PubMed
Thimm O, Bläsing O, Gibon Y, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37(6):914–939. doi: 10.1111/j.1365-313X.2004.02016.x. PubMed DOI
Thomas PD, Campbell MJ, Kejariwal A, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13(9):2129–2141. doi: 10.1101/gr.772403. PubMed DOI PMC
Twell D, Oh SA, Honys D. Pollen development, a genetic and transcriptomic view. Plant Cell Monogr. 2006;3(February):15–45. doi: 10.1007/7089_042. DOI
Ueda M, Matsui A, Tanaka M, et al. The distinct roles of class I and II RPD3-like histone deacetylases in salinity stress response. Plant Physiol. 2017;175(4):1760–1773. doi: 10.1104/pp.17.01332. PubMed DOI PMC
UniprotKB ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/reference_proteomes/Eukaryota/UP000006548/UP000006548_3702.fasta.gz
Updegraff EP, Zhao F, Preuss D. The Extracellular Lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sex Plant Reprod. 2009;22(3):197–204. doi: 10.1007/s00497-009-0104-5. PubMed DOI
Vaneechoutte D, Estrada AR, Lin YC, Loraine AE, Vandepoele K. Genome-wide characterization of differential transcript usage in Arabidopsis thaliana. Plant J. 2017;92(6):1218–1231. doi: 10.1111/tpj.13746. PubMed DOI
Vanstraelen M, Inzé D, Geelen D. Mitosis-specific Kinesins in Arabidopsis. Trends Plant Sci. 2006;11(4):167–175. doi: 10.1016/j.tplants.2006.02.004. PubMed DOI
Vitting-Seerup K, Sandelin A. The landscape of isoform switches in human cancers. Mol Cancer Res. 2017;15(9):1206–1220. doi: 10.1158/1541-7786.MCR-16-0459. PubMed DOI
Vitting-Seerup K, Sandelin A, Berger B. IsoformSwitchAnalyzeR: analysis of changes in genome-wide patterns of alternative splicing and its functional consequences. Bioinformatics. 2019;35(21):4469–4471. doi: 10.1093/bioinformatics/btz247. PubMed DOI
Wingett SW, Andrews S (2018) Fastq screen: a tool for multi-genome mapping and quality control. F1000Research 7:1–13. 10.12688/f1000research.15931.1 PubMed PMC
Xia R, Wang J, Liu C, et al. ROR1/RPA2A, a putative replication Protein A2, functions in epigenetic gene silencing and in regulation of meristem development in Arabidopsis. Plant Cell. 2006;18(1):85–103. doi: 10.1105/tpc.105.037507. PubMed DOI PMC
Xu N, Gao XQ, Zhao XY. Arabidopsis AtVPS15 Is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation. Plant Mol Biol. 2011;77(3):251–260. doi: 10.1007/s11103-011-9806-9. PubMed DOI PMC
Yang KZ, Xia C, Liu XL, et al. A Mutation in THERMOSENSITIVE MALE STERILE 1, Encoding a Heat Shock Protein with DnaJ and PDI Domains, leads to Thermosensitive Gametophytic male sterility in Arabidopsis. Plant J. 2009;57(5):870–882. doi: 10.1111/j.1365-313X.2008.03732.x. PubMed DOI
Yang H, You C, Yang S, et al. The role of calcium/calcium-dependent protein kinases signal pathway in pollen tube growth. Front Plant Sci. 2021 doi: 10.3389/fpls.2021.633293. PubMed DOI PMC