Characterization of ALBA Family Expression and Localization in Arabidopsis thaliana Generative Organs

. 2021 Feb 06 ; 22 (4) : . [epub] 20210206

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33562109

Grantová podpora
18-07027S Grantová Agentura České Republiky
LM2018129 Czech-BioImaging Ministry of Education, Youth and Science

ALBA DNA/RNA-binding proteins form an ancient family, which in eukaryotes diversified into two Rpp25-like and Rpp20-like subfamilies. In most studied model organisms, their function remains unclear, but they are usually associated with RNA metabolism, mRNA translatability and stress response. In plants, the enriched number of ALBA family members remains poorly understood. Here, we studied ALBA dynamics during reproductive development in Arabidopsis at the levels of gene expression and protein localization, both under standard conditions and following heat stress. In generative tissues, ALBA proteins showed the strongest signal in mature pollen where they localized predominantly in cytoplasmic foci, particularly in regions surrounding the vegetative nucleus and sperm cells. Finally, we demonstrated the involvement of two Rpp25-like subfamily members ALBA4 and ALBA6 in RNA metabolism in mature pollen supported by their co-localization with poly(A)-binding protein 3 (PABP3). Collectively, we demonstrated the engagement of ALBA proteins in male reproductive development and the heat stress response, highlighting the involvement of ALBA4 and ALBA6 in RNA metabolism, storage and/or translational control in pollen upon heat stress. Such dynamic re-localization of ALBA proteins in a controlled, developmentally and environmentally regulated manner, likely reflects not only their redundancy but also their possible functional diversification in plants.

Zobrazit více v PubMed

Aravind L., Iyer L.M., Anantharaman V. The two faces of Alba: The evolutionary connection between proteins participating in chromatin structure and RNA metabolism. Genome Biol. 2003;4:R64. doi: 10.1186/gb-2003-4-10-r64. PubMed DOI PMC

Bell S.D., Botting C.H., Wardleworth B.N., Jackson S.P., White M.F. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science. 2002;296:148–151. doi: 10.1126/science.1070506. PubMed DOI

Guerrier-Takada C., Eder P.S., Gopalan V., Altman S. Purification and characterization of Rpp25, an RNA-binding protein subunit of human ribonuclease P. RNA. 2002;8:290–295. doi: 10.1017/S1355838202027954. PubMed DOI PMC

Welting T.J., Peters F.M., Hensen S.M., van Doorn N.L., Kikkert B.J., Raats J.M., van Venrooij W.J., Pruijn G.J. Heterodimerization regulates RNase MRP/RNase P association, localization, and expression of Rpp20 and Rpp25. RNA. 2007;13:65–75. doi: 10.1261/rna.237807. PubMed DOI PMC

Welting T.J., van Venrooij W.J., Pruijn G.J. Mutual interactions between subunits of the human RNase MRP ribonucleoprotein complex. Nucleic Acids Res. 2004;32:2138–2146. doi: 10.1093/nar/gkh539. PubMed DOI PMC

Dupé A., Dumas C., Papadopoulou B. Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development. PLoS ONE. 2015;10:e0137243. doi: 10.1371/journal.pone.0137243. PubMed DOI PMC

Mair G.R., Lasonder E., Garver L.S., Franke-Fayard B.M., Carret C.K., Wiegant J.C., Dirks R.W., Dimopoulos G., Janse C.J., Waters A.P. Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog. 2010;6:e1000767. doi: 10.1371/journal.ppat.1000767. PubMed DOI PMC

Mani J., Guttinger A., Schimanski B., Heller M., Acosta-Serrano A., Pescher P., Spath G., Roditi I. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery. PLoS ONE. 2011;6:e22463. doi: 10.1371/journal.pone.0022463. PubMed DOI PMC

Jiao Y., Wickett N.J., Ayyampalayam S., Chanderbali A.S., Landherr L., Ralph P.E., Tomsho L.P., Hu Y., Liang H., Soltis P.S., et al. Ancestral polyploidy in seed plants and angiosperms. Nature. 2011;473:97–100. doi: 10.1038/nature09916. PubMed DOI

Verma J.K., Wardhan V., Singh D., Chakraborty S., Chakraborty N. Genome-Wide Identification of the Alba Gene Family in Plants and Stress-Responsive Expression of the Rice Alba Genes. Genes (Basel) 2018;9:183. doi: 10.3390/genes9040183. PubMed DOI PMC

Verma J.K., Gayali S., Dass S., Kumar A., Parveen S., Chakraborty S., Chakraborty N. OsAlba1, a dehydration-responsive nuclear protein of rice (Oryza sativa L. ssp. indica), participates in stress adaptation. Phytochemistry. 2014;100:16–25. doi: 10.1016/j.phytochem.2014.01.015. PubMed DOI

Wang N., Jalajakumari M., Miller T., Asadi M., Millar A.A. The ALBA RNA-binding proteins function redundantly to promote growth and flowering in Arabidopsis. BioRxiv. 2019 doi: 10.1101/758946. DOI

Borg M., Brownfield L., Khatab H., Sidorova A., Lingaya M., Twell D. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell. 2011;23:534–549. doi: 10.1105/tpc.110.081059. PubMed DOI PMC

Magwanga R.O., Kirungu J.N., Lu P., Cai X., Xu Y., Wang X., Zhou Z., Hou Y., Agong S.G., Wang K., et al. Knockdown of ghAlba_4 and ghAlba_5 Proteins in Cotton Inhibits Root Growth and Increases Sensitivity to Drought and Salt Stresses. Front. Plant Sci. 2019;10:1292. doi: 10.3389/fpls.2019.01292. PubMed DOI PMC

Reichel M., Liao Y., Rettel M., Ragan C., Evers M., Alleaume A.M., Horos R., Hentze M.W., Preiss T., Millar A.A. In Planta Determination of the mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings. Plant Cell. 2016;28:2435–2452. doi: 10.1105/tpc.16.00562. PubMed DOI PMC

Hedhly A. Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ. Exp. Bot. 2011;74:9–16. doi: 10.1016/j.envexpbot.2011.03.016. DOI

Hafidh S., Fila J., Honys D. Male gametophyte development and function in angiosperms: A general concept. Plant Reprod. 2016;29:31–51. doi: 10.1007/s00497-015-0272-4. PubMed DOI

Young L.W., Wilen R.W., Bonham-Smith P.C. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 2004;55:485–495. doi: 10.1093/jxb/erh038. PubMed DOI

Zinn K.E., Tunc-Ozdemir M., Harper J.F. Temperature stress and plant sexual reproduction: Uncovering the weakest links. J. Exp. Bot. 2010;61:1959–1968. doi: 10.1093/jxb/erq053. PubMed DOI PMC

Alvarez-Buylla E.R., Benitez M., Corvera-Poire A., Chaos Cador A., de Folter S., Gamboa de Buen A., Garay-Arroyo A., Garcia-Ponce B., Jaimes-Miranda F., Perez-Ruiz R.V., et al. Flower development. Arab. Book. 2010;8:e0127. doi: 10.1199/tab.0127. PubMed DOI PMC

Gray N.K., Hrabalkova L., Scanlon J.P., Smith R.W. Poly(A)-binding proteins and mRNA localization: Who rules the roost? Biochem. Soc. Trans. 2015;43:1277–1284. doi: 10.1042/BST20150171. PubMed DOI

Belostotsky D.A. Unexpected Complexity of Poly(A)-Binding Protein Gene Families in Flowering Plants: Three Conserved Lineages That Are at Least 200 Million Years Old and Possible Auto- and Cross-Regulation. Genetics. 2003;163:311–319. PubMed PMC

Belostotsky D.A., Meagher R.B. Differential organ-specific expression of three poly(A)-binding protein genes from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 1993;90:6686–6690. doi: 10.1073/pnas.90.14.6686. PubMed DOI PMC

Twell D. Male gametogenesis and germline specification in flowering plants. Sex. Plant Reprod. 2011;24:149–160. doi: 10.1007/s00497-010-0157-5. PubMed DOI

Hafidh S., Potesil D., Muller K., Fila J., Michailidis C., Herrmannova A., Fecikova J., Ischebeck T., Valasek L.S., Zdrahal Z., et al. Dynamics of the Pollen Sequestrome Defined by Subcellular Coupled Omics. Plant Physiol. 2018;178:258–282. doi: 10.1104/pp.18.00648. PubMed DOI PMC

Honys D., Twell D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004;5:R85. doi: 10.1186/gb-2004-5-11-r85. PubMed DOI PMC

Hamada T., Yako M., Minegishi M., Sato M., Kamei Y., Yanagawa Y., Toyooka K., Watanabe Y., Hara-Nishimura I. Stress granule formation is induced by a threshold temperature rather than a temperature difference in Arabidopsis. J. Cell Sci. 2018;131:jcs216051. doi: 10.1242/jcs.216051. PubMed DOI

Honys D., Renak D., Fecikova J., Jedelsky P.L., Nebesarova J., Dobrev P., Capkova V. Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J. Proteome Res. 2009;8:2015–2031. doi: 10.1021/pr8009897. PubMed DOI

Kosmacz M., Gorka M., Schmidt S., Luzarowski M., Moreno J.C., Szlachetko J., Leniak E., Sokolowska E.M., Sofroni K., Schnittger A., et al. Protein and metabolite composition of Arabidopsis stress granules. New Phytol. 2019;222:1420–1433. doi: 10.1111/nph.15690. PubMed DOI

Scarpin M.R., Sigaut L., Temprana S.G., Boccaccio G.L., Pietrasanta L.I., Muschietti J.P. Two Arabidopsis late pollen transcripts are detected in cytoplasmic granules. Plant Direct. 2017;1:e00012. doi: 10.1002/pld3.12. PubMed DOI PMC

Weber C., Nover L., Fauth M. Plant stress granules and mRNA processing bodies are distinct from heat stress granules. Plant J. 2008;56:517–530. doi: 10.1111/j.1365-313X.2008.03623.x. PubMed DOI

Shahnejat-Bushehri S., Mueller-Roeber B., Balazadeh S. Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signal. Behav. 2012;7:1518–1521. doi: 10.4161/psb.22092. PubMed DOI PMC

Chekanova J.A., Belostotsky D.A. Evidence that poly(A) binding protein has an evolutionarily conserved function in facilitating mRNA biogenesis and export. RNA. 2003;9:1476–1490. doi: 10.1261/rna.5128903. PubMed DOI PMC

Subota I., Rotureau B., Blisnick T., Ngwabyt S., Durand-Dubief M., Engstler M., Bastin P. ALBA proteins are stage regulated during trypanosome development in the tsetse fly and participate in differentiation. Mol. Biol. Cell. 2011;22:4205–4219. doi: 10.1091/mbc.e11-06-0511. PubMed DOI PMC

Gissot M., Walker R., Delhaye S., Alayi T.D., Huot L., Hot D., Callebaut I., Schaeffer-Reiss C., Dorsselaer A.V., Tomavo S. Toxoplasma gondii Alba proteins are involved in translational control of gene expression. J. Mol. Biol. 2013;425:1287–1301. doi: 10.1016/j.jmb.2013.01.039. PubMed DOI

Keller M., Simm S. The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen. BMC Genom. 2018;19:447. doi: 10.1186/s12864-018-4824-5. PubMed DOI PMC

Bailey T.L., Boden M., Buske F.A., Frith M., Grant C.E., Clementi L., Ren J., Li W.W., Noble W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–W208. doi: 10.1093/nar/gkp335. PubMed DOI PMC

Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Soding J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC

Neron B., Menager H., Maufrais C., Joly N., Maupetit J., Letort S., Carrere S., Tuffery P., Letondal C. Mobyle: A new full web bioinformatics framework. Bioinformatics. 2009;25:3005–3011. doi: 10.1093/bioinformatics/btp493. PubMed DOI PMC

Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics. 2005;21:951–960. doi: 10.1093/bioinformatics/bti125. PubMed DOI

Jones D.T., Taylor W.R., Thornton J.M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 1992;8:275–282. doi: 10.1093/bioinformatics/8.3.275. PubMed DOI

Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Julca I., Ferrari C., Flores-Tornero M., Proost S., Lindner A.-C., Hackenberg D., Steinbachová L., Michaelidis C., Pereira S.G., Misra C.S., et al. Comparative transcriptomic analysis reveals conserved transcriptional programs underpinning organogenesis and reproduction in land plants. BioRxiv. 2020 doi: 10.1101/2020.10.29.361501. PubMed DOI

Liang X., Peng L., Baek C.H., Katzen F. Single step BP/LR combined Gateway reactions. Biotechniques. 2013;55:265–268. doi: 10.2144/000114101. PubMed DOI

Shimada T.L., Shimada T., Hara-Nishimura I. A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J. 2010;61:519–528. doi: 10.1111/j.1365-313X.2009.04060.x. PubMed DOI

Sarrion-Perdigones A., Vazquez-Vilar M., Palaci J., Castelijns B., Forment J., Ziarsolo P., Blanca J., Granell A., Orzaez D. GoldenBraid 2.0: A comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol. 2013;162:1618–1631. doi: 10.1104/pp.113.217661. PubMed DOI PMC

Vazquez-Vilar M., Quijano-Rubio A., Fernandez-Del-Carmen A., Sarrion-Perdigones A., Ochoa-Fernandez R., Ziarsolo P., Blanca J., Granell A., Orzaez D. GB3.0: A platform for plant bio-design that connects functional DNA elements with associated biological data. Nucleic Acids Res. 2017;45:2196–2209. doi: 10.1093/nar/gkw1326. PubMed DOI PMC

Clough S.J., Bent A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI

Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Team R.C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018. [(accessed on 4 February 2021)]. Available online: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=2342186.

Park S.K., Howden R., Twell D. The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development. 1998;125:3789–3799. PubMed

Retzer K., Lacek J., Skokan R., Del Genio C.I., Vosolsobe S., Lankova M., Malinska K., Konstantinova N., Zazimalova E., Napier R.M., et al. Evolutionary Conserved Cysteines Function as cis-Acting Regulators of Arabidopsis PIN-FORMED 2 Distribution. Int. J. Mol. Sci. 2017;18:1–20. doi: 10.3390/ijms18112274. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...